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Abstract
The conjugate gradient (CG) method is one of the most popular methods to solve
nonlinear unconstrained optimization problems. The Hestenes-Stiefel (HS) CG
formula is considered one of the most efficient methods developed in this century. In
addition, the HS coefficient is related to the conjugacy condition regardless of the line
search method used. However, the HS parameter may not satisfy the global
convergence properties of the CG method with the Wolfe-Powell line search if the
descent condition is not satisfied. In this paper, we use the original HS CG formula
with a mild condition to construct a CG method with restart using the negative
gradient. The convergence and descent properties with the strong Wolfe-Powell
(SWP) and weak Wolfe-Powell (WWP) line searches are established. Using this
condition, we guarantee that the HS formula is non-negative, its value is restricted,
and the number of restarts is not too high. Numerical computations with the SWP line
search and some standard optimization problems demonstrate the robustness and
efficiency of the new version of the CG parameter in comparison with the latest and
classical CG formulas. An example is used to describe the benefit of using different
initial points to obtain different solutions for multimodal optimization functions.

Keywords: conjugate gradient method; Wolfe-Powell line search; Hestenes-Stiefel
formula; restart condition; performance profile

1 Introduction
Consider the following form for the unconstrained optimization problem:

min f (x), x ∈ R
n, ()

where f : Rn →R is a smooth nonlinear function. To solve () using the conjugate gradient
(CG) method, we normally use the following iterative method:

xk+ = xk + αkdk , k = , , . . . , ()

where the starting point x ∈ R
n is arbitrary and αk >  is the step length, which is com-

puted via a line search. The search direction dk is defined by

dk = –gk + βkdk–, k = , , . . . , ()
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where gk = ∇f (xk), βk is a scalar, and the steepest descent method is used as an initial
search direction, i.e.,

d = –g, k = . ()

The most well-known CG formulas are the following:
Hestenes-Stiefel (HS) [],

βHS
k =

gT
k (gk – gk–)

dT
k–(gk – gk–)

, ()

Fletcher-Reeves (FR) [],

βFR
k =

‖gk‖

‖gk–‖ , ()

and Polak-Ribiere-Polyak (PRP) [],

βPRP
k =

gT
k (gk – gk–)
‖gk–‖ . ()

Theoretically, equations (), (), and () are similar if we use an exact line search, i.e.,

f (xk + αkdk) = min f (xk + αdk), α > , ()

and quadratic functions, i.e.,

f (x) =



xT Qx – bT x,

where Q is a positive definite matrix and b is a vector. However, in numerical computa-
tions and convergence analyses, the three main CG formulas are different if we use non-
quadratic functions.

To obtain the step length, we have two types of line searches: exact line search as given
by (), which is an expensive line search in terms of calculating the function and gradient
evolutions, and inexact line search, which approximates the step length by reducing the
function value and direction derivative. The inexact line search is inexpensive and inherits
identical advantages as the exact line search. The most popular inexact line search is the
Wolfe-Powell line search [, ], which is designed to approximate the suitable step length
using the following equations:

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk ()

and

g(xk + αkdk)T dk ≥ σ gT
k dk , ()

where  < δ < σ < .
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The strong version of the weak Wolfe-Powell (WWP) line search is the strong Wolfe-
Powell (SWP) line search, which is given by () and

∣
∣g(xk + αkdk)T dk

∣
∣ ≤ σ

∣
∣gT

k dk
∣
∣. ()

The difference between the WWP and SWP line searches is that the former no longer
searches for the step length when the current iteration in () is far from the stationary
point.

An important rule in the CG method is the descent property, which is given by

gT
k dk < . ()

If the CG formula inherits (), then the iterative formula in () absolutely reduces the
function value in every iteration. It is clear from () that f (xk + αkdk) – f (xk) ≤ δαkgT

k dk . If
the direction derivative (i.e., gT

k dk) is negative, we obtain

f (xk + αkdk) = f (xk+) < f (xk).

Thus, () must be satisfied before using the Wolfe-Powell line search. If we extend () to
the form

gT
k dk ≤ –c‖gk‖, k ≥  and c > , ()

then () is called the sufficient descent condition.
The HS CG formula is related to the conjugacy condition regardless of the objective

function and line search, i.e.,

dT
k gk – dT

k gk– = . ()

If the CG formula inherits (), the efficiency will be better than other CG parameters
that do not inherit this property. Dai and Liao [] proposed the following novel conjugacy
condition for an inexact line search:

dT
k gk – dT

k gk– = –tαk–gT
k dk–, t > . ()

Using the criteria of an exact line search, gT
k dk– = , () reduces to the original conjugacy

condition ().
Because the PRP and HS formulas cannot satisfy the descent property when the SWP or

WWP line searches are used, Gilbert and Nocedal [] use Powell’s [] suggestion to solve
the convergence problem of the PRP method as follows:

βPRP+
k = max

{

,βPRP
k

}

,

βHS+
k = max

{

,βHS
k

}

.

However, βPRP+
k cannot satisfy the descent property with the SWP line search. Thus, []

uses the Moré and Thuente algorithm [] if the descent property is not satisfied with the
SWP line search.
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Furthermore, [] makes the following suggestion:

βk =

⎧

⎪⎨

⎪⎩

–βFR
k , if βPRP

k < –βFR
k ,

βPRP
k , if |βPRP

k | ≤ βFR
k ,

βFR
k , if βPRP

k > βFR
k .

Touati-Ahmed and Storey [] suggest the following hybrid method:

βTS
k =

{

βPRP
k , if  ≤ βPRP

k ≤ βFR
k ,

βFR
k , otherwise.

Several CG parameters that pertain to the PRP and HS formulas have been presented [–
]. Here, we denote the following CG formulas using the WYL family:

βWYL
k =

gT
k (gk – ‖gk‖

‖gk–‖ gk–)
‖gk–‖ , βNPRP

k =
‖gk‖ – ‖gk‖

‖gk–‖ |gkgk–|
‖gk–‖ ,

βDPRP
k =

‖gk‖ – ‖gk‖
‖gk–‖ |gkgk–|

m|gT
k dk–| + ‖gk–‖ , m ≥ .

The CG formulas in the WYL family are clearly positive and satisfy the global convergence
with descent properties. However, this family does not inherit the restart property. Thus,
the convergence rate is linear. For more about the convergence rate, we refer the reader
to [].

Recently, Alhawarat et al. [] constructed the following CG formula with the restart
property as follows:

βHPRP
k =

{

βPRP
k , if ‖gk‖ > |gT

k gk–|,
βNPRP

k , otherwise.
()

In addition, to learn about many versions of CG parameters related to classical CG meth-
ods and their convergence properties, we refer the reader to [, ].

2 Motivation and the new modification
The Hestenes-Stiefel (HS) CG formula is considered one of the most efficient methods
developed in this century. In addition, the HS coefficient is related to the conjugacy con-
dition regardless of whether the line search used. However, the HS parameter may not
satisfy the global convergence properties of the CG method with the Wolfe-Powell line
search if the descent condition is not satisfied. Thus, in this section, we present the fol-
lowing CG parameter:

βZA
k =

⎧

⎨

⎩

‖gk‖–gT
k gk–

dT
k–gk –dT

k–gk–
, if ‖gk‖ > |gT

k gk–|,
, otherwise.

()

The non-zero term of () can clearly be written as follows:

βZA
k ≤ ‖gk‖ + |gT

k gk–|
dT

k–gk – dT
k–gk–

≤ ‖gk‖

dT
k–gk – dT

k–gk–
()
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and

βZA
k > . ()

If βZA
k = , the search direction becomes the steepest-descent method. In addition, if gk =

, the stationary point is found. Thus, in the following analysis, we always suppose that
βZA

k >  and gk �=  for all k ≥ .
To prove that the number of restarts in () is not too many by using different non-

standard initial points, we compare βZA
k with the following modified PRP CG parameter:

βPRP∗
k =

{ gT
k (gk –gk–)
‖gk–‖ , if ‖gk‖ > |gT

k gk–|,
, otherwise.

()

In the numerical results section, () restarted too many times by using non-standard dif-
ferent initial points. In other words, the CG parameter in () uses the steepest-descent
method several times to reach the optimum solution. However, by using the standard ini-
tial points, PRP∗ becomes more efficient. Thus, in terms of the efficiency, () is not as
efficient as () because the latter does not require as many times to restart.

The following algorithm describes the steps of using the CG method with () and SWP
line search to obtain the solution for the optimization functions.

Algorithm 

Step . Initialization. Given x, set k = .
Step . If ‖gk‖ ≤ ε, then stop, where  < ε 
 .
Step . Compute βk based on ().
Step . Compute dk based on () and ().
Step . Compute αk based on () and ().
Step . Update a new point based on ().
Step . Convergent test and stopping criteria: if ‖gk‖ ≤ ε, then stop; otherwise, go to Step 

with k = k + .

3 Global convergence properties for the βZA
k method

Because we are interested in determining the stationary point for the nonlinear optimiza-
tion functions that are bounded below and whose gradient is Lipschitz continuous, the
following standard assumption is necessary.

Assumption 
I. The level set � = {x|f (x) ≤ f (x)} is bounded, i.e., there is a positive constant M such

that

‖x‖ ≤ M, ∀x ∈ � .

II. In some neighborhood N of � , f is continuously differentiable, and its gradient is
Lipschitz continuous, i.e., for all x, y ∈ N , there is a constant L >  such that

∥
∥g(x) – g(y)

∥
∥ ≤ L‖x – y‖.
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This assumption implies that there is a positive constant B such that

∥
∥g(u)

∥
∥ ≤ B, ∀u ∈ N .

The following lemma is known as the Zoutendijk condition [], which is normally used
to prove the convergence properties of CG formulas with the standard CG method. The
global convergence indicates that a stationary point is obtained.

Lemma . Suppose that Assumption  holds. Consider the CG methods of forms () and
(), where the search direction satisfies the sufficient descent condition and the step length,
which is computed using the standard WWP line search. Then

∞
∑

k=

(gT
k dk)

‖dk‖ < ∞.

The following two theorems demonstrate that () satisfies the descent condition with
SWP and WWP line searches.

Theorem . Let the sequences {gk} and {dk} be generated by methods (), () and ()
with step length αk , which is computed using the SWP line searches () and () with σ < 

 ;
then the sufficient descent condition () holds for some c ∈ (, ).

Proof Multiplying () by gT
k , we have

gT
k dk = gT

k (–gk + βkdk–) = –‖gk‖ + βkgT
k dk–. ()

Then we have the following two cases:
Case . If gT

k dk– ≤ , then using (), we obtain

gT
k dk = –‖gk‖ + βZA

k gT
k dk– < .

Case . If gT
k dk– > , then divide both sides of () by ‖gk‖ and using (), we obtain

gT
k dk

‖gk‖ = – + βZA
k gT

k dk–.

Using () with σ < /, we obtain

gT
k dk

‖gk‖ ≤ – –
σ gT

k–dk–

(σ – )gT
k–dk–

= – +
σ

( – σ )
< .

Let c =  – σ
(–σ ) , we obtain

gT
k dk ≤ –c‖gk‖.

The proof is complete. �

Theorem . Assume the sequences {gk} and {dk} are generated using the methods (), ()
and () with step length αk , which is computed via the WWP line search given by () and
(); then the descent condition () holds.
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Proof If gT
k dk– ≤ , then the proof is similar to Case  in Theorem .. If gT

k dk– > , from
(), we have

gT
k dk = gT

k (–gk + βkdk–) = –‖gk‖ + βkgT
k dk–

≤ –‖gk‖ +
‖gk‖

dT
k–gk – dT

k–gk–
gT

k dk–

=


dT
k–gk – dT

k–gk–

(

–‖gk‖dT
k–gk + ‖gk‖dT

k–gk– + ‖gk‖gT
k dk–

)

=


dT
k–(gk – gk–)

(‖gk‖dT
k–gk– + ‖gk‖gT

k dk–
)

=


dT
k–(gk – gk–)

(‖gk‖dT
k–gk– + ‖gk‖dT

k–gk– – ‖gk‖dT
k–gk– + ‖gk‖gT

k dk–
)

=


dT
k–(gk – gk–)

(‖gk‖dT
k–(gk – gk–) + ‖gk‖dT

k–gk–
)

≤ ‖gk‖ +
‖gk‖dT

k–gk–

(σ – )dT
k–gk–

≤ ‖gk‖ +
‖gk‖

(σ – )
.

Dividing both sides by ‖gk‖, we obtain

gT
k dk

‖gk‖ ≤  +


(σ – )
.

Let c = – + 
(–σ ) ; then we obtain

gT
k dk ≤ –c‖gk‖.

The proof is complete. �

Gilbert and Nocedal [] presented a useful property to prove the global convergence
properties for the methods that pertain to the PRP (HS) formula. The property is as fol-
lows.

Property ∗ Consider a method of the form given by () and () and suppose that

 < γ ≤ ‖gk‖ ≤ γ̄ . ()

We say that the method has Property ∗ if there are constants b >  and λ >  such that
for all k ≥ , we obtain |βk| ≤ b; if ‖xk – xk–‖ ≤ λ, then

|βk| ≤ 
b

.

The following lemma is similar to that presented in [].
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Lemma . Consider the CG method as defined in (), (), and () and the step length
computed using the WWP line search. If the equation in () and Assumption  hold, then
βZA

k satisfies Property ∗.

Proof Assume that b = γ̄ 

(–σ )cγ  and λ = (–σ )cγ 

Lγ̄ b . Then b >  and λ > . Using () and The-
orem ., we obtain

dT
k–(gk – gk–) ≥ (σ – )gT

k–dk– ≥ c( – σ )‖gk–‖.

Using () and Assumption , we obtain

∣
∣βZA

k
∣
∣ =

∣
∣
∣
∣

gT
k (gk – gk–)

dT
k–(gk – gk–)

∣
∣
∣
∣
≤ ‖gk‖ + |gT

k gk–|
c( – σ )‖gk–‖ ≤ γ̄ 

c( – σ )γ  = b.

If ‖xk – xk–‖ ≤ λ, then

∣
∣βZA

k
∣
∣ =

∣
∣
∣
∣

‖gk‖ – gT
k gk–

dT
k–(gk – gk–)

∣
∣
∣
∣
≤ ‖gk‖‖gk – gk–‖

c( – σ )‖gk–‖ ≤ Lλγ̄

c( – σ )γ  =


b
.

The proof is complete. �

The proof of the forthcoming lemmas and Theorem . originally can be found in [].
However, we present it here for readability. The following lemma shows that if the CG
formula satisfies Property ∗, then the fraction of steps cannot be too small.

Lemma . Assume that Assumption  holds. Assume that the sequences {gk} and {dk} are
generated by Algorithm , where αk is computed using the WWP line search, in which the
sufficient descent condition () holds, and assume that the method has Property ∗. Suppose
also ‖gk‖ ≥ γ for some λ > . Then there exists λ >  such that for any 
 ∈N and any index
k, there is an index k > k that satisfies

∣
∣κλ

k,

∣
∣ >

λ


,

where κλ
k,
 = {i ∈ N : k ≤ i ≤ k + 
 – ,‖si‖ > λ}, N denotes the set of positive integers, and

|κλ
k,
| denotes the number of elements in κλ

k,
.

Lemma . Suppose that Assumption  holds. Assume that the sequences {gk} and {dk}
are generated by Algorithm , where αk is computed using the WWP line search, and that
the sufficient descent condition () holds. If βk ≥  and () holds, then dk �=  and

∞
∑

k=

‖uk+ – uk‖ < ∞, where uk =
dk

‖dk‖ .

Theorem . Suppose that Assumption  holds. Assume that the sequences {gk} and {dk}
are generated by Algorithm , where αk is computed using the WWP line search, and that
the sufficient descent condition () holds. In addition, suppose that Property ∗ holds. Then
we have limk→∞ inf‖gk‖ = .
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Proof Based on Lemma ., we prove the theorem by contradiction. Define ui := di
‖di‖ . For

any two indices l, k with l ≥ k, we have

xl – xk– =
l

∑

i=k

‖si–‖ui– =
l

∑

i=k

‖si–‖uk– +
l

∑

i=k

‖si–‖(ui– – uk–),

where si– = xi – xi–.
Taking the norms,

l
∑

i=k

‖si–‖ ≤ ‖xl‖ + ‖xk–‖ +
l

∑

i=k

‖si–‖‖ui– – uk–‖.

Using Assumption , we know that sequence {xk} is bounded, and there is a positive con-
stant η such that ‖xk‖ ≤ η for all k ≥ . Thus,

‖xl‖ + ‖xk–‖ ≤ η,

which implies that

l
∑

i=k

‖si–‖ ≤ η +
l

∑

i=k

‖si–‖‖ui– – uk–‖. ()

Assume that λ >  is given by Lemma .. Following the notation of this lemma, we define


 :=
⌈

η

λ

⌉

.

From Lemma ., we can find an index k such that

∞
∑

k≥k

‖ui – ui–‖ <




. ()

With this 
 and k, Lemma . gives an index k ≥ k such that

∣
∣κλ

k,

∣
∣ >





. ()

Next, according to the Cauchy-Schwarz inequality and (), we see that for any index
i ∈ [k, k + 
 – ],

‖ui– – uk–‖ ≤
i–
∑

j=k

‖uj – uj–‖

≤ (i – k)/

( i–
∑

j=k

‖uj – uj–‖

)/

≤ 
/
(





)/

=



.
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By this relation, () and (), with l = k + 
 – , we have

η ≥ 


k+
–
∑

i=k

‖si–‖ >
λ


∣
∣κλ

k,

∣
∣ >

λ



.

Thus, 
 < η/λ, which contradicts the definition of 
. The proof is complete. �

Using Lemmas ., ., and . and Theorem ., the global convergence of Algorithm 
with the Wolfe-Powell line search is similarly established to that in Theorem . in [].
Therefore, the proof of the following theorem is omitted, and we present the following
theorems without proof.

Theorem . Suppose that Assumption  holds. Consider the CG method of forms (), ()
and (), where αk is computed using the WWP line search; then limk→∞ inf‖gk‖ = .

Theorem . Suppose that Assumption  holds. Consider the CG method of forms (),
() and (), where αk is computed using the SWP line search with  < σ < /; then
limk→∞ inf‖gk‖ = .

4 Numerical results and discussion
To test the efficiency and robustness of the new method (), some standard test functions
were selected from CUTE [] and Andrei [], as summarized in Table . We performed
a comparison with other CG methods, which included the WYL family, PRP∗, HPRP, PRP,
HS+, FR, and ZA parameters. The stopping criterion was ‖gk‖ ≤ – for all algorithms.

The initial point x ∈R
n is arbitrary. As shown in Table , we used different initial points

based on the original standard points. We notice from the numerical results that differ-
ent initial points almost had different stationary points for the multimodal functions. In
addition, the efficiency of the algorithm depended on the initial points for every function.
For example, the efficiency of the FR algorithm with the extended Rosenbrock function
and the initial point (–., , –., , . . . , –., ) is different from that with (, , . . . , ) or
(, , . . . , ) as the initial point. Moreover, the initial point determines the value of the
CG formula based on Powell []; for example, the PRP or HS parameter fails to obtain
the solution if its value is negative. In contrast, if we use another initial point, the value of
PRP is non-negative and satisfies the descent property. This result motivated us to further
study the initial points. Moreover, different dimensions were used for every function, and
the dimension range was [, ,].

We present Himmelblau’s function (Figure ), which is a multimodal function to test the
efficiency of the optimization algorithms. The function is defined as follows:

f (x, y) =
(

x + y – 
) +

(

x + y – 
).

In Table , we used different initial points with Algorithm  and Himmelblau’s function.
Every initial point gave a different solution point, as indicated in Table . We used a
MATLAB . subroutine with an Intel (R) Core (TM) i CPU,  GB DDR RAM and
the SWP line search under cubic interpolation. We used the Sigma Plot  program to
graph the data based on multiple horizontal steps, and the graphs are shown in Figures 
and . The selected values of δ and σ are . and ., respectively.
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Table 1 A list of test problem functions

No. Function Dimension/s Initial points

1 Extended White & Holst function 2, 500, 1,000, 5,000, 10,000 (–1.2, 1, –1.2, 1, . . . , –1.2, 1), (5, 5, . . . , 5),
(10, 10, . . . , 10), (15, 15, . . . , 15)

2 Extended Rosenbrock function 2, 500, 1,000, 5,000, 10,000 (–1.2, 1, –1.2, 1, . . . , –1.2, 1), (5, 5, . . . , 5),
(10, 10, . . . , 10), (15, 15, . . . , 15)

3 Six hump function 2 (1, 1), (5, 5), (10, 10), (15, 15)
4 Extended Beale function 2, 500, 1,000, 5,000, 10,000 (–1, –1, . . . , –1), (0.5, 0.5, . . . , 0.5),

(10, 10, . . . , 10), (1, 1, . . . , 1)
5 Three hump function 2 (1, 1), (5, 5), (10, 10), (15, 15)
6 Extended Himmelblau function 2, 500, 1,000, 5,000, 10,000 (1, 1, . . . , 1), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
7 Diagonal 2 function 2, 500, 1,000, 5,000, 10,000 (0.2, 0.2, . . . , 0.2), (0.25, 0.25, . . . , 0.25),

(0.5, 0.5, . . . , 0.5), (1, 1, . . . , 1)
8 NONSCOMP function 2, 500, 1,000, 5,000, 10,000 (1, 1, . . . , 1), (–1, –1, . . . , –1),

(–2, –2, . . . , –2), (–5, –5, . . . , –5)
9 Extended DENSCHNB function 2, 500, 1,000, 5,000, 10,000 (1, 1, . . . , 1), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
10 Shallow function 2, 500, 1,000, 5,000, 10,000 (–2, –2, . . . , –2), (2, 2, . . . , 2), (5, 5 . . . , 5),

(10, 10, . . . , 10)
11 Booth function 2 (1, 1), (5, 5), (10, 10), (15, 15)
12 Extended quadratic penalty

function QP2
2, 500, 1,000, 5,000, 10,000 (2, 2, . . . , 2), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
13 DIXMAANA function 300, 6,000, 9,000, 12,000 (1, 1, . . . , 1), (2, 2, . . . , 2), (3, 3, . . . , 3),

(5, 5, . . . , 5),
14 DIXMAANB function 300, 6,000, 9,000, 12,000 (1, 1, . . . , 1), (2, 2, . . . , 2), (3, 3, . . . , 3),

(5, 5, . . . , 5),
15 NONDIA function 2, 500, 1,000, 5,000, 10,000 (–2, –2, . . . , –2), (–1, –1, . . . , –1),

(0, 0, . . . , 0), (1, 1, . . . , 1)
16 Extended tridiagonal 1 function 2, 500, 1,000, 5,000, 10,000 (1, 1, . . . , 1), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
17 DQDRTIC function 2, 500, 1,000, 5,000, 10,000 (–1, –1, . . . , –1), (1, 1, . . . , 1), (2, 2, . . . , 2),

(3, 3, . . . , 3)
18 Diagonal 4 function 2, 500, 1,000, 5,000, 10,000 (1, 1, . . . , 1), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
19 Extended Cliff function 2, 500, 1,000, 5,000, 10,000 (1, 1, . . . , 1), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
20 Shallow function 2, 500, 1,000, 5,000, 10,000 (–2, –2, . . . , –2), (2, 2, . . . , 2), (5, 5, . . . , 5),

(10, 10, . . . , 10)
21 NONDIA (Shanno-78) 2, 500, 1,000, 5,000, 10,000 (–2, –2, . . . , –2), (–1, –1, . . . , –1),

(0, 0, . . . , 0), (1, 1, . . . , 1)
22 Raydan 2 Function 2, 500, 1,000, 5,000, 10,000 (1, 1, . . . , 1), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
23 Extended block diagonal BD1

function
2, 500, 1,000, 5,000, 10,000 (0.1, 0.1, . . . , 0.1), (0.2, 0.2, . . . , 0.2),

(0.3, 0.3, . . . , 0.3), (0.4, 0.4, . . . , 0.4)
24 Generalized tridiagonal 1 function 2, 500, 1,000, 5,000, 10,000 (1, 1, . . . , 1), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
25 Diagonal 4 function 2, 500, 1,000, 5,000, 10,000 (1, 1, . . . , 1), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
26 Extended Powell function 2, 500, 1,000, 5,000, 10,000 (1, 1, . . . , 1), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
27 Perturbed quadratic function 2, 500, 1,000, 5,000, 10,000 (0.5, 0.5, . . . , 0.5), (2, 2, . . . , 2),

(1, 1, . . . , 1), (10, 10, . . . , 10)
28 A quadratic function QF2 2, 500, 1,000, 5,000, 10,000 (0.5, 0.5, . . . , 0.5), (1, 1, . . . , 1),

(5, 5, . . . , 5), (10, 10, . . . , 10)
29 Sum squares function 2, 500, 1,000, 5,000, 10,000 (–5, –5, . . . , –5), (–1, –1, . . . , –1),

(1, 1, . . . , 1), (5, 5, . . . , 5)
30 Zettl function 2 (1, 1, . . . , 1), (5, 5, . . . , 5), (10, 10, . . . , 10),

(15, 15, . . . , 15)
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Figure 1 Himmelblau’s function.

Table 2 The initial points corresponding the optimal points with the Himmelblau function

Initial point The optimal solution The function value

(1, 1) (3, 2) f (3, 2) = 0
(–1, –1) (3.5844, –1.8481) f (3.5844, –1.8481) = 0
(10, 10) (–3.7793, –3.2832) f (–3.7793, –3.2832) = 0
(–5, –5) (–2.8051, 3.1313) f (–2.8051, 3.1313) = 0

The performance results are shown in Figures  and  with a performance profile intro-
duced by Dolan and Moré [].

This performance measure was introduced to compare a set of solvers S on a set of
problems F . Assuming that there are ns solvers and nf problems in S and F , respectively.
Then the measure tf ,s is defined as the required number of iterations or CPU time to solve
problem f using solver s. To create a baseline for comparison, the performance of solver
s on problem f is scaled by the best performance of any solver in S on the problem using
the ratio

rf ,s =
tf ,s

min{tf ,s : s ∈ S} .

Suppose that a parameter rM ≥ rf ,s for all f , s is selected. rf ,s = rM if and only if solver s
does not solve problem f .

Because we would like to obtain an overall assessment of the performance of a solver,
we defined the measure

Ps(t) =


nf
size{f ∈ F : log rf ,s ≤ t}.
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Figure 2 Performance profile based on the number of iteration.

Figure 3 Performance profile based on the CPU time.

Thus, Ps(t) is the probability for solver s ∈ S that the performance ratio rf ,s is within a factor
t ∈ R of the best possible ratio. If we define function ps as the cumulative distribution
function for the performance ratio, then the performance measure fs : R → [, ] for a
solver is non-decreasing and piecewise continuous from the right. The value of fs() is the
probability that the solver has the best performance of all solvers. In general, a solver with
high values of f (t), which appears in the upper right corner of the figure, is preferable.

Based on the left side of Figures  and , ZA is clearly above the other curves. As we
previously mentioned, PRP∗ seems to be better than HPRP because the latter restarted too
many times by using the negative gradient. Furthermore, WYL is better than NPRP, DPRP.
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Although the PRP and HS methods are efficient, both of them have theoretical problems;
thus, the number of solved function using the PRP formula does not exceed %. The HS+
formula also has theoretical problem when the direction derivative is positive; hence, it
may not satisfy the descent property with the SWP line search. Thus, the percentage value
of solved functions using the HS+ formula is approximately %. The FR formula satisfies
the descent property and convergence property, but we terminated the program several
times because it is cyclic without reaching the solution. For all algorithms, the time limit
to obtain the solution was  seconds.

5 Conclusion
In this paper, we used the HS CG formula with the restart. The global convergence and
descent properties were established with WWP and SWP line searches. The numerical
results demonstrate that the new modification is better than other CG parameters.
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