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Abstract
This paper addresses a novel solution scheme for a special class of variational
inequality problems which can be applied to model a Stackelberg game with one
leader and three or more followers. In the scheme, the leader makes his decision first
and then the followers reveal their choices simultaneously based on the information
of the leader’s strategy. Under mild conditions, we theoretically prove that the
scheme can obtain an equilibrium. The proposed approach is applied to solve a
simple game and a traffic problem. Numerical results about the performance of the
new method are reported.
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1 Introduction
In our work, we concentrate on typical structured variational inequality problems which
are mathematically described as follows: Find a point w∗ ∈ � such that

Q
(
w∗)T(w – w∗) ≥ , ∀w ∈ �,

where

w =

⎛

⎜⎜
⎜⎜
⎝

x

x
...

xm

⎞

⎟⎟
⎟⎟
⎠

, Q(w) =

⎛

⎜⎜
⎜⎜
⎝

f(x)
f(x)

...
fm(xm)

⎞

⎟⎟
⎟⎟
⎠

, � =

{

(x, x, . . . , xm)
∣∣
∣∣xi ∈Xi,

m∑

i=

Aixi = b

}

,

Xi ⊆ Rni , and fi : Xi → Rni (i = , , . . . , m) are mappings. In the work, we assume that
Xi (i = , , . . . , m) are nonempty, closed, and convex sets, the mappings fi (i = , , . . . , m)
are monotone, and the solution of the problem exists. By attaching a Lagrange multiplier
vector λ ∈ Rl to the linear constraint

∑m
i= Aixi = b, the above problem can be converted

to the following form: Find a point u∗ ∈ U =
∏m

i= Xi × Rl such that

F
(
u∗)T(u – u∗) ≥ , ∀u ∈ U , (.)
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where

u =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

x

x
...

xm

λ

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

and F(u) =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

f(x) – AT
 λ

f(x) – AT
 λ

...
fm(xm) – AT

mλ
∑m

i= Aixi – b

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

. (.)

The structured system (.)-(.) can be viewed as a mathematical formulation of a
one-leader-m-follower Stackelberg game where ith follower controls his decision xi, i =
, , . . . , m. For the special case where the game has one leader and two followers, that
is, m = , there is extensive literature on numerical algorithms [–]. Although the one-
leader-two-follower game is helpful as a baseline model in analyzing games and their
equilibrium-seeking algorithms, many application problems involve three or more fol-
lowers, that is, they are formulated as the problem (.)-(.) with m ≥ . However, there
is less work that focuses on designing algorithms for the general case m ≥  compared to
a considerable number of studies on the special case m = .

For the general case of the problem (.)-(.), we can directly employ the classical
augmented Lagrangian method proposed by []. However, the classical augmented La-
grangian method may prevent us from enjoying the separable structure of problem (.)-
(.), since the subproblems obtained in the steps of the method involve coupled vari-
ables. Frequently used and powerful ideas for dealing with the difficulty are decomposi-
tion techniques. Based on the techniques, there are two most noteworthy categories of
decomposition methods for the problem (.)-(.) in the literature: the alternating di-
rection method and the parallel splitting augmented Lagrangian method. The alternating
direction method has obtained recognition as a benchmark method to solve the problem
(.)-(.), ever since it was proposed by Gabay and Mercier []. The application of the
solution method has been extended in the past decade to cover a variety of areas [–].
The basic iterative scheme of the method for solving the problem (.)-(.) is as follows:
When a decision uk = (xk

 , xk
, . . . , xk

m,λk) is provided, the method gets xk+
 , xk+

 , . . . , xk+
m by

solving the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x′
 – x)T {f(x) – AT

 [λk – H(Ax +
∑m

j= Ajxk
j – b)]} ≥ , ∀x′

 ∈X,
· · ·
(x′

i – xi)T {fi(xi) – AT
i [λk – H(

∑i–
j= Ajxk+

j + Aixi +
∑m

j=i+ Ajxk
j – b)]} ≥ ,

∀x′
i ∈Xi,

· · ·
(x′

m – xm)T {fm(xm) – AT
m[λk – H(

∑m–
j= Ajxk+

j + Amxm – b)]} ≥ ,
∀x′

m ∈Xm.

(.)

Then update λ by equation (.),

λk+ = λk – H

( m∑

i=

Aixk+
i – b

)

, (.)

where H is a symmetric positive definite matrix.
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Note that the alternating direction method has been an attractive approach in that it
successfully employs the Gauss-Seidel decomposition technique. However, in the method,
each follower reveals his strategies sequentially, that is, the decision xk+

i of the follower i
is revealed only when his former followers’ strategies xk+

 , . . . , xk+
i– are available, which is

not reasonable for the case where each follower is blind with the others’ strategies.
As we mentioned, the other efficient method to deal with the problem (.)-(.) is so-

called the parallel splitting augmented Lagrangian method proposed by He [] based on
Jacobian decomposition. Compared to the alternating direction method, the speciality of
the parallel splitting augmented Lagrangian method is that it simultaneously solves the
following subproblems to obtain xk+

i (i = , , . . . , m):

(
x′

i – xi
)T

{
fi(xi) – AT

i

[
λk – H

(∑

j 	=i

Ajxk
j + Aixi – b

)]}
≥ ,

∀x′
i ∈Xi, i = , , . . . , m, (.)

which means that the followers make their choices simultaneously. However, there are few
studies to address the convergence of the scheme (.)-(.), which results in improved
methods where the output provided by (.) is corrected by a further correction step [–
]. All these methods are designed by adding a correction step as follows:

uk+ = uk – αkd
(
uk – ũk), (.)

where αk is a stepsize, ũk is output of (.) which is called a predictor, and –d(uk – ũk)
is a descent direction at uk . The schemes may be understood in the context of a game
in the following way: When the leader provides a decision uk = (xk

 , . . . , xk
m,λk), all follow-

ers decide their strategies x̃k
i (i = , , . . . , m) simultaneously by solving the corresponding

subproblems in (.), respectively. Then, based on the feedback x̃k
i (i = , , . . . , m) from the

followers, the leader improves his strategy by (.).
It is noted that in the schemes (.)-(.), the leader controls all decision variables which

is not realistic since in many practical problems the leader only has power on his own deci-
sion variables. Based on this identified research gap, the aim of this work is to devise a new
method for the problem (.)-(.), that is, a mathematical formulation of a one-leader-m-
follower Stackelberg game where the leader controls λ and the ith follower controls xi. In
the correction step of our method, only the leader’s variable λ is improved. Furthermore,
we provide insights on the convergence of our method and a computational study of its
performance.

The rest of the paper is organized as follows. Section  gives preliminaries, such as defi-
nitions and notations, which will be useful for our analysis and ease of exposition. Section 
presents the proposed method in detail. Section  conducts an analysis on the global con-
vergence of the proposed method. In Section , we apply the method to solve some prac-
tical problems and report the corresponding computational results. Finally, conclusions
and some future research directions are stated in Section .

2 Preliminaries
For the convenience of the analysis in the paper, this section provides some basic defini-
tions and notations. An n-dimensional Euclidean space is denoted by Rn. All vectors used
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in the paper mean column vectors. For ease of exposition, we use the vector (x, . . . , xm)
to represent (xT

 , . . . , xT
m)T , where T represents the transpose operator. δmax(A) denotes the

largest eigenvalue of square matrix A. For any symmetric and positive definite matrix G,
we denote by ‖x‖G :=

√
xT Gx its G-norm. In the work, we define

G =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

αAT
 HA

αAT
 HA

. . .
αAT

mHAm

H–

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(.)

such that ‖u – u∗‖
G := ‖Ax – Ax∗

‖
αH + · · · + ‖Amxm – Amx∗

m‖
αH + ‖λ – λ∗‖

H– .

Definition .
(a) A mapping f : Rn →Rn is described as a monotone function, if

(x – x)T(f (x) – f (x)
) ≥ , ∀x, x ∈Rn.

(b) A mapping f : Rn →Rn is described as a strongly monotone function with
modulus μ > , if

(x – x)T(f (x) – f (x)
) ≥ μ‖x – x‖, ∀x, x ∈Rn.

In the paper, there is a basic assumption that the mappings fi (i = , , . . . , m) are contin-
uous and strongly monotone with modulus μfi , respectively.

3 Parallel method
In this section, we formally state the procedure of the new parallel splitting method for
solving the problem (.)-(.) and provide some insights on the method’s properties.

Algorithm . (A new augmented Lagrangian-based parallel splitting method)
S. Select an initial point u = (x

 , . . . , x
m,λ) ∈ U , ε > , α > , and H , and set k = .

S. Simultaneously obtain solutions xk+
i (i = , , . . . , m) by solving the following

variational inequalities:

xi ∈Xi,
(
x′

i – xi
)T

{
fi(xi) – AT

i

[
λk – H

(∑

j 	=i

Ajxk
j + Aixi – b

)]}
≥ ,

∀x′
i ∈Xi, (.)

respectively. Then set

λ̃k = λk – H

( m∑

i=

Aixk+
i – b

)

. (.)

S. Update λk+ through equation (.),

λk+ = λk – α
(
λk – λ̃k). (.)
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S. If

max
{

max
i

∥
∥Aixk

i – Aixk+
i

∥
∥,
∥
∥λk – λk+∥∥

}
≤ ε, (.)

stop. Otherwise, set k = k +  and go to S.

Remark . Now, we conduct some analysis on the proposed algorithm. From (.) and
(.), we can deduce that

∑m
i= Aixk+

i = b if λk+ = λk . Then we have
∑

j 	=i Ajxk
j + Aixk+

i – b =
 under the condition that Aixk+

i = Aixk
i (i = , , . . . , m). Furthermore, according to (.),

there exist the following inequalities and equation:

xk+
i ∈Xi,

(
x′

i – xk+
i

)T{fi
(
xk+

i
)

– AT
i λk+} ≥ , ∀x′

i ∈Xi, i = , , . . . , m, (.)

and

m∑

i=

Aixk+
i = b.

Thus, it is obvious that (xk+
 , . . . , xk+

m ,λk+) ∈ U is a solution of the one-leader-m-follower
game. Based on the analysis, we conclude that for a given small enough ε, the pro-
posed method with termination condition (.) can obtain an approximation solution
(xk+

 , . . . , xk+
m ,λk+) ∈ U for the concerned game, that is, the stopping criterion (.) in the

method is reasonable.

Remark . It is obvious that our proposed algorithm falls into the parallel splitting
method since all the subproblems (.) can be solved in parallel by many existing efficient
algorithms. Moreover, the proposed algorithm makes the best of the separable charac-
teristic of the concerned problem (.)-(.) since only one function is involved in each
subproblem. In addition, the proposed algorithm is a prediction-correction parallel split-
ting method. But the most significant difference from others is that only λ is corrected,
which leads to less computational cost.

4 Convergence result
The convergence property of our parallel splitting algorithm is given in this section. First,
we give a lemma that is useful for the convergence result.

Lemma . Given λk by the leader and xk
i by the ith follower (i = , , . . . , m) at iteration k,

the strategy (xk+
 , . . . , xk+

m ,λk+) in the next iteration satisfies

m∑

i=

∥
∥Aixk+

i – Aix∗
i
∥
∥

αH +
∥
∥λk+ – λ∗∥∥

H–

≤
m∑

i=

∥
∥Aixk

i – Aix∗
i
∥
∥

αH +
∥
∥λk – λ∗∥∥

H– – α

m∑

i=

∥∥
∥∥
∑

j 	=i

Ajxk+
j + Aixk

i – b
∥∥
∥∥



H

+ α

m∑

i=

[
(α + m – )δmax

(
AT

i HAi
)

– μfi
]∥∥xk+

i – x∗
i
∥
∥.
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Proof We assume that there exists an optimal solution u∗ = (x∗
 , . . . , x∗

m,λ∗) ∈ U . Using (.)
with u = uk+ = (xk+

 , . . . , xk+
m ,λk+) ∈ U , we have

F
(
u∗)T(uk+ – u∗) ≥ . (.)

On the other hand, let x′
i = x∗

i (i = , , . . . , m) in each inequality of (.). It is easy to obtain

(
x∗

i – xk+
i

)T
{

fi
(
xk+

i
)

– AT
i λk + AT

i H
(∑

j 	=i

Ajxk
j + Aixk+

i – b
)}

≥ ,

i = , , . . . , m. (.)

From the summation of all the inequalities included in (.) and (.) and the equality
∑m

i= Aix∗
i = b, we have

m∑

i=

(
xk+

i – x∗
i
)T

{
fi
(
x∗

i
)

– fi
(
xk+

i
)

+ AT
i
(
λk – λ∗) – AT

i H
(∑

j 	=i

Ajxk
j + Aixk+

i – b
)}

≥ .

Rearranging the above inequality and taking account of the strong monotonicity of all the
functions fi (i = , , . . . , m) and

∑m
i= Aix∗

i = b, we obtain

(
λk – λ∗)T

( m∑

i=

Aixk+
i – b

)

≥
m∑

i=

[
(
Aixk+

i – Aix∗
i
)T H

(∑

j 	=i

Ajxk
j + Aixk+

i – b
)]

+
m∑

i=

μfi
∥∥xk+

i – x∗
i
∥∥.

Note that b can be replaced by
∑m

i= Aix∗
i . Then

(
λk – λ∗)T

( m∑

i=

Aixk+
i – b

)

≥
m∑

i=

[
(
Aixk+

i – Aix∗
i
)T H

(
∑

j 	=i

Ajxk
j + Aixk+

i –
m∑

j=

Ajx∗
j

)]

+
m∑

i=

μfi
∥∥xk+

i – x∗
i
∥∥

=
m∑

i=

[(
Aixk+

i – Aix∗
i
)T H

(∑

j 	=i

(
Ajxk

j – Ajx∗
j
)

+ Aixk+
i – Aix∗

i

)]

+
m∑

i=

μfi
∥∥xk+

i – x∗
i
∥∥

=
m∑

i=

∥∥Aixk+
i – Aix∗

i
∥∥

H +
m∑

i=

∑

j 	=i

(
Aixk+

i – Aix∗
i
)T H

(
Ajxk

j – Ajx∗
j
)

+
m∑

i=

μfi
∥∥xk+

i – x∗
i
∥∥
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=

∥
∥∥
∥∥

m∑

i=

Aixk+
i – b

∥
∥∥
∥∥



H

+
m∑

i=

∑

j 	=i

(
Aixk+

i – Aix∗
i
)T H

(
Ajxk

j – Ajxk+
j

)

+
m∑

i=

μfi
∥
∥xk+

i – x∗
i
∥
∥. (.)

Thus,

∥
∥λk+ – λ∗∥∥

H–

=

∥
∥∥∥
∥
λk – λ∗ – αH

( m∑

i=

Aixk+
i – b

)∥∥∥∥
∥



H–

=
∥
∥λk – λ∗∥∥

H– – α
(
λk – λ∗)T

( m∑

i=

Aixk+
i – b

)

+ α

∥
∥∥
∥∥

m∑

i=

Aixk+
i – b

∥
∥∥
∥∥



H

≤ ∥∥λk – λ∗∥∥
H– – α

m∑

i=

μfi
∥∥xk+

i – x∗
i
∥∥ + α

∥
∥∥
∥∥

m∑

i=

Aixk+
i – b

∥
∥∥
∥∥



H

– α

{∥∥∥
∥∥

m∑

i=

Aixk+
i – b

∥∥∥
∥∥



H

+
m∑

i=

∑

j 	=i

(
Aixk+

i – Aix∗
i
)T H

(
Ajxk

j – Ajxk+
j

)
}

. (.)

Now, we focus on the terms ‖Aixk+
i – Aix∗

i ‖
αH (i = , , . . . , m).

Since

(
Aixk

i – Aix∗
i
)T H

(
Aixk

i – Aixk+
i

)

=
(
Aixk+

i – Aix∗
i
)T H

(
Aixk

i – Aixk+
i

)
+
∥
∥Aixk

i – Aixk+
i

∥
∥

H , i = , , . . . , m,

it follows that

∥∥Aixk+
i – Aix∗

i
∥∥

αH

=
∥∥Aixk

i – Aix∗
i
∥∥

αH +
∥∥Aixk+

i – Aixk
i
∥∥

αH – α
∥∥Aixk

i – Aixk+
i

∥∥
H

– α
(
Aixk+

i – Aix∗
i
)T H

(
Aixk

i – Aixk+
i

)
, i = , , . . . , m. (.)

Adding all formulas in (.) and (.), we get the following inequality:

m∑

i=

∥∥Aixk+
i – Aix∗

i
∥∥

αH +
∥∥λk+ – λ∗∥∥

H–

≤
m∑

i=

∥∥Aixk
i – Aix∗

i
∥∥

αH +
∥∥λk – λ∗∥∥

H–

+
m∑

i=

∥∥Aixk+
i – Aixk

i
∥∥

αH + α

∥∥
∥∥
∥

m∑

i=

Aixk+
i – b

∥∥
∥∥
∥



H

– α

{∥∥
∥∥
∥

m∑

i=

Aixk+
i – b

∥∥
∥∥
∥



H

+
m∑

i=

∑

j 	=i

(
Aixk+

i – Aix∗
i
)T H

(
Ajxk

j – Ajxk+
j

)
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+
m∑

i=

(
Aixk+

i – Aix∗
i
)T H

(
Aixk

i – Aixk+
i

)
+

m∑

i=

∥∥Aixk
i – Aixk+

i
∥∥

H

}

– α

m∑

i=

μfi
∥
∥xk+

i – x∗
i
∥
∥

=
m∑

i=

∥
∥Aixk

i – Aix∗
i
∥
∥

αH +
∥
∥λk – λ∗∥∥

H– + α

∥
∥∥∥
∥

m∑

i=

Aixk+
i – b

∥
∥∥∥
∥



H

– α

{∥∥∥
∥∥

m∑

i=

Aixk+
i – b

∥
∥∥
∥∥



H

+
m∑

i=

m∑

j=

(
Aixk+

i – Aix∗
i
)T H

(
Ajxk

j – Ajxk+
j

)
}

– α

m∑

i=

μfi
∥
∥xk+

i – x∗
i
∥
∥ –

m∑

i=

∥
∥Aixk+

i – Aixk
i
∥
∥

αH

=
m∑

i=

∥
∥Aixk

i – Aix∗
i
∥
∥

αH +
∥
∥λk – λ∗∥∥

H– + α

∥
∥∥∥
∥

m∑

i=

Aixk+
i – b

∥
∥∥∥
∥



H

– α

m∑

i=

μfi
∥∥xk+

i – x∗
i
∥∥ – α

{ m∑

i=

∥∥Aixk+
i – Aixk

i
∥∥

H

+ 

∥∥
∥∥
∥

m∑

i=

Aixk+
i – b

∥∥
∥∥
∥



H

+ 
m∑

j=

( m∑

i=

Aixk+
i – b

)T

H
(
Ajxk

j – Ajxk+
j

)
}

=
m∑

i=

∥
∥Aixk

i – Aix∗
i
∥
∥

αH +
∥
∥λk – λ∗∥∥

H– + α(α + m – )

∥
∥∥
∥∥

m∑

i=

Aixk+
i – b

∥
∥∥
∥∥



H

– α

m∑

i=

∥
∥∥
∥∥

∑

j 	=i

Ajxk+
j + Aixk

i – b

∥
∥∥
∥∥



H

– α

m∑

i=

μfi
∥∥xk+

i – x∗
i
∥∥. (.)

Since

∥∥∥
∥∥

m∑

i=

Aixk+
i – b

∥∥∥
∥∥



H

≤
m∑

i=

∥∥Aixk+
i – Aix∗

i
∥∥

H

≤
m∑

i=

δmax
(
AT

i HAi
)∥∥xk+

i – x∗
i
∥∥, (.)

from (.), we get

m∑

i=

∥
∥Aixk+

i – Ax∗
i
∥
∥

αH +
∥
∥λk+ – λ∗∥∥

H–

≤
m∑

i=

∥∥Aixk
i – Ax∗

i
∥∥

αH +
∥∥λk – λ∗∥∥

H– – α

m∑

i=

∥
∥∥
∥∥

∑

j 	=i

Ajxk+
j + Aixk

i – b

∥
∥∥
∥∥



H

+ α

m∑

i=

[
(α + m – )δmax

(
AT

i HAi
)

– μfi
]∥∥xk+

i – x∗
i
∥
∥.

The proof is completed. �
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Lemma . indicates that

∥
∥uk+ – u∗∥∥

G ≤ ∥
∥uk – u∗∥∥

G + α

m∑

i=

[
(α + m – )δmax

(
AT

i HAi
)

– μfi
]∥∥xk+

i – x∗
i
∥
∥

– α

m∑

i=

∥∥
∥∥
∑

j 	=i

Ajxk+
j + Aixk

i – b
∥∥
∥∥



H
, (.)

where G is defined by (.).
Based on the above analysis, the global convergence of the proposed method is presented

in the following theorem.

Theorem . Let m be the number of followers. Suppose that for each i ∈ {, , . . . , m}, fi(xi)
is continuous and strongly monotone on Xi ⊆Rni . Moreover, if

ufi >
(m – )δmax(AT

i HAi)


, i = , , . . . , m,

and

 < α ≤ min
i

{
μfi

δmax(AT
i HAi)

– (m – )
}

,

the sequence {uk} generated by the proposed method converges to an optimal solution of the
problem (.)-(.).

Proof From Lemma . and (.), we have

∥∥uk+ – u∗∥∥
G –

∥∥uk – u∗∥∥
G

≤ –α

m∑

i=

[
μfi – (α + m – )δmax

(
AT

i HAi
)]∥∥xk+

i – x∗
i
∥∥

– α

m∑

i=

∥
∥∥
∥
∑

j 	=i

Ajxk+
j + Aixk

i – b
∥
∥∥
∥



H
. (.)

The two terms on the right side of the above inequality are negative due to the conditions
of the theorem. Thus,

∥
∥uk+ – u∗∥∥

G ≤ ∥
∥uk – u∗∥∥

G ≤ · · · ≤ ∥
∥u – u∗∥∥

G ≤ +∞,

which means that {uk} is a bounded sequence generated by the developed method. Con-
sequently,

α

+∞∑

k=

m∑

i=

[
μfi – (α + m – )δmax

(
AT

i HAi
)]∥∥xk+

i – x∗
i
∥
∥

+ α

+∞∑

k=

m∑

i=

∥
∥∥
∥
∑

j 	=i

Ajxk+
j + Aixk

i – b
∥
∥∥
∥



H
<

+∞∑

k=

(∥∥uk – u∗∥∥
G –

∥∥uk+ – u∗∥∥
G

)
< +∞,
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which means that

lim
k→+∞

∥∥xk+
i – x∗

i
∥∥ = , i = , , . . . , m,

lim
k→+∞

∥
∥∥
∥
∑

j 	=i

Ajxk+
j + Aixk

i – b
∥
∥∥
∥

H
= , i = , , . . . , m.

(.)

Thus,

m∑

i=

Aix∗
i = b. (.)

On the other hand, for each i ∈ {, , . . . , m}, xk+
i satisfies the following inequality:

(
x′

i – xk+
i

)T
{

fi
(
xk+

i
)

– AT
i λk + AT

i H
(∑

j 	=i

Ajxk
j + Aixk+

i – b
)}

≥ , ∀x′
i ∈Xi. (.)

Moreover, there exist cluster points for the sequence {λk} due to the boundedness of {λk}
implied by the boundedness of {uk}. Let λ∗ be one of cluster points such that it is a limit of
a convergent subsequence {λkj}. From the limit of (.) along this subsequence, it follows
that

(
x′

i – x∗
i
)T{fi

(
x∗

i
)

– AT
i λ∗} ≥ , ∀x′

i ∈Xi, i = , , . . . , m. (.)

From (.) and (.), we can assert that the sequence generated by the proposed method
is globally convergent. This completes the proof. �

5 Numerical experiments
In this section, we present some numerical results by implementing our proposed algo-
rithm in a game and a traffic problem, which demonstrate the application and performance
of our proposed algorithm. All tests are performed in a MATLAB environment on a PC
with Intel Core  Duo .GHz CPU and GB of RAM. The section is organized as follows:
First, we provide strategies for players in a game to verify the application of our algorithm.
Second, we investigate the performance of the proposed algorithm by comparing it with
one existing algorithm for solving a generic test problem.

Example . A simple game with one leader and three followers.

We begin the computational study by solving a one-leader-three-follower game where
each follower i decides a pure strategy si (i = , , ). The problem is given by the following
programs,

min –s min (s – .) min (s – .)

s.t. s + s + s =  s.t. s + s + s =  s.t. s + s + s = 
s ≥  s ≥  s ≥ 

The game is a revised version of a game considered by [–]. We solve the game using
the proposed algorithm to obtain a solution which matches with the analytic optimal so-
lution, that is, s = , s = , s = . Furthermore, we investigate the effect of initial points
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Table 1 Computational results for Example 5.1

ε u0 = (0, 0, 0, 0) u0 = (1, 1, 1, 1) Random point

Iter. CPU (s) Iter. CPU (s) Iter. CPU (s)

10–4 30 0.0078 20 0.0052 22 0.0062
10–5 40 0.0090 28 0.0070 31 0.0078
10–6 57 0.0120 39 0.0090 42 0.0106

Figure 1 The network for Example 5.2.

and optimality tolerances on the performance of our algorithm. In the tests, initial points
are u = (, , , ), u = (, , , ), or a random point in (, ). Optimality tolerances are
ε = –, ε = – or ε = –. In our experiments, the parameter setting is α = . and
H = .I . The associated numerical results are recorded in Table  where Iter. means the
number of iterations and CPU means CPU time. The numerical results from Table  con-
firm the validity and efficiency of our method. Moreover, we observe that the proposed
algorithm is robust to the initial points.

To further showcase the performance of the proposed algorithm, we use it to solve a
generic test problem, a traffic equilibrium problem with fixed demand. Now, we introduce
the problem briefly.

Example . A traffic equilibrium problem with fixed demand constraints.

The problem is always selected as a test case; for example, see [, , ]. Its network
is shown in Figure  where there are  nodes,  links, and  paths. Other parameters
and notations are summarized in Table .

We define variables xp as the traffic flow of path p. Then arc flow vector f is calculated
by the following formula:

f = AT x, dw =
∑

p∈Pw

xp, and d = Bx.

Moreover, based on the link travel cost vector denoted by t(f ) = {ta, a ∈ L} whose expres-
sions are given in Table , the travel cost vector θ can be formulated as follows:

θ = At(f ) = At
(
AT x

)
.

Hence, the problem is converted to a variational inequality as
(
x – x∗)T

θ (x) ≥ , ∀x ∈ S,

where S = {x ∈R|Bx = d, x ≥ }.
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Table 2 Parameter setting and notations for the network

Parameter Description Value

a Link connecting two nodes
L Link set
fa Link flow on link a
f Arc flow vector
p Path
ω O/D pairs {ω1 = (1, 20),ω2 = (1, 25),ω3 = (1, 24),ω4 = (2, 20),

ω5 = (3, 25),ω6 = (11, 25)}
Pω Set of the paths connecting O/D pair ω
dω Traffic amount between O/D pair ω d1 = 10, d2 = 20, d3 = 20, d4 = 55, d5 = 100, d6 = 30
d O/D pair traffic amount vector
A Path-arc incidence matrix A(i, j) = 1 if the ith path contains link j, otherwise

A(i, j) = 0, A ∈ R55×37

B Path-O/D pair incidence matrix B(i, j) = 1 if the ith O/D pair contains path j,
otherwise B(i, j) = 0, B ∈ R6×55

Table 3 The link cost function ta(f ) for Example 5.2

t1(f ) = 5 · 10–6f 41 + 0.5f1 + 0.2f2 + 50 t2(f ) = 3 · 10–6f 42 + 0.4f2 + 0.4f1 + 20
t3(f ) = 5 · 10–6f 43 + 0.3f3 + 0.1f4 + 35 t4(f ) = 3 · 10–6f 44 + 0.6f4 + 0.3f5 + 40
t5(f ) = 6 · 10–6f 45 + 0.6f5 + 0.4f6 + 60 t6(f ) = 0.7f6 + 0.3f7 + 50
t7(f ) = 8 · 10–6f 47 + 0.8f7 + 0.2f8 + 40 t8(f ) = 4 · 10–6f 48 + 0.5f8 + 0.2f9 + 65
t9(f ) = 10–6f 49 + 0.6f9 + 0.2f10 + 70 t10(f ) = 0.4f10 + 0.1f12 + 80
t11(f ) = 7 · 10–6f 411 + 0.7f11 + 0.4f12 + 65 t12(f ) = 0.8f12 + 0.2f13 + 70
t13(f ) = 10–6f 413 + 0.7f13 + 0.3f18 + 60 t14(f ) = 0.8f14 + 0.3f15 + 50
t15(f ) = 3 · 10–6f 415 + 0.9f15 + 0.2f14 + 20 t16(f ) = 0.8f16 + 0.5f12 + 30
t17(f ) = 3 · 10–6f 417 + 0.7f17 + 0.2f15 + 45 t18(f ) = 0.5f18 + 0.1f16 + 30
t19(f ) = 0.8f19 + 0.3f17 + 60 t20(f ) = 3 · 10–6f 420 + 0.6f20 + 0.1f21 + 30
t21(f ) = 4 · 10–6f 421 + 0.4f21 + 0.1f22 + 40 t22(f ) = 2 · 10–6f 422 + 0.6f22 + 0.1f23 + 50
t23(f ) = 3 · 10–6f 423 + 0.9f23 + 0.2f24 + 35 t24(f ) = 2 · 10–6f 424 + 0.8f24 + 0.1f25 + 40
t25(f ) = 3 · 10–6f 425 + 0.9f25 + 0.3f26 + 45 t26(f ) = 6 · 10–6f 426 + 0.7f26 + 0.8f27 + 30
t27(f ) = 3 · 10–6f 427 + 0.8f27 + 0.3f28 + 50 t28(f ) = 3 · 10–6f 428 + 0.7f28 + 65
t29(f ) = 3 · 10–6f 429 + 0.3f29 + 0.1f30 + 45 t30(f ) = 4 · 10–6f 430 + 0.7f30 + 0.2f31 + 60
t31(f ) = 3 · 10–6f 431 + 0.8f31 + 0.1f32 + 75 t32(f ) = 6 · 10–6f 432 + 0.8f32 + 0.3f33 + 65
t33(f ) = 4 · 10–6f 433 + 0.9f33 + 0.2f31 + 75 t34(f ) = 6 · 10–6f 434 + 0.7f34 + 0.3f30 + 55
t35(f ) = 3 · 10–6f 435 + 0.8f35 + 0.3f32 + 60 t36(f ) = 2 · 10–6f 436 + 0.8f36 + 0.4f31 + 75
t37(f ) = 6 · 10–6f 437 + 0.5f37 + 0.1f36 + 35

We implement our algorithm for this problem. First, the decision variable vector x is
partitioned into three parts,

x =

⎛

⎜
⎝

x

x

x

⎞

⎟
⎠ ,

where x ∈R, x ∈R, and x ∈R. Subsequently, matrices A, B, and θ are partitioned,
respectively, as follows:

A =

⎛

⎜
⎝

A

A

A

⎞

⎟
⎠ , B = (B B B), and θ =

⎛

⎜
⎝

θ

θ

θ

⎞

⎟
⎠ ,

where A ∈ R×, A ∈ R×, A ∈ R×, B ∈ R×, B ∈ R×, B ∈ R×, and θ

is partitioned in the same way as x.
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Table 4 Computational results for Example 5.2

ε u0 = rand(61, 1) u0 = 50∗ ones(61, 1) u0 = 100∗ ones(61, 1)

Alg 3.1 Alg in [11] Alg 3.1 Alg in [11] Alg 3.1 Alg in [11]

10–4 Iter. 122 160 146 - 153 -
CPU (s) 0.1560 0.1872 0.1092 - 0.1248 -

10–5 Iter. 153 177 168 - 175 -
CPU (s) 0.1716 0.2340 0.1404 - 0.1560 -

10–6 Iter. 183 196 190 - 197 -
CPU (s) 0.2028 0.2496 0.1872 - 0.2028 -

Based on the above partitions, the resulting traffic problem is as follows:

(
x – x∗


)T

θ (x) ≥ , ∀x ∈ S, (.)
(
x – x∗


)T

θ (x) ≥ , ∀x ∈ S, (.)

and

(
x – x∗


)T

θ (x) ≥ , ∀x ∈ S, (.)

where S = {(x, x, x)|Bx + Bx + Bx = d, x ≥ , x ≥ , x ≥ }.
In order to show the efficiency and effectiveness of our algorithm, we conduct numer-

ical experiments on the performance of the proposed algorithm and the parallel split-
ting augmented Lagrangian method in [] since both methods are used for a one-leader-
three-follower game. The performance of the two algorithms with different initial points
(u = rand(, ), u = ∗ ones(, ), and u = ∗ ones(, )) and optimality tolerance
(ε = –, ε = –, and ε = –) for the traffic equilibrium problem with fixed demand
constraints (Example .) is stated in Table . Here, Alg means algorithm and ’-’ means
failure. In these tests, the common parameters of the two methods are the same, that is,
H = βI , where β = . and I is the identity matrix, and the maximum number of iterations
is ,.

The numerical results from Table  demonstrate the preference of our algorithm over
the algorithm in [] since both the number of iterations and the CPU time of our algo-
rithm are smaller than those of the algorithm in [] for a random initial point and our
algorithm can solve the problem while the algorithm in [] fails to solve it for other initial
points. The results verify the efficiency and effectiveness of the proposed algorithm again.

6 Conclusion
The system (.)-(.) can be considered as a mathematical formulation of a one-leader-
m-follower Stackelberg game in which the leader constantly improves his strategy by de-
termining the value of λ from strategy set Rl while the ith follower determines his plan xi

from set Xi based on the value of λ. Based on the characteristic, we design an augmented
Lagrangian-based parallel splitting method to solve the system. In the method, each player
can only control and improve his own decision. We establish the global convergence of
the method under some suitable conditions. Finally, we conduct a computational study to
demonstrate the validity and efficiency of our algorithm.

To improve the application of the proposed algorithm, we provide two research direc-
tions according to its limitations. First, the convergence of the method is proved under
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the condition that each player’s utility function is strongly monotone. We plan to relax the
condition such that our method can be applied to more practical problems. Second, our
method only serves to solve problems with a separable structure, which sounds reasonable
but may not always be the case. We should improve it to solve general problems.
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