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Abstract
In this paper, we present a generalization of a combinatorial lemma we stated and
proved in a recent work. Then we apply the generalized lemma to prove:
(1) a theorem on the existence of a zero for an excess demand mapping, (2) the
existence of a continuum of zeros for a parameterized excess demand mapping,
(3) Sperner’s lemma on labelings of triangulations. Proofs of these results are
constructive: they contain algorithms (based on the combinatorial lemma) for the
computation of objects of interest or, at least, of their approximations.
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1 Introduction
In the paper [], we stated and proved a combinatorial lemma with the help of which we
then showed the existence of a zero for an excess demand functions and Brouwer’s fixed
point theorem. We also stated some open problems in the referred paper. The current
work answers some of these questions.

First, we prove a generalization of the combinatorial lemma presented in []. Then we
apply it to prove the existence of an equilibrium price vector for an excess demand map-
ping (Lemma  and Theorem ). Next, we apply our combinatorial lemma to prove the
existence of a continuum of zeros for a parameterized excess demand mapping (The-
orem ). Then we derive Sperner’s lemma (Theorem ) from our combinatorial re-
sult.

Let us emphasize the fact that the combinatorial Lemma  allows us to get algorithms
for finding (approximations of ) objects whose existence is claimed in Theorems  and 
and a simplex enjoying properties stated in Sperner’s lemma. Hence, our proofs are not
only of existential character, but they enable the computation of objects of interest (or at
least their approximations).a

In the next section, we set up notation and introduce preliminary notions from com-
binatorial topology. Then we prove the just mentioned combinatorial lemma (Lemma )
and apply it to get the promised results. The last section comprises some comments.
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2 Preliminaries
Let N denote the set of positive integers, and for any n ∈ N, let Rn denote the n-dimen-
sional Euclidean space, and let [n] := {, . . . , n}, [] := ∅, [n] := {, , . . . , n}, and [n]i := ∅
for i > n. We take on the convention

∑
i∈∅ ai = . Moreover, ei is the ith unit vector of the

standard basis of Rn, where i ∈ [n]. The (vector) inequality x ≥ y (x > y), x, y ∈ R
n, means

xi ≥ yi (xi > yi), i ∈ [n]. In what follows, for n ∈N, the set �n := {x ∈R
n
+ :

∑n
i= xi = }, where

R+ is the set of nonnegative real numbers, is the standard (closed) (n – )-simplex, and
int�n := {x ∈ �n : xi > , i ∈ [n]} is its (relative) interior. For a set X ⊂ R

n, ∂(X), int X, and
conv X denote its boundary (or relative boundary of the closure of X if X is convex), interior
(or relative interior if X is convex), and convex hull, respectively. For vectors x, y ∈ R

n,
their scalar product is xy :=

∑n
i= xiyi. For sets A, B ⊂ R

n, AB := {ab ∈ R : a ∈ A, b ∈ B}
and A + B := {a + b ∈ R

n : a ∈ A, b ∈ B}; for a ∈ R
n, we briefly write aB and a + B instead

of {a}B and {a} + B, respectively (similarly if the set B has one element only). If A ⊂ R
n

and b ∈ R
n, then A ≥ b (A > b) means that for each a ∈ A, a ≥ b (a > b). If a ∈ R and

b ∈ R
n, then by b ≥ a we mean bi ≥ a, i ∈ [n]; similarly, for the strict inequality ‘>’. The

Euclidean norm of x ∈ R
n is denoted by |x|. For any set A, #A denotes its cardinality, and

diam A := sup{|x – y| : x, y ∈ A} is the diameter of the set A. For r > , Br := {x ∈R
n : |x| < r}

is the open ball centered at  ∈ R
n with radius r. For a multivalued mapping F : A � B,

where A, B are some sets, F(C) :=
⋃

c∈C F(c) for any set C ⊂ A. For a sequence kq ∈ R,
q ∈ N, kq ↗ +∞ means that kq diverges to +∞ strictly monotonically as q increases to
+∞.

We need some more or less standard definitions and facts from combinatorial topology,
which can be found in [] and []. Let us fix n ∈N.

- Let vj ∈R
n, j ∈ [k], k ∈ [n + ], be affinely independent. The set σ defined by

σ := {x ∈R
n : x =

∑k
j= αjvj,α ∈ �k} = conv{v, . . . , vk} is called a (k – )-simplex with

vertices vj, j ∈ [k]. We write it briefly as σ = 〈vj : j ∈ [k]〉 or σ = 〈v, . . . , vk〉 or
σ = 〈{v, . . . , vk}〉. Observe that the standard (n – )-simplex �n is an (n – )-simplex
since �n = 〈e, . . . , en〉 ⊂R

n. If we know that σ is a (k – )-simplex, then the set of its
vertices is denoted by V (σ ). If p =

∑k
j= ασ

j (p)vj ∈ σ , then the vector
ασ (p) := (ασ

 (p), . . . ,ασ
k (p)) ∈ �k is called (the vector of ) the barycentric coordinates of

the point p in the simplex σ ; in this case, we say that the barycentric coordinate ασ
j (p)

of p corresponds to the vertex vj or, in short, that ασ
j (p) is the ith barycentric

coordinate of p in σ , j ∈ [n]. For each p ∈ σ , its vector ασ (p) of the barycentric
coordinates in the simplex σ is uniquely determined. If σ is a k-simplex and we do not
order its vertices V (σ ), then it is sometimes convenient to think that the barycentric
coordinates of a point p ∈ σ in σ are determined according to the unique function
ασ (p) : V (σ ) → [, ], V (σ ) � v �→ ασ

v (p) ∈ [, ], with
∑

v∈V (σ ) α
σ
v (p) =  and

p =
∑

v∈V (σ ) α
σ
v (p)v; it is said in this case that the barycentric coordinate ασ

v (p) of the
point p ∈ σ corresponds to the vertex v ∈ V (σ ) in the simplex σ . Moreover, ασ (p) is
called the (mapping of ) barycentric coordinates of p in S.

- If σ is a (k – )-simplex, then 〈A〉, where ∅ = A ⊂ V (σ ), is called a (#A – )-face of σ .
- If σ is a (k – )-simplex and A = V (σ )\{v}, where v ∈ V (σ ), then the (k – )-simplex

〈A〉 is the (k – )-face opposite to the vertex v. Obviously, to each vertex v, there
corresponds a unique (k – )-face opposite to v.

- A collection T(S) = {σj ⊂ S : j ∈ [J]}, J ∈N, of nonempty subsets of a (k – )-simplex
S ⊂R

n,  < k ≤ n + , is called a triangulation of S if it meets the following conditions:
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. σj is a (k – )-simplex, j ∈ [J],
. if σj ∩ σj′ = ∅ for j, j′ ∈ [J], then σj ∩ σj′ is a common face of σj and σj′ ,
. S =

⋃
j∈[J] σj.

The collection of all vertices of simplices in T(S) is denoted by V (T(S)). If there is no
ambiguity, then we write T instead of T(S).

- If T is a triangulation of an (n – )-simplex S, then for (n – )-face F of S, the set
{σ ∩ F : σ ∩ F is an (n – )-simplex,σ ∈ T} is a triangulation of F (see [], p.,
Theorem .(e)).

- Two different (k – )-simplices σj, σj′ , j, j′ ∈ [J], j = j′, in a triangulation T of a
(k – )-simplex S are said to be adjacent if 〈V (σ ) ∩ V (σ ′)〉 is a (k – )-face for both of
them. Each (k – )-face of a simplex σj, j ∈ [J], is a (k – )-face for exactly two different
simplices in the triangulation, provided that the (k – )-face is not contained in ∂(S).

- The Km-triangulation of an (n – )-simplex S = 〈v, . . . , vn〉 ⊂R
n with grid size m–,

where m is a positive integer,b is the collection of all (n – )-simplices σ of the form
σ = 〈p, p, . . . , pn〉, where vertices p, p, . . . , pn ∈ S satisfy the following conditions:

() the barycentric coordinate αS
vi

(p) of p corresponding to vi in S, i ∈ [n], is a
nonnegative integer multiple of m–,

() αS(pj+) = αS(pj) + m–(eπj – eπj+), where π = (π, . . . ,πn–) is a permutation of
[n – ], l ∈ {j, j + }, j ∈ [n – ].

The Km-triangulation of S with grid size m– is denoted by Km(S), and the set of all
vertices of simplices in Km(S) is denoted by Vm(S). Obviously,
Vm(S) =

⋃
σ∈Km(S) V (σ ) = {αv + · · · + αnvn : α ∈ �n,αi ∈ {, /m, . . . ,  – /m, }}. For

any ε >  and for a sufficiently large m, each simplex in Km(S) has the diameter not
greater than ε. Moreover, the vertex vn belongs to exactly one simplex in Km(S).

We shall also need a variant of a result by Kuratowski [], Theorem ..:

Lemma  Let Gq ⊂ X, q ∈ N, where X ⊂ R
n is a convex, compact, and connected set,

be a sequence of nonempty compact and connected sets such that there exists a point
g = limq→+∞ gq, g ∈ X, gq ∈ Gq, q ∈N. Then the (limit) set

� :=
{

x ∈ X : x = lim
q→+∞ gkq , where kq ↗ +∞ as q → +∞, gkq ∈ Gkq , q ∈N

}

is compact and connected in X. Moreover, g ∈ �.

Proof It is obvious that g ∈ �. Let us assume that g ∈ ⋂
q∈N Gq. Let γ k ∈ � ⊂ X, k ∈ N.

By the Bolzano-Weierstrass theorem we may assume that γ := limk→+∞ γ k exists in X.
Since γ k ∈ �, by the definition of � we get that, for each k, there exist sequences kq ∈ N,
gkq ∈ Gkq , q ∈ N, such that limq→+∞ gkq = γ k . Hence, for each k, there exists s(k) ∈ N such
that |gks(k) – γ k| < /k, and we may assume that ks(k) ↗ +∞ as k → +∞. It is now obvious
that γ ∈ �, which proves the compactness of �. Suppose that A, A′ ⊂ X are open sets
such that g ∈ A, A ∩ A′ = ∅, and � ⊂ A ∪ A′. Notice that the connectedness of Gq and the
fact that g ∈ Gq, q ∈ N, imply Gq ⊂ A, q ∈ N. To show that � is connected, it suffices to
demonstrate that � ∩ A′ = ∅. Let us now fix a point x ∈ � and assume that x ∈ A′. Since A′

is open, there exists ε >  with x + Bε ⊂ A′. The last inclusion implies that for any sequence
converging to x, almost all its terms belong to A′. From this, the fact that Gq ⊂ A, q ∈ N,
and the disjointness of A from A′ it follows that x /∈ �. Thus, � ∩ A′ = ∅.
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Now, if
⋂

q∈N Gq = ∅, then let for each q ∈ N, hq ∈ Gq be a point such that |hq – g| =
inf{|g – h| : h ∈ Gq}; such a point exists by the compactness of Gq. Define the sets Hq :=
Gq ∪ {tg + ( – t)hq : t ∈ [, ]}, q ∈ N. By the convexity of X, Hq ⊂ X, q ∈N. Moreover, the
sets Hq, q ∈ N, are compact, connected, and the point g belongs to each of them. Thus,
the limit set �′ (defined as �, but with Hq in place of Gq) is compact, nonempty, and
connected. It suffices to prove that � = �′. Obviously, � ⊂ �′. If x ∈ �′\�, then x is the
limit of a sequence of points gkq ∈ {tg + ( – t)hq : t ∈ [, )}\Gkq for a sequence kq ↗ +∞,
q, kq ∈ N. But limq→+∞ hq = g , and thus x = g . Consequently, x ∈ �, which ends the proof.

�

3 The combinatorial lemma and its applications
The result which is common for our proofs of the existence of zeros for excess demand
mappings, continuum of zeros for parameterized excess demand mappings, and for a
proof of Sperner’s lemma is the following combinatorial Lemma , which generalizes the
combinatorial lemma presented in [].c

Lemma  Let S := 〈v, . . . , vn〉 ⊂ R
n be an (n – )-simplex, T := T(S) = {γj : j ∈ [Q]}, Q ∈ N,

be a triangulation of S, and let V := V (T) denote the set of all vertices of simplices in T .
Suppose that there exists exactly one simplex σ ∈ T such that vn ∈ σ . Assume also that
σ ∩〈v, . . . , vn–〉 = ∅. Let now l : V → [n] be a function satisfying for all p ∈ V the following
conditions:

. for i ∈ [n – ]: αS
i (p) =  ⇔ l(p) = i,

. l(p) =  ⇔ αS
n(p) = ,

. l(p) = n ⇔ αS
n(p) = ,

. l(p) ∈ [n – ] ⇔ αS
n(p) ∈ (, ),

where αS
i (p) = αS

vi (p) is the ith barycentric coordinate of the point p in S, i ∈ [n]. Then there
exists a unique finite sequence of simplices σ, . . . ,σJ ∈ T , J ∈N, such that σj and σj+ are ad-
jacent for j ∈ [J –], n ∈ l(σ),  ∈ l(σJ ), [n–] ⊂ l(σj), j ∈ [J], and  /∈ l(σ j), σj+ /∈ {σ, . . . ,σj},
j ∈ [J – ].d See Figure .

Proof Let σ := σ . Obviously, n ∈ l(σ). Since σ is the unique (n – )-simplex in T contain-
ing vn and σ ∩ 〈v, . . . , vn–〉 = ∅, we have σ = 〈p, . . . , pn–, pn〉, where pj = tjvj + ( – tj)vn

for some tj ∈ (, ), j ∈ [n – ]. Hence, αS(pj), the vector of barycentric coordinates of the

Figure 1 Illustration of Lemma 2 for n = 3. Small
triangles are members of a triangulation T of
〈v1, v2, v3〉. The triangulation T satisfies the
assumptions of the lemma. The number at a vertex
of a simplex in T is the value of the function l
assigned to the vertex, and it is clear that l satisfies
the assumptions of Lemma 2. The sequence of
simplices σ1, . . . ,σ11 is constructed according to the
rules presented in the proof of Lemma 2.
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vertex pj, is of the form

αS(pj) =
(
, . . . , , tj

︸︷︷︸
jth coordinate

, , . . . , ,  – tj), j ∈ [n – ].

The equality αS
i (pj) =  implies l(pj) = i, and therefore, due to the facts that αS

j (pj) = tj > ,
j ∈ [n – ], and αS

n(pn) = , we see that l(pj) = j, j ∈ [n], and [n – ] ⊂ l(σ). Moreover, since
for all v ∈ V , αS

i (v) =  implies l(v) = i, l(σ ′) = [n – ] entails that σ ′ is not contained in
∂(S), where σ ′ is an (n – )-face of some σ ∈ T . Thus, the (relative) boundary ∂(S) of S
contains no (n – )-face σ ′ of a simplex σ ∈ T such that l(σ ′) = [n – ]. From this we get
that there exists exactly one σ ∈ T\{σ} that is adjacent to σ. Obviously, [n – ] ⊂ l(σ),
and if  ∈ l(σ), then the proof is finished (J = ). Suppose that [n – ] = l(σ) and let pn+

be the only element of V (σ)\V (σ). Since l({p, . . . , pn–}) = [n – ] and l(pn+) ∈ [n – ],
there exists exactly one index i ∈ [n] such that l(pi ) = l(pn+) and l(V (σ )\{pi}) = [n – ].
So we can find a simplex σ ∈ T\{σ,σ} adjacent to σ with [n – ] ⊂ l(σ), and if  ∈ l(σ),
then the process is complete, if not, then proceeding as before, we can find a simplex
σ ∈ T\{σ,σ,σ} and so on.e Suppose that we have constructed the sequence σ, . . . ,σJ .
If  ∈ l(σJ ), then the sequence satisfies the claim. Suppose that  /∈ l(σJ ). Since each (n –
)-face that is not contained in ∂(S) is shared by exactly two simplices of T , there exists
precisely one simplex σ ′ in T\{σ, . . . ,σJ} such that σJ and σ ′ share the (n – )-face σ ′ ∩ σJ

with l(σ ′ ∩ σJ ) = [n – ]; this ensures that σJ+ = σ ′ and that no simplex of T appears twice
(or more) in the sequence σ, . . . ,σJ+, and l(σj) = [n – ], j ∈ [J – ]\{}. Thus, in view of the
finiteness of T and the fact that no (n–)-face σ ′ of some σ j, j ∈ [J +], with l(σ ′) = [n–] is
contained in ∂(S), we conclude that there exists the first index J ∈N such that  ∈ l(σJ ). The
uniqueness of the constructed sequence comes from the preceding sentences, properties
of the simplex containing vn, and the fact that each (n – )-face in the (relative) interior of
S is shared by exactly two simplices of the triangulation. �

3.1 The existence of equilibrium
Definition  Let us fix n ∈N. We say that a mapping z : int�n �R

n is an excess demand
mapping if it satisfies the following conditions:

. z is upper semicontinuous on int�n with nonempty convex and compact values z(p),
p ∈ int�n,

. Walras’ law: pz(p) = , p ∈ int�n,
. the boundary condition: if pq ∈ int�n, yq ∈ z(pq), q ∈ N, and limq→+∞ pq = p, then

pi =  ⇒ lim
q→+∞ yq

i = +∞, i ∈ [n],

. z is bounded from below: there exists a negative number L such that

inf
{

yi ∈R : y ∈ z(p), p ∈ int�n} > L, i ∈ [n].

Definition  Let z : int�n �R
n be an excess demand mapping, n ∈N. A point p ∈ int�n

is called an equilibrium point for z if  ∈ z(p).

Lemma  Let z be an excess demand mapping. Then
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. there exists ε ∈ (, /] such that for i ∈ [n] and y ∈ z(p), p ∈ int�n, we have

(pi ≤ ε ⇒ yi > ) and (pi ≥  – ε ⇒ yi < ),

. for any ε ∈ (, /], there exists U >  such that z(p) ⊂ [L, U]n for each p ∈ int�n

with pi ≥ ε, i ∈ [n], where L is the constant appearing in Definition , condition ,
. for each ε ∈ (, /], there exists ε ∈ (, ε/] such that for p ∈ int�n with

pn ≤  – ε, we have that, for i ∈ [n – ] and y ∈ z(p),

(
pi ≤ ε ⇒ ( – pn)yi + pnyn > 

)
and

(
pi ≥  – ε ⇒ ( – pn)yi + pnyn < 

)
.

. for ε, ε for which claim  and its premises hold, there exists 
 ∈ (, +∞) such that,
for i ∈ [n – ],

( – pn)yi + pnyn > 
,

whenever y ∈ z(p), p ∈ int�n, pi ≤ ε, pn ≤  – ε, and pj ∈ [ε/n,  – ε/n], j ∈ [n].

Proof Suppose that the left-hand side implication in claim  is not true. Then there exist
i ∈ [n] and sequences pq ∈ int�n, yq ∈ z(pj), j ∈ N, such that limq→+∞ pq = p, pi = , and
lim supq→+∞ yq

i ≤ , which is impossible due to the boundary condition. Hence, there ex-
ists ε ∈ (, /] such that the considered implication is satisfied. To prove the right-hand
side implication in claim , observe that pi ≥  – ε implies pi′ ≤ ε, i = i′, and yi′ > , i′ = i,
for y ∈ z(p). Finally, by Walras’ law,  <

∑
i′ =i pi′yi′ = –piyi, and consequently yi < .

Statement  is true since the restriction of the mapping z to the (compact) set {p ∈ int�n :
pi ≥ ε, i ∈ [n]} is an upper semicontinuous mapping with compact values, and such map-
pings transform compact sets into compact sets [], p..f

To prove assertion , suppose that there exists ε ∈ (, /] such that for any q ∈N, k ≥ ,
there exist pq ∈ int�n: pq

n ≤  – ε and iq ∈ [n – ]: pq
iq ≤ ε/q with ( – pq

n)yq
iq + pq

nyq
n ≤  for

some yq ∈ z(pq). Without loss of generality, we assume that iq = , q ∈ N. The boundary
condition now implies that limq→+∞ yq

 = +∞. Since  – pq
n ≥ ε, q ∈ N, and z is bounded

from below by the constant L, we obtain that (–pq
n)yk

 +pq
nyq

n ≥ εyq
 +L >  for large q. This

contradicts our assumption that (–pq
n)yq

iq +pq
nyq

n ≤  for q ∈N. Hence, for any ε ∈ (, /],
there exists ε ∈ (, ε/] such that the first implication in claim  is satisfied for any p ∈ �n:
pn ≤  – ε. Observe that for fixed ε and ε for which the first implication in claim 
holds, it follows that if p ∈ int�n: pn ≤  – ε and pi ≥  – ε for some i ∈ [n – ], then
pj ≤ ε, j ∈ [n – ]: j = i, and by the first implication of assertion  we get ( – pn)yi + pnyn =
–

∑
j∈[n–]\{i}[( – pn)yj + pnyn] < .

Let now ε, ε be as in claim  and suppose that claim  is false. Thus, there exist se-
quences pq ∈ int�n: pq

n ≤  – ε, pq
j ∈ [ε/n,  – ε/n], j ∈ [n], yq ∈ z(pq), q ∈ N, and

i ∈ [n – ] such that pq
i ≤ ε and ( – pq

n)yq
i + pq

nyq
n ≤ /q, q ∈N. By the boundary and lower

boundedness conditions on z, the boundedness of the standard simplex, and by the up-
per semicontinuity of z and compactness of its values, from the sequences pq, yq, q ∈ N,
we can extract subsequences converging to p ∈ int�n and y ∈ z(p), respectively. But then
pi ∈ [ε/n,  – ε/n], i ∈ [n], pn ≤  – ε, and pi ≤ ε. By the contradictory assumption
we get ( – pn)yi + pnyn ≤ , which is impossible due to the choice of ε and ε. �
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We are in position to prove the first consequence of the combinatorial Lemma .

Lemma  Let z be an excess demand mapping. For each ε > , there exist p ∈ int�n and
y ∈ z(p) such that yi ≤ ε, i ∈ [n].

Proof Fix ε > . The claim is trivial for n = , so assume that n ≥ . To ease the reading,
we divide the proof into four parts.

Part : A restriction of the mapping z to a simplex S ⊂ int�n. Let us fix ε for which the
assertion of Lemma , statement  is satisfied. Let ε correspond to ε := ε/ according
to Lemma , statement . Finally, suppose that U fulfills Lemma , statement  for ε = ε

and 
 corresponds to ε (= ε/) and ε as in Lemma , statement . Notice that  – ε <
 – 

ε =  – ε <  – ε <  – n–
n ε ≤  – 

nε.
Without loss of generality, we can assume that ε is so small that the vectors

vi :=
(

ε

n
, . . . ,

ε

n
,  –

n – 
n

ε
︸ ︷︷ ︸
ith coordinate

,
ε

n
, . . . ,

ε

n

)

∈ int�n, i ∈ [n], ()

are linearly independent. Let now S := 〈vi : i ∈ [n]〉, and let αS
i (p) := αS

vi (p) denote the ith
barycentric coordinate of p ∈ S in the simplex S, i ∈ [n]. Hence, p =

∑
i∈[n] α

S
i (p)vi. It is

obvious that S ⊂ int�n, the set S is an (n – )-simplex with the vertices vi, i ∈ [n], and
pi ∈ [ε/n,  – n–

n ε] for p ∈ S. Moreover, for each i ∈ [n], any value in [ε/n,  – n–
n ε]

is taken on by pi for a point p ∈ S. Observe that if for a point p ∈ S, αS
i (p) =  for some

i ∈ [n] (⇔ pi = ε/n), then pi < ε and yi >  for y ∈ z(p); if αS
i (p) =  (⇔ pi =  – n–

n ε) for
some i ∈ [n], then pi >  – ε and yi >  for y ∈ z(p). Further, if p ∈ S, pn ≤  – ε =  – ε/,
and αS

i (p) =  for some i ∈ [n – ], then pi ≤ ε and ( – pn)yi + pnyn > 
 for y ∈ z(p); in the
case where αS

i (p) =  for some i ∈ [n – ], we have pi ≥  – ε and ( – pn)yi + pnyn <  for
y ∈ z(p).

Part : Two triangulations of S. From the upper semicontinuity of z we obtain that,
for any p ∈ S, there exists δp ∈ (, ε/) >  such that z((p + Bδp ) ∩ S) ⊂ z(p) + Bε/. By the
compactness of S there exist points p, . . . , pQ ∈ S, Q ∈ N, such that the sets pi + Bi, i ∈ [Q],
where Bi := Bδpi , are an open cover of S. Now, let D :=  + sup{|y| : y ∈ z(p), p ∈ S} (D ∈
[, +∞) by Lemma , statement ). Define δ := mini∈[Q] δpi and let λ ∈ (, min{
, δ/}) be a
Lebesgue number of the covering {pi + Bi : i ∈ [Q]} of S satisfying the inequality

λ ≤ (n – )δε

n
. ()

Hence, any set A ⊂ S whose diameter is less than λ satisfies the condition A ⊂ pi + Bi for
some i ∈ [Q]. Let us now fix m ∈ N so large that diamσ < min{λ, ε/} for σ ∈ Km (S),
and to each vertex v ∈ Vm (S), arbitrarily assign a point y(v) ∈ z(v); notice that |y(v)| ≤ D,
v ∈ Vm (S), and if a simplex σ ∈ Km (S) contains a point p such that pn ≥  – ε/, then
p′

n ≥  – ε/, p′ ∈ σ . Let us also fix m ∈ N such that for each simplex σ in the trian-
gulation TS := Km×m (S), we have diamσ < min{λ/D, ε/}. Observe that Vm (S) ⊂ V S :=
Vm×m (S). For any σ ∈ TS , by σ̂ we denote the unique simplex σ̂ ∈ Km (S) such that
σ ⊂ σ̂ . So, it makes sense to speak on the barycentric coordinates of points p ∈ σ ∈ TS

in σ̂ ∈ Km (S). We denote the barycentric coordinates of p ∈ σ ∈ TS in the simplex
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σ̂ ∈ Km (S) by ασ̂ (p) and the barycentric coordinate of p corresponding to v ∈ V (σ̂ ) in
σ̂ by ασ̂

v (p), v ∈ V (σ̂ ). Hence, p =
∑

v∈V (σ̂ ) α
σ̂
v (p) and

∑
v∈V (σ̂ ) α

σ̂
v (p) = , ασ̂

v (p) ∈ [, ],
v ∈ V (σ̂ ). Since the set Km (S) is finite and λ and D are fixed independently of the tri-
angulation of S and the barycentric coordinates of a point p in a simplex are continuous
functions of p, without loss of generality (increasing m if necessary), we may assume that
∑

v∈V (σ̂ ) |ασ̂
v (p) – ασ̂

v (p′)| < λ/D for any σ ∈ TS and p, p′ ∈ σ , that is, the barycentric coor-
dinates of points p, p′ ∈ σ ∈ T in the simplex σ̂ ∈ Km (S) differ by less than λ/D.

Part : A labeling of V S . Recall that to each vertex v ∈ Km (S) ⊂ TS , we have arbitrarily
assigned y(v) ∈ z(v) in Part  of the proof. Let

h(p) =
(
h(p), . . . , hn(p)

)
:=

∑

v∈V (σ̂ )

ασ̂
v (p)y(v) ∈R

n, ()

where p ∈ S, and σ is any simplex in TS with p ∈ σ ; it is clear that h(p) is independent of
the choice of σ as long as p ∈ σ . For p, p′ ∈ σ ∈ TS , we have

∣
∣h(p) – h

(
p′)∣∣ =

∣
∣
∣
∣

∑

v∈V (σ̂ )

(
ασ̂

v (p) – ασ̂
v
(
p′))y(v)

∣
∣
∣
∣ ≤

∑

v∈V (σ̂ )

∣
∣ασ̂

v (p) – ασ̂
v (p)

∣
∣
∣
∣y(v)

∣
∣

≤
∑

v∈V (σ̂ )

∣
∣ασ̂

v (p) – ασ̂
v
(
p′)∣∣D ≤ λ

D
D = λ. ()

Further, for any p ∈ σ ∈ TS , we have

ph(p) =
∑

v∈V (σ̂ )

ασ̂
v (p)py(v) =

∑

v∈V (σ̂ )

ασ̂
v (p)

(
v + γ (p, v)

)
y(v) = (),

where γ (p, v) := v – p, v ∈ V (σ̂ ), and by the choice of m we have |γ (p, v)| ≤ min{λ/D, ε/},
v ∈ V (σ̂ ), so by Schwarz’s inequality

() =
∑

v∈V (σ̂ )

ασ̂
v (p)vy(v)

︸ ︷︷ ︸
=

+
∑

v∈V (σ̂ )

ασ̂
v (p)γ (p, v)y(v) ≤

∑

v∈V (σ̂ )

ασ̂
v (p)

λ

D
D ≤ λ,

and hence, for each p ∈ S,

ph(p) ≤ λ. ()

It is an elementary task to check that, for p ∈ S,

( – pn)ph(p) =
∑

i∈[n–]

pi
(
( – pn)hi(p) + pnhn(p)

)
. ()

Conditions () and () imply that, for p ∈ S, we have

∑

i∈[n–]

pi
(
( – pn)hi(p) + pnhn(p)

) ≤ λ.

By Lemma , statement  and the choice of m, hn(p) <  for p ∈ S with pn ≥  – ε/
and hn(p) >  for p ∈ S with pn ≤ ε/. Further, by Lemma , statement , ( – pn)hi(p) +
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pnhn(p) > 
 > λ for p ∈ S, pn ≤  – ε/, and pi = ε/n (⇔ αS
i (p) = ) for some i ∈ [n – ].

These considerations show that the function l : V S → [n] defined by the formulag

∀p ∈ V S:

l(p) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n if pn =  – n–
n ε,

 if pn = ε
n ,

min{i ∈ [n – ] : αS
i (p) > } if pn ∈ [ – ε

 ,  – n–
n ε),

min{i ∈ [n – ] : ( – pn)hi(p) + pnhn(p) ≤ λ} if pn ∈ ( ε
n ,  – ε

 ),

()

the simplex S, the triangulation TS of S, and its vertices V S satisfy the assumptions of
Lemma .

Part : The existence of the asserted point. By Lemma  and Part  we obtain that there
exists a sequence of different simplices σ, . . . ,σJ ∈ T , J ∈ N, such that vn ∈ σ,  ∈ σJ , σj

and σj+ are adjacent, j ∈ [J – ], and [n – ] ⊂ l(σj), j ∈ [J],  /∈ l(σj), j ∈ [J – ]. It is obvious
that the set

⋃
j∈J σj is an arcwise connected subset of S joining the ‘upper’ vertex vn of

S with the ‘bottom’ 〈vi : i ∈ [n – ]〉 of S. Since  ∈ l(σJ ), we have that hn(v) >  for the
unique vertex of σJ for which l(v) = . It is also clear that there is the first simplex σj ,
j ∈ [J], such that σj ⊂ {p ∈ S : pn ≤  – ε/}, j ∈ j, . . . , J . The choice of ε and the fact
that the diameters of simplices in T are sufficiently small guarantee σj ⊂ {p ∈ S : pn ∈
[ – ε,  – ε/]}. Hence, hn(v) <  for v ∈ V (σj ). The arcwise connectedness of the set
⋃J

j=j σj implies now that there is σj , j ∈ {j, . . . , J} such that hn(v) >  for some v ∈ V (σj )
and hn(v′) ≤  for some v′ ∈ V (σj ) > , which in view of the construction of vectors h(p),
p ∈ S, and the convexity of σj , implies that there exists p ∈ σj : hn(p) = . From () we
obtain that |hn(v)| ≤ λ, v ∈ V (σj ). Notice that for each v ∈ V (σj ) with l(v) = i for some
i ∈ [n – ], we have ( – vn)hi(v) + vnhn(v) ≤ λ. In view of the inequality vn ≤  – n–

n ε for
all i ∈ [n – ], we have

hi(v) ≤ 
 – vn

λ –
vn

 – vn
hn(v) ≤ λ

 – vn
+

vnλ

 – vn
≤ λ

 – vn
( + vn) ≤ λ

 – vn
≤ nλ

(n – )ε
,

from which, according to (), we get

hi(v) ≤ δ/ if l(v) = i, i ∈ [n – ], v ∈ V (σj ).

Since for each i ∈ [n – ], there is v′ ∈ V (σj ) such that l(v′) = i, by () we see that hi(v) ≤
δ/ + λ < δ, v ∈ σj , i ∈ [n – ], and hn(v) ≤ λ < δ. Hence, hi(v) < δ for any v ∈ σj , i ∈ [n].
To end the proof, notice that v ∈ σj ⊂ σ̂j ∈ Km (S), and thus h(v) ∈ conv(z(p) + Bε/) for
some p ∈ {pi : i ∈ [Q]} (see Part  of the proof ). But z(p) + Bε/ is a convex set, so that
h(v) ∈ z(p) + Bε/, and there are y ∈ z(p) and x ∈ Bε/ such that h(v) = y + x. We have

yi = hi(v) – xi ≤ δ + ε/ < ε/ + ε/ = ε, i ∈ [n].

The points p ∈ S ⊂ int�n and y ∈ z(p) satisfy the assertion. See Figure . �

From Lemma  and its proof we obtain the following.

Theorem  Let z be as in Lemma . There exists an equilibrium point for z.
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Proof Observe that the simplex S constructed in Part  of the proof is independent of
ε > . Hence, there are points pq ∈ S and yq ∈ z(pq), satisfying yq

i ≤ /q, i ∈ [n], q ∈ N. The
compactness of S allows us to assume that the sequence pq converges to a point p ∈ S.
From the upper semicontinuity of the mapping z and from the compactness of its values
we may also assume that the corresponding sequence of points yq ∈ z(pq) converges to a
point y ∈ z(p) with yi ≤ , i ∈ [n]. Since p ∈ S ⊂ int�n, y =  (by Walras’ law). �

3.2 A continuum of equilibria for parameterized excess demand mappings
The main result of this section is a version of Browder fixed point theorem for excess
demand mappings.

Theorem  Let z : int�n– × [, ] � R
n–, n ∈ N, be a nonempty, convex, and compact-

valued upper semicontinuous mapping such that
. pz(p, t) = , (p, t) ∈ int�n– × [, ],
. if (pq, tq) ∈ int�n– × [, ], yq ∈ z(pq, tq), q ∈N,

limq→+∞(pq, tq) = (p, t) ∈ �n– × [, ], then

pi =  ⇒ lim
q+∞ yq

i = +∞, i ∈ [n – ],

. there exists a negative number L such that

inf
{

yi ∈R : y ∈ z(p, t), (p, t) ∈ int�n– × [, ]
}

> L, i ∈ [n – ].

Then there exists a compact and connected set E ⊂ int�n– × [, ] such that E ∩ (int�n– ×
{}) = ∅, E ∩ (int�n– × {}) = ∅, and  ∈ z(p, t), (p, t) ∈ E.

Before we present a proof of Theorem , let us remark that for any t ∈ [, ], the mapping
z(·, t) is an excess demand mapping in the sense of Definition . Theorem , assumptions 
and  (and the assumption of upper semicontinuity) impose some uniformity conditions
on the family of mappings {z(·, t) : t ∈ [, ]}, and we suppose that the claim of Theorem 
may not be valid for a nonempty, convex, and compact-valued upper semicontinuous map-
ping z : int�n– × [, ] satisfying Theorem , assumption  and such that each mapping
z(·, t) is an excess demand mapping, t ∈ [, ], but either Theorem , assumption  or The-
orem , assumption  is not satisfied. However, we were not able to construct an example
of such mapping nor to deliver a proof of Theorem  without introducing the just men-
tioned conditions.

Proof of Theorem  The claim is certainly true for n = , so assume that n ≥ . Let us define
the mapping ξ : int�n �R

n by

ξ (p) :=

⎧
⎪⎪⎨

⎪⎪⎩

z( p∑
i∈[n–] pi

, . . . , pn–∑
i∈[n–] pi

, ) × {} if pn ≤ /,

z( p∑
i∈[n–] pi

, . . . , pn–∑
i∈[n–] pi

, pn – ) × {} if pn ∈ [/, /],

z( p∑
i∈[n–] pi

, . . . , pn–∑
i∈[n–] pi

, ) × {} if pn ≥ /,

for p ∈ int�n. By the assumptions on the mapping z and the construction of ξ , reasoning
similarly as in the proof of Lemma  (with ξ in place of z), we deduce that:
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(i) for each ε ∈ (, /), there exists U >  such that ξ (p) ⊂ [L, U]n for each
p ∈ int�n with pi ≥ ε, i ∈ [n],

(ii) for each ε ∈ (, /), there exists ε ∈ (, ε/] such that for p ∈ int�n with
pn ≤  – ε, we have that, for i ∈ [n – ] and y ∈ ξ (p),

(
pi ≤ ε ⇒ ( – pn)yi + pnyn > 

)
and

(
pi ≥  – ε ⇒ ( – pn)yi + pnyn < 

)
,

(iii) for ε, ε for which claim (ii) and its premises hold, there exists 
 ∈ (, +∞) such
that, for i ∈ [n – ],

( – pn)yi + pnyn > 
,

whenever y ∈ ξ (p), p ∈ int�n, pi ≤ ε, pn ≤  – ε, and pj ∈ [ε/n,  – ε/n],
j ∈ [n].

Remark that for p ∈ int�n and y ∈ ξ (p), we have yn = , and thus the inequality ( – pn)yi +
pnyn >  is equivalent to yi >  for i ∈ [n – ]; similarly, if we replace ‘>’ with ‘<’. Let ε cor-
respond to some fixed ε ∈ (, /) according to (ii) and ε := ε, ε := ε.h Moreover, let
U , 
 correspond to ε, ε, and ε as in (i), (iii), respectively. Finally, fix ε > . Observe, that
εi are chosen independently of ε. Literally repeating the passage of the proof of Lemma 
starting from ‘Without loss of generality, we can assume that ε is so small that. . . ’ in Part 
and ending with ‘It is obvious that the set

⋃
j∈J σj is an arcwise connected subset of S joining

the ‘upper’ vertex vn of S with the ‘bottom’ 〈vi : i ∈ [n – ]〉 of S’ in Part , with the excep-
tions that

• we replace z with ξ , and
• we keep in mind that yn =  whenever y belongs to the image of ξ , so that, in

consequence, hn(p) = , p ∈ S,
we obtain the simplex S, its triangulation TS , and a sequence of consecutively pairwise
adjacent (n – )-simplices σ, . . . ,σJ (with no simplex appearing twice in the sequence) in
TS joining vn and 〈v, . . . , vn–〉 and satisfying the following equivalences:  ∈ l(σ j) ⇔ j = J ,
n ∈ l(σj) ⇔ j =  for j ∈ [J], l(σ j) ⊂ [n – ]. We also have that there exists the first j ∈ [J]
such that p ∈ σj, j > j, implies pn ≤ /, and there exists the greatest j ∈ {j + , . . . , J} such
that p ∈ σj, j ∈ {j, j + , . . . , j – }, implies pn ≥ /. Let

A := {j, j + , . . . , j}, EA :=
(⋃

j∈A

σj

)

∩ {
p ∈ S : pn ∈ [/, /]

}
.

Observe that since the diameter of each simplex in TS is small, p ∈ σ j ∪ σ j implies
pn ∈ (ε/n,  – ε/). It is also clear that there are p ∈ σj : pn = / and p′ ∈ σj : p′

n = /.
Moreover, for any j′, j′′ ∈ [J], j′ ≤ j′′, the set

⋃
j∈[J]:j′≤j≤j′′ σj is arcwise connected.

The definition of the function l and the fact that l(σj) = [n – ], j ∈ A, entail that for
i ∈ [n – ] and j ∈ A, there is v ∈ V (σj) with ( – vn)hi(v) + vnhn(v) ≤ λ; hence,

hi(v) ≤ δ/,

and thus (see Part  of the proof of Lemma )

hi(v) < δ ≤ ε/, i ∈ [n – ], v ∈ σj, j ∈ A.
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For each j ∈ A, there are σ̂j ∈ Km (S) with conv{h(v) : v ∈ σj} ⊂ conv{y(w) : w ∈ σ̂j} and
ij ∈ [Q] with σj ⊂ σ̂j ⊂ pij + Bij (see formula () and Part  of the proof of Lemma ). Hence,
conv{h(v) : v ∈ σj} ⊂ ξ (pij )+Bε/ and yi ≤ δ ≤ ε/ for y ∈ conv{h(v) : v ∈ σj}, i ∈ [n–], j ∈ A.
By the arcwise connectedness of the set EA there exists a continuous function g : [, ] → S
such that

(iv) g([, ]) ⊂ {p ∈ S : pn ∈ [/, /]},
(v) gn() = /, gn() = /,

(vi) for each t ∈ [, ], hi(g(t)) ≤ ε/, i ∈ [n – ], hn(g(t)) = ,
(vii) for each t ∈ [, ], there are p ∈ S and y ∈ ξ (p) with |p – g(t)| < δ, |y – hi(g(t))| < ε/,

i ∈ [n – ], and thus yi ≤ ε, i ∈ [n – ].
From up-to-now considerations we conclude that for each ε > , there exist δ ∈ (, ε/)
(see Part  of the proof of Lemma ) and continuous functions gε : [, ] → S and hε : S →
R

n satisfying properties (iv)-(vii). Let εq = /q, q ∈ N, and let gq, hq be functions meeting
properties (iv)-(vii) (with gε , hε instead of g , h, respectively). Without loss of generality, let
us assume that limq→+∞ gq() = g . By (v), gn = /. Notice that the continuity of gq implies
that the set �q := gq([, ]) is a compact and connected subset of the convex compact set
S, q ∈N. Define

� :=
{

x ∈ X : x = lim
q→+∞ xkq , where kq ↗ +∞ as q → +∞, xkq ∈ Gkq , q ∈N

}
.

By Lemma  the set � is a connected and compact subset of S. By property (v) there is a
point g ′ ∈ � : g ′

n = /. Observe also that g ∈ � and recall that gn = /. From (vii) we see
that  ∈ ξ (g), g ∈ �. Indeed, if x ∈ �, then there exist sequences kq ∈N, xq ∈ gkq ([, ]), q ∈
N, kq ↗ +∞, such that limq→+∞ xq = x. By property (vii), for each q ∈N, there exist pq ∈ S
and yq ∈ ξ (pq) such that |pq – xq| < /q, yq

i ≤ /q, i ∈ [n – ]. Obviously, limq→+∞ pq = x,
and since ξ (pq) ⊂ [L, U]n, q ∈ N, we may assume (extracting a subsequence if necessary)
that limq→+∞ yq = y ∈ [L, U]n, where yi ≤ , i ∈ [n – ]. By the upper semicontinuity of the
compact-valued mapping ξ on the set S, y ∈ ξ (p). Now, since p ∈ S ⊂ int�n, by assumption
 on the mapping z and the definition of ξ we get

∑

i∈[n]

piyi =
∑

i∈[n–]

piyi =
( ∑

j∈[n–]

pj

) ∑

i∈[n–]

pi
∑

j∈[n–] pj
yi = ,

which, due to the inequalities y ≤  and p > , implies y = , and hence  ∈ ξ (p).
Let now the function w : {p ∈ int�n : pn ∈ [/, /]} → int�n– × [, ] be defined by

w(p) :=
(

p
∑

i∈[n–] pi
, . . . ,

pn–
∑

i∈[n–] pi
, pn – 

)

,

p ∈ int�n, pn ∈ [/, /]. The function w is a homeomorphism between {p ∈ int�n : pn ∈
[/, /]} and int�n– × [, ], wn(p) =  ⇔ pn = /, and wn(p) =  ⇔ pn = /, p ∈ int�n:
pn ∈ [/, /]. It follows that the set E := w–(�) satisfies the assertion. See Figure . �
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Figure 2 This figure explains the idea of the
proofs of Lemma 6 and Theorem 8 for n = 3. The
vertices vi , i ∈ {1, 2, 3}, are defined by (1). The simplex
S := 〈v1, v2, v3〉 is triangulated with thick-lined
triangles (K6(S) triangulation,m1 = 6) and then with
thin-lined triangles (K12(S) triangulation,m2 = 2). The
path P of simplices marked with thick-dots or
thick-line is determined by adequate labeling
(dependent on the theorem being considered) and
combinatorial Lemma 2. For Lemma 6: there is a
simplex σ ∈ P below the line p3 ≥ 1 – ε1/2 and
points v, v′ ∈ σ such that h3(v) < 0 and h3(v′) ≥ 0
(see Part 4 of the proof ). For Theorem 8: the
simplices in Pmarked with thick-line represent the
compact connected set EA corresponding to the
given accuracy level ε and joining level-lines
p3 = 1/3 and p3 = 2/3 .

3.3 Sperner’s lemma
Let us fix n ∈N\{} and define, for i ∈ [n – ],

wi :=



ei +



en,

vi :=



ei +



en,
()

where ei ∈ R
n denotes the ith unit vector of Rn, i ∈ [n]. We can easily see that wi, vi ∈ �n,

i ∈ [n – ], and that the vectors w, . . . , wn– and v, . . . , vn–, are linearly independent, so
〈wi : i ∈ [n – ]〉 and 〈vi : i ∈ [n – ]〉 are (n – )-simplices contained in �n. Moreover, di-
rectly from formula () we obtain that each of the sets {v, . . . , vn–, w}, {v, . . . , vn–, w, w},
. . . , {vn–, w, . . . , wn–} is a set of affinely independent vectors, and thus these sets generate
(n – )-simplices

S :=
〈
v, . . . , vn–, w〉,

S :=
〈
v, . . . , vn–, w, w〉,

. . . ,

Sn– :=
〈
vn–, w, . . . , wn–〉.

()

In what follows, by vi, . . . , wi′ we mean vi, . . . , vn–, w, . . . , wi′ for any i, i′ ∈ [n – ]. We first
present some lemmas. Their proofs are postponed to the Appendix.

The next lemma is a bit technical, but the geometry behind it is rather intuitive. Namely,
the lemma reveals that it is possible to decompose the polytope conv{v, . . . , vn, w, . . . , wn}
into the simplices S, . . . , Sn–, and the intersection of any pair of those simplices is their
common face.i

Lemma  Let wi, vi, i ∈ [n – ], be as in (), and Si, i ∈ [n – ], as in (). Then

Si ∩ Si′ =
〈
vi′ , . . . , wi〉, i, i′ ∈ [n – ], i < i′ ()
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and

conv
{

v, . . . , wn–} = S ∪ S ∪ · · · ∪ Sn–. ()

Remark  Similar decomposition applies for the set conv{v, . . . , vn–, e, . . . , en–}. The
idea for a proof is identical to that presented in the proof above (only some minor changes
are necessary).

The situation presented further in Lemma  can be imagined easily.

Lemma  Fix n ≥ , n ∈ N. Let T be a triangulation of an (n – )-simplex S =
〈p, . . . , pn–〉 ⊂ R

n, and let S′ = 〈p, . . . , pn–, r〉 be an (n – )-simplex. Then the collection
T ′ := {〈V (σ ) ∪ {r}〉 : σ ∈ T} is a triangulation of S′. Moreover, each simplex σ ∈ T and each
simplex σ ′ of the form 〈V (F) ∪ {r}〉, where F is an (i – )-face of a simplex in T , i ∈ [n – ],
belong to the set of all i-faces of simplices in T ′, i ∈ [n – ].

We shall now show that there is a special triangulation of the standard closed simplex �n.
The special triangulation allows us to embed a triangulated (n – )-simplex S in the stan-
dard simplex �n keeping simplices from the triangulation of S as faces of simplices in the
triangulation of �n. This lemma allows us to apply our combinatorial Lemma  to detect
a simplex satisfying the assertion of Sperner’s lemma.

Lemma  Fix n ≥ , n ∈ N. Let vj, wj, j ∈ [n – ], be defined by (). Suppose that T is a
triangulation of the (n – )-simplex 〈v, . . . , vn–〉. Then there exists a triangulation T ′ of �n

such that 〈vn, w, . . . , wn–〉 ∈ T ′ and, for each σ ∈ T , there is a simplex σ ′ ∈ T ′ for which σ

is its an (n – )-face. We also have

V
(
T ′) = V (T) ∪ {

e, . . . , en, w, . . . , wn–}. ()

Moreover, if for a simplex σ ′ ∈ T ′, there is exactly one i ∈ [n – ] such that ei ∈ V (σ ′), then
σ ′ = 〈V (σ ) ∪ {ei}〉 for some σ ∈ T .

Theorem  (Sperner’s lemma) Fix n ≥ , n ∈ N. Suppose that T is a triangulation of an
(n–)-simplex S = 〈p, . . . , pn–〉. Let l : V (T) → [n] be a function such that l(v) = i whenever
αi(v) = , where αi(v) := αS

pi (v) is the ith barycentric coordinate of the vector v in S. There
exists σ ∈ T with l(σ ) = [n – ]. Moreover, the number of such simplices is odd.

Proof Let vi, wi, i ∈ [n–], be defined by (). Without loss of generality, assume that pi = vi,
i ∈ [n – ]. Since T triangulates 〈v, . . . , vn–〉, we may assume that T ′ is a triangulation of
�n whose existence is asserted in Lemma . Let now l′ : V (T ′) → [n] be defined by

l′(p) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n if p = en,
 if p ∈ {e, . . . , en–},
i if p = wi, for some i ∈ [n – ],
l(p) if p ∈ V (T),

where p ∈ V (T ′). The function l′ and triangulation T ′ of �n evidently meet the assump-
tions of Lemma . Hence, there exists a sequence σ, . . . ,σJ of adjacent simplices in T ′ such
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Figure 3 The idea of the proof of Sperner’s
lemma (Theorem 13) for n = 3. Then simplex
〈p1,p2〉 is embedded in 〈e1, e2, e3〉 as 〈v1, v2〉. The
triangulation T of that simplex consists of small
sectors in 〈v1, v2〉 whose vertices are labeled by the
function l. The labels at the other vertices are
produced by l′ (see the proof ). The simplices σ1, . . . ,
σ5 come from combinatorial Lemma 1. The
simplices σ ′

1, . . . ,σ ′
5 come from the pairing of

simplices by the procedure described in the proof of
Sperner’s lemma (see also endnote j). Finally,
observe that the simplex 〈e1, e2, e3〉 is triangulated as
in the claim (and proof ) of Lemma 12.

that σJ is the first simplex with a vertex contained in {e, . . . , en–}. Obviously, by Lemma ,
l′(σJ ) = [n – ], and from Lemma  we see that σJ = 〈V (σ ) ∪ {ei}〉 for some σ ∈ T and
i ∈ [n – ]. Hence, l′(σ ) = l(σ ) = [n – ], which proves the existence of a simplex in T sat-
isfying the desired property. Now, if σ ∈ T , σ = σ , then using a similar procedure to that
presented in the proof of Lemma  to generate the sequence σ, . . . ,σJ , we obtain a unique
sequence σ ′

, . . . ,σ ′
J ′ of simplices in T ′ such that σ ′

J ′ is the first simplex in that sequence
different from σ ′

 that possesses a face σ ′ ∈ T\{σ } with l(σ ′) = [n – ].j This way we can
pair the simplex σ with a different simplex σ ′ ∈ T , where l(σ ) = l(σ ′). So, to each simplex
σ in T\{σ } with l(σ ) = [n – ], we can uniquely assign a different simplex σ ′ ∈ T\{σ } with
l(σ ′) = [n – ]. It follows that the number of simplices satisfying the claim is odd since σ

has no paired simplex (obtainable using the presented procedure of generating sequences
of simplices in T ′). See Figure . �

4 Final remarks
4.1 An algorithm for finding a zero of an excess demand mapping
From the proof of Lemma  we obtain the following algorithm for finding approximate
solutions to the equation y =  for y ∈ z(p), p ∈ int�n, where z is an excess demand map-
ping.

Step 0: Fix accuracy level ε > . Determine ε, ε, ε, 
 and vertices vi,
i ∈ [n], and simplex S := 〈vi : i ∈ [n]〉 as in Part 1 of the

proof of Lemma 6. Fix numbers δ, λ, m, m as in Part 2 of

the proof. Let also T := Km×m (S). To each vertex v ∈ V (Km (S)),
arbitrarily assign y(w) ∈ z(v). Further, to each v ∈ V (T), as-
sign the point h(v) according to formula (3) and label

each v ∈ V (T) as l(v) ∈ [n], where labeling l is defined by (7).
Let also σ be the only simplex in T with vn ∈ σ. Put F :=
V (σ)\{vn}, v := vn, and go to Step 1.

Step 1: Determine the only vertex v ∈ T such that v = v and

〈F ∪ {v}〉 ∈ T . Go to Step 2.
Step 2: If hn(v) ≥ , then STOP: there is a point p ∈ (v + Bδ) ∩ int�n and

y ∈ z(p) with yi ≤ ε, i ∈ [n]. Otherwise, assign the only element

of l–(l(v)) ∩ F as the value of v. Set F := (F\{v}) ∪ {v} and go to

Step 1.
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Let us emphasize once again that the proofs of Theorems  and  also contain descrip-
tions of algorithms for finding the asserted objects, although we leave their detailed for-
mulations to the reader.

4.2 Kakutani fixed point theorem and Gale-Debreu-Nikaido lemma
Suppose that F : �n � �n is an upper semicontinuous nonempty convex and compact-
valued mapping. Kakutani’s fixed point theorem ensures that such a mapping possesses a
fixed point [], p.. It is possible to derive Kakutani’s theorem from our Theorem . To
this end, for any fixed ε > , define the mapping zε : int�n �R

n by

z(p) := gε(p) +
{

y –
py
pp

p : y ∈ F(p)
}

, p ∈ int�n,

where gε(p) = ε( 
np

– , . . . , 
npn

– ). We can prove that zε is an excess demand mapping in
the sense of Definition . By Theorem , for each ε > , there exists pε ∈ int�n such that
 ∈ zε(pε), and thus  = gε(pε) + yε – pεyε

pεpε pε for some yε ∈ F(pε). Hence, for a sequence εq,
q ∈N, converging to +, there exist sequences pq, yq ∈ F(pq), q ∈N, with

 = εq
(


npq


– , . . . ,


npq

n
– 

)

+ yq –
pqyq

pqpq pq

that converge to some p ∈ �n and y ∈ F(p), respectively. Then, for each i ∈ [n], we have

 –
εq

npq
i

= yq
i –

pqyq

pqpq pq
i ,

and since the right-hand side sequence is bounded, we can assume that the left-hand side
terms converge to some a ∈ R. Multiplying the last equation by pi (for each i ∈ [n]), sum-
ming over i ∈ [n], and taking the limit as q → +∞, we see that a =  (by Walras’ law).
Hence,

y =
py
pp

p,

and y, p ∈ �n implies that py
pp = , so p = y ∈ F(p).

Now, if F : �n �R
n is an upper semicontinuous nonempty convex and compact-valued

mapping satisfying a weak version of Walras’ law pF(p) ≤ , p ∈ �n, then the Gale-Debreu-
Nikaido lemma asserts that there are p ∈ �n and y ∈ F(p) with y ≤  [], p.. Going along
the lines above for Kakutani’s fixed point theorem, we obtain points p ∈ �n, y ∈ F(p) with
y = py

pp p. By the weak Walras law we get py ≤ , hence, due to the inequality p ≥ , we have
y ≤ .

4.3 Browder theorem
Browder’s fixed point theorem for mappings states that if F : �n × [, ] � �n is an up-
per semicontinuous mapping with nonempty, convex, and compact values, then there is
a compact connected subset E ⊂ {(x, t) ∈ �n × [, ] : x ∈ F(x, t)} with E ∩ (�n × {}) = ∅
and E ∩ (�n × {}) = ∅ [], p.. It is possible to derive this theorem from our Theorem 
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and Lemma . Indeed, let for ε > , zε : int�n × [, ] �R
n be defined by

z(p, t) := gε(p) +
{

y –
py
pp

p : y ∈ F(p, t)
}

, (p, t) ∈ int�n × [, ],

where gε is defined in Section .. The mapping zε satisfies the assumptions of Theorem .
So, there exists a compact and connected set Eε ⊂ int�n– ×[, ] such that Eε ∩(int�n– ×
{}) = ∅, Eε ∩ (int�n– × {}) = ∅, and  ∈ zε(p, t), (p, t) ∈ Eε . By Lemma  we obtain that
for a sequence εq > , q ∈ N, converging to +, and nonempty compact and connected
sets Eq ⊂ �n × [, ] (Eq := Eεq ), the limit set E ⊂ �n × [, ] is compact, connected, and
E ∩ (�n– ×{}) = ∅, E ∩ (�n– ×{}) = ∅. Arguing as in Section ., we conclude that each
point (p, t) ∈ E is a fixed point of F(·, t): p ∈ F(p, t).

Let us notice that in a recent work [], there was also proved a generalization of
Browder’s theorem. However, it seems that our less general approach is simpler than that
presented in [].

4.4 A bit on economics
Our findings in [] were well motivated by economics. However, it appears that our results
have natural origins in economics. Indeed, Theorem  allows us to state that there exists
an equilibrium for a pure exchange economy (where agents’ excess demands are multival-
ued mappings), whereas Theorem  ensures the existence of equilibrium in an exchange
economy with price rigidities ([], Chapter  or []). Even Sperner’s lemma has an inter-
esting economic/social implication; it enables us to deduce that there exists a fair division
of a good (see, e.g., a nice introduction in []).

Appendix
Recall that vi, . . . , wi′ means vi, . . . , vn–, w, . . . , wi′ for any i, i′ ∈ [n – ].

Proof of Lemma  Let i, i′ ∈ [n – ], i < i′. It is obvious that 〈vi′ , . . . , wi〉 ⊂ Si ∩ Si′ . To prove
(), it suffices to show that 〈vi′ , . . . , wi〉 ⊂ Si ∩ Si′ . On the contrary, suppose that there is
x ∈ (Si ∩ Si′ )\〈vi′ , . . . , wi〉. Define

λj := αSi

vj (x), j ∈ {i, i + , . . . , n – }, γj := αSi

wj (x), j ∈ {, , . . . , i},

λ′
j := αSi′

vj (x), j ∈ {
i′, i + , . . . , n – 

}
, γ ′

j := αSi′
wj (x), j ∈ {

, , . . . , i′
}

,

where αS
v (x) denotes the barycentric coordinate of a point x ∈ S corresponding to the ver-

tex v ∈ V (S). So, x =
∑n–

j=i λjvj +
∑i

j= γjwj, x =
∑n–

j=i′ λ′
jvj +

∑i′
j= γ ′

j wj. Observe that by the
assumption on x there exists j ∈ {i, i + , . . . , i′ – }: λj > . We have

n–∑

j=i

λjvj +
i∑

j=

γjwj =
n–∑

j=i′
λ′

jv
j +

i′∑

j=

γ ′
j wj

⇔
i′–∑

j=i

λjvj =
n–∑

j=i′+

(
λ′

j – λj
)
vj +

i–∑

j=

(
γ ′

j – γj
)
wj +

(
λ′

i′ – λi′
)
vi′

+
(
γ ′

i – γi
)
wi + γ ′

i′w
i′ +

i′–∑

j=i+

γ ′
j wj,



Maćkowiak Journal of Inequalities and Applications  (2016) 2016:105 Page 18 of 22

which, due to (), imply λ′
j –λj = , j ∈ {i′ +, i′ +, . . . , n–} and γ ′

j –γj = , j ∈ {, , . . . , i–},
so

i′–∑

j=i

λjvj =
(
λ′

i′ – λi′
)
vi′ +

(
γ ′

i – γi
)
wi + γ ′

i′w
i′ +

i′–∑

j=i+

γ ′
j wj.

The last equation and () imply



λi =



(
γ ′

i – γi
) ≥ ,



λi+ =



γ ′

i+, . . . ,


λi′– =



γ ′

i′–,


(
λ′

i′ – λi′
)

= –


γ ′

i′

and




i′–∑

j=i

λj =


(
λ′

i′ – λi′
)

+


(
γ ′

i – γi
)

+


γ ′

i′ +



i′–∑

j=i+

γ ′
j ,

from which we obtain by multiplying both sides by  and carefully substituting γ ’s for λ’s



(
γ ′

i – γi
)

+



i′–∑

j=i+

γ ′
j = –



γ ′

i′ + 
(
γ ′

i – γi
)

+ γ ′
i′ + 

i′–∑

j=i+

γ ′
j ,

which is equivalent to

 = 
(
γ ′

i – γi
)

+ γ ′
i′ + 

i′–∑

j=i+

γ ′
j .

But γ ′
i – γi ≥  and γ ′s are nonnegative, so γ ′

i′ – γi′ = , γ ′
j = , j ∈ {i + , i + , . . . , i′}, which

entails λj =  for j ∈ {i, i + , . . . , i′ – }, which is impossible due to the assumptions on the
point x. Hence, equation () holds.

To prove (), we shall first show that

conv
{

v, . . . , wn–} = S ∪ conv
{

v, . . . , wn–}.

Suppose that x ∈ conv{v, . . . , vn–, w, . . . , wn–}, x = v, so there exist nonnegative numbers
λj, γj, j ∈ [n – ],

∑
j∈[n–](λj + γj) = , λ < , for which

x =
∑

j∈[n–]

λjvj +
∑

j∈[n–]

γjwj. ()

By (), en = w – v, wj = 
 vj + 

 en, j ∈ {, , . . . , n – }, and, due to (), we get

x =
∑

j∈[n–]

λjvj + γw +
n–∑

j=

γj

(



vj +


(
w – v)

)

= λv –

( n–∑

j=

γj



)

v +
n–∑

j=

(

λj +
γj



)

vj +

( n–∑

j=

γj

)

w
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=

(

 –
n–∑

j=

λj –
n–∑

j=

γj

)

v –

( n–∑

j=

γj



)

v +
n–∑

j=

(

λj +
γj



)

vj +

( n–∑

j=

γj

)

w

=

(

 –

( n–∑

j=

γj +
n–∑

j=

(

λj +


γj

)))

v +

( n–∑

j=

γj

)

w +
n–∑

j=

(

λj +
γj



)

vj.

Let t :=
∑n–

j= γj +
∑n–

j= (λj + 
γj). Since λ < , t > . Define now t :=

∑n–
j= γj

t , tj := λj+
γj


t ,
j ∈ {, . . . , n – }. Then tj ≥ , j ∈ [n – ],

∑
j∈[n–] tj = , and

x = ( – t)v + t

(

tw +
n–∑

j=

tjvj

)

.

Notice that if t ∈ [, ], then x ∈ S, and if t = , then x ∈ 〈v, . . . , w〉, and x belongs to the
(n – )-face of S opposite to the vertex v.

If t > , then


t

x +
t – 

t
v = tw +

n–∑

j=

tjvj ∈ 〈
v, . . . , w〉.

Let now v := 
t x + t–

t v. Then v ∈ 〈v, . . . , w〉 ⊂ S and v = t
t– v – 

t– x. By (),

x = λ

(
t

t – 
v –


t – 

x
)

+
n–∑

j=

λjvj +
n–∑

j=

γjwj,

and, subsequently,

(

 +
λ

t – 

)

x =
λt

t – 
v +

n–∑

j=

λjvj +
n–∑

j=

γjwj,

which results in

x =
λt
t–

 + λ
t–

v +
n–∑

j=

λj

 + λ
t–

vj +
n–∑

j=

γj

 + λ
t–

wj.

Remark that all coefficients at the vectors v, vj, wj on the right-hand side are nonnegative
and

λt
t–

 + λ
t–

+
n–∑

j=

λj

 + λ
t–

+
n–∑

j=

γj

 + λ
t–

=
λt
t– +

∑n–
j= λj +

∑n–
j= γj

 + λ
t–

=
λt
t– +  – λ

 + λ
t–

= ,

and hence x ∈ conv{v, . . . , wn–} (if t > ).
We have just proved that

conv
{

v, . . . , wn–} = S ∪ conv
{

v, . . . , wn–}.
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Proceeding similarly, we get conv{v, . . . , wn–} = S ∪conv{v, . . . , wn–}, then conv{v, . . . ,
wn–} = S ∪conv{v, . . . , wn–}, conv{v, . . . , wn–} = S ∪conv{v, . . . , wn–}, . . . until we meet
the set conv{vn–, . . . , wn–} = Sn–. Decomposition () follows. �

Proof of Lemma  Since S′ is an (n – )-simplex, 〈V (σ ) ∪ {r}〉 is also an (n – )-simplex for
any σ ∈ T . Indeed, the inclusion σ ∈ T implies that vertices V (σ ) are affinely independent,
and from this and due to the assumption that S′ is an (n – )-simplex, we can conclude
that the vectors V (σ ) ∪ {r} are affinely independent, which implies that T ′ is a collection
of (n – )-simplices.

Each point x ∈ S′ is uniquely represented as x =
∑

i∈[n–] λipi + γ r with nonnegative
λs and γ that sum up to . Therefore, x = γ r + ( – γ )

∑
i∈[n–]

λi∑
j∈[n–] λj

pi. Let p :=
∑

i∈[n–]
λi∑

j∈[n–] λj
pi ∈ 〈p, . . . , pn〉. Hence, p ∈ σ for some σ ∈ T , and γ ∈ [, ], and ac-

cording to the fact that γ ∈ [, ], x = γ r + ( – γ )p ∈ σ ′ ∈ T ′ for some σ ′ ∈ T ′. Observe
that for any σ ′

,σ ′
 ∈ T ′, there exist σ,σ ∈ T : σ ′

 = 〈V (σ) ∪ {r}〉, σ ′
 = 〈V (σ) ∪ {r}〉. Thus,

σ ′
 ∩ σ ′

 = 〈(V (σ) ∩ V (σ)) ∪ {r}〉, and since σ ∩ σ (if nonempty) is a common face of
simplices σ, σ and due to the fact that r and vertices of V (σ ∩ σ) are affinely inde-
pendent, the set 〈(V (σ) ∩ V (σ)) ∪ {r}〉 is a face of both σ ′

 and σ ′
. If σ ∩ σ = ∅, then

σ ′
 ∩ σ ′

 = 〈V (σ) ∪ {r}〉 ∩ 〈V (σ) ∪ {r}〉 = 〈r〉. We conclude that T ′ is a triangulation of S′.
Now, because each σ ′ ∈ T ′ is of the form σ ′ = 〈h, . . . , hn–, r〉 for some 〈h, . . . , hn–〉 ∈ T ,
we get that its nonzero faces are of the form 〈{hi : i ∈ A} ∪ {r}〉, where ∅ = A ⊂ [n – ], or
〈{hi : i ∈ A}〉, A ⊂ [n – ], #A ≥ . The assertion follows. �

Proof of Lemma  Let Si, i ∈ [n – ], be determined by (). Put T  := T and define

T  :=
{〈

V (σ ) ∪ {
w}〉 : σ ∈ T }.

By Lemma , T  is a triangulation of S. Now, recursively define for i ∈ [n – ], i ≥ ,

Ti :=
{
σ ∩ 〈

vi, . . . , wi–〉 : σ ∈ Ti–,σ ∩ 〈
vi, . . . , wi–〉 is an (n – )-face of σ

}
,

Ti :=
{〈

V (σ ) ∪ {
wi}〉 : σ ∈ Ti}.

For each i ∈ [n – ], the collection Ti is a triangulation of 〈vi, . . . , wi–〉 (see Section ), and
by Lemma , Ti is a triangulation of Si.

If F ⊂ 〈vi, . . . , vn–〉 is an (n – i – )-face of some σ ∈ T , i ∈ [n – ], then by Lemma ,
〈vi, . . . , vn–, w〉 is an (n – i)-face of some simplex in T . Again by Lemma , 〈vi, . . . , vn–,
w, w〉 is an (n – i + )-face of some simplex in T. Repeating the reasoning, we obtain that
〈vi, . . . , wi–〉 is an (n – )-face of a simplex in Ti–, and hence 〈vi, . . . , wi〉 ∈ Ti.

Observe that (n – )-faces of a simplex σ ∈ T  contained in 〈v, . . . , w〉 are of the form
〈V (F) ∪ {w}〉, where F ⊂ 〈v, . . . , vn–〉 is an (n – )-face of σ. Thus, simplices in T

are of the form 〈V (F) ∪ {w, w}〉, where F ⊂ 〈v, . . . , vn–〉 is an (n – )-face of some
σ ∈ T . Further, (n – )-faces contained in 〈v, . . . , w〉 of a simplex σ ∈ T are of the
form 〈V (F) ∪ {w}〉, where F ⊂ 〈v, . . . , w〉 is an (n – )-face of σ. But w ∈ V (σ), so
w ∈ F. Now, since F ⊂ 〈v, . . . , w〉 is an (n – )-face of σ and σ = 〈V (F) ∪ {w, w}〉,
where F ⊂ 〈v, . . . , vn–〉 is an (n – )-face of some σ ∈ T , we conclude that simplices
in T are of the form 〈V (F) ∪ {w, w, w}〉, where F ⊂ 〈v, . . . , vn–〉 is an (n – )-face of a
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simplex σ ∈ T . Continuing that way, we obtain that, for i ∈ [n – ],

Ti =
{〈

V (F) ∪ {
w, . . . , wi}〉 : F ⊂ 〈

vi, . . . , vn–〉 is an (n – i – )-face of σ ,σ ∈ T }

and

Tn– =
{〈

vn–, . . . , wn–〉} =
{

Sn–}.

Since T  is a triangulation of S, it is clear that if σ ∈ Ti and σ ′ ∈ Ti′ , i, i′ ∈ [n – ], then
σ ∩ σ ′ is a common face of σ , σ ′.

Now, taking ei, i ∈ [n – ], in place of wi and observing that we can treat conv{v, . . . , vn–,
e, . . . , en–} symmetrically to conv{v, . . . , vn–, w, . . . , wn–}, we obtain a collection C of (n–
)-simplices contained in conv{v, . . . , vn–, e, . . . , en–} with properties  and  mentioned
in the definition of triangulation of a simplex and whose union is conv{v, . . . , vn–, e,
. . . , en–}. By the construction, each σ ∈ T is a common face of a simplex in the family
T :=

⋃
i∈[n–] Ti and a simplex in C. Moreover, by symmetry, there is exactly one sim-

plex in C whose face is 〈e, . . . , en–〉. Observe that the family of simplices T ′ := C ∪ T ∪
{〈w, . . . , wn–, en〉} is the desired triangulation of �n.

The above construction ensures the correctness of () and the claim following it. �
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Endnotes
a In the last section of the paper, we present an algorithm for finding an (approximate) zero of an excess demand

mapping; the other algorithms may be derived from proofs of Theorems 8 and 13, but we leave the details for the
reader. A comprehensive review of existing algorithms is presented in [3]. We would like to stress that we just show
some novel ways leading to the existing/known results. These ways have a common factor, Lemma 2.

b The Km-triangulation is also called the K2(m)-triangulation [3], p.64.
c The generalization consists in allowing for a wider class of triangulations of the simplex; the only triangulation

considered in [1] was our Km-triangulation.
d To simplify the notation, l(σ ) := l(V(σ )), σ ∈ T , or σ is a face of a simplex in T . The proof below is an adaptation of

the proof of Lemma 1 in [1].
e The method of construction of the sequence is similar to that used in the proof of the correctness of the Scarf

algorithm; see [3], p.68.
f In [6], the ‘hemicontinuity’ is used in the sense of our ‘semicontinuity’.
g Let us recall that αS(p) denotes the vector of the barycentric coordinates of p ∈ S in the simplex S.
h We introduce ε1 only to enable literal usage of passages of the proof of Lemma 6.
i So, from the formal point of view, the family of simplices S1, . . . , Sn–1 is a triangulation the polytope
conv{v1, . . . , vn ,w1, . . . ,wn}. For a definition of triangulation of a polytope, see, e.g., Definition 1.4.3 in [3].

j We describe this procedure in short: we ‘start’ from a simplex in T ′ whose face is σ and which has a vertex
contained in {e1, . . . , en–1}; call this simplex σ ′

1 , then choose σ ′
2 to be the simplex adjacent to σ ′

1 that shares the face
σ with σ ′

1 . Next, we use the same rule for rejection of a vertex to get the next adjacent simplex of the sequence as
in the proof of Lemma 2. At each step, [n – 1]⊂ l(σ ′

i ). We can continue the procedure until we meet the first simplex
σ ′
J′ ∈ T ′ that possesses a vertex in {e1, . . . , en–1}. The constructed sequence σ ′

j , j ∈ [J′], is unique and has no simplex
common with the sequence σj , j ∈ [J]. Moreover, if we start from σ ′

J′ , then the procedure leads us back to σ ′
1 . See

the proof of Lemma 2 for details.
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