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Abstract
Let c be any real number and let

un(c) = (n + 1)
(
1 +

1
n + c

)n+c
– n

(
1 +

1
n + c – 1

)n+c–1
– e.

In this note, we establish an integral expression of un(c), which provides a direct proof
of Theorem 1 in (Mortici and Jang in Filomat 7:1535-1539, 2015).
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1 Introduction motivation
The limit

lim
n→∞

(
(n + )n+

nn –
nn

(n – )n–

)
= e

is well known in the literature as the Keller’s limit, see []. Such a limit is very useful in
many mathematical contexts and contributes as a tool for establishing some interesting
inequalities [–].

In the recent paper [], Mortici et al. have constructed a new proof of the limit and have
discovered the following new results which generalize the Keller limit.
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The proof of Theorem  given in [] is based on the following double inequality for every
x in  < x ≤ :

a(x) < ( + x)/x < b(x),

where

a(x) = e –
e

x
+

ex


–

ex


+

,ex

,
–

ex

,

and

b(x) = a(x) +
ex

,
.

But, this proof has a major objection, namely, for the reader it is very difficult to observe
the behavior of un(c) as n → ∞.

In this note, we will establish an integral expression of un(c), which tells us that Theo-
rem  is a natural result.

2 Main results
To establish an integral expression of un(c), we first recall the following result we obtained
in [].

Theorem  Let h(s) = sin(πs)
π

ss( – s)–s,  ≤ s ≤ . Then for every x > , we have
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where
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sj–h(s) ds (j = , , . . .). (.)

In [] (see also [, ]) Yang has proved that b = 
 , b = 

 .
Hence
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, (.)
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. (.)

Now, we establish an integral expression of un(c). Equation (.) implies the following
results:
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Hence by (.), (.), (.), and (.), we have
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Note that
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Therefore, from (.)-(.), we obtain the desired result:

un(c) =
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h(s)

( – c)n + ( – c + cs – c)n + K
(n + c)( + n + c)(n + c – s)( + n + c – s)

ds, (.)

where

K = s – ( + c)s + c + c.

From (.), we get immediately
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3 Conclusions
We have established an integral expression of un(c), which provides a direct proof of The-
orem  in [] and tell us that Theorem  is a natural result. We believe that the expression
will lead to a significant contribution toward the study of Keller’s limit.
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