New criteria for \mathcal{H}-tensors and an application

Feng Wang* and De-shu Sun

"Correspondence:
wangf991@163.com
College of Science, Guizhou Minzu University, Guiyang, Guizhou 550025, P.R. China

Abstract

Some new criteria for \mathcal{H}-tensors are obtained. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor are given. The advantages of the results obtained are illustrated by numerical examples. MSC: 15A06; 15A42; 15A48 Keywords: \mathcal{H}-tensor; symmetric tensor; positive definiteness; irreducible; nonzero elements chain

1 Introduction

Let $\mathbb{C}(\mathbb{R})$ be the complex (real) field and $N=\{1,2, \ldots, n\}$. We call $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ a complex (real) order m dimension n tensor, if

$$
a_{i_{1} i_{2} \cdots i_{m}} \in \mathbb{C}(\mathbb{R}),
$$

where $i_{j}=1, \ldots, n$ for $j=1, \ldots, m[1,2]$. A tensor $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ is called symmetric [3], if

$$
a_{i_{1} i_{2} \cdots i_{m}}=a_{\pi\left(i_{1} i_{2} \cdots i_{m}\right)}, \quad \forall \pi \in \Pi_{m},
$$

where Π_{m} is the permutation group of m indices. Furthermore, an order m dimension n tensor $\mathcal{I}=\left(\delta_{i_{1} i_{2} \cdots i_{m}}\right)$ is called the unit tensor [4], if its entries

$$
\delta_{i_{1} i_{2} \cdots i_{m}}= \begin{cases}1, & \text { if } i_{1}=\cdots=i_{m} \\ 0, & \text { otherwise }\end{cases}
$$

Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ be an order m dimension n complex tensor. If there exist a complex number λ and a nonzero complex vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ that are solutions of the following homogeneous polynomial equations:

$$
\mathcal{A} x^{m-1}=\lambda x^{[m-1]},
$$

then we call λ an eigenvalue of \mathcal{A} and x the eigenvector of \mathcal{A} associated with λ [5-7], $\mathcal{A} x^{m-1}$, and $\lambda x^{[m-1]}$ are vectors, whose i th components are

$$
\left(\mathcal{A} x^{m-1}\right)_{i}=\sum_{i_{2}, \ldots, i_{m} \in N} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}}
$$

and

$$
\left(x^{[m-1]}\right)_{i}=x_{i}^{m-1},
$$

respectively. If the eigenvalue λ and the eigenvector x are real, then λ is called an H-eigenvalue of \mathcal{A} and x is its corresponding H-eigenvector [1].

Throughout this paper, we will use the following definitions.

Definition 1 [8] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ be a tensor of order m dimension $n . \mathcal{A}$ is called a diagonally dominant tensor if

$$
\begin{equation*}
\left|a_{i i \cdots i}\right| \geq \sum_{\substack{i_{2}, \ldots, i_{m} \in N \\ \delta_{i_{i}} \ldots, i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|, \quad \forall i \in N . \tag{1}
\end{equation*}
$$

If all inequalities in (1) hold, then we call \mathcal{A} a strictly diagonally dominant tensor.

Definition 2 [9] Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ be an order m dimension n complex tensor. \mathcal{A} is called an \mathcal{H}-tensor if there is a positive vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$ such that

$$
\left|a_{i i \cdots i}\right| x_{i}^{m-1}>\sum_{\substack{i_{2}, \ldots, i_{m} \in N \\ \delta_{i i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}}, \quad i=1,2, \ldots, n .
$$

Definition 3 [10] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ be a tensor of order m dimension $n, X=\operatorname{diag}\left(x_{1}, x_{2}\right.$, \ldots, x_{n}). Denote

$$
\mathcal{B}=\left(b_{i_{1} \cdots i_{m}}\right)=\mathcal{A} X^{m-1}, \quad b_{i_{1} i_{2} \cdots i_{m}}=a_{i_{1} i_{2} \cdots i_{m}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{m}}, \quad i_{j} \in N, j \in N,
$$

we call \mathcal{B} the product of the tensor \mathcal{A} and the matrix X.

Definition 4 [11] A complex tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ of order m dimension n is called reducible, if there exists a nonempty proper index subset $I \subset N$ such that

$$
a_{i_{1} i_{2} \cdots i_{m}}=0, \quad \forall i_{1} \in I, \forall i_{2}, \ldots, i_{m} \notin I .
$$

If \mathcal{A} is not reducible, then we call \mathcal{A} irreducible.

Definition 5 Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ be an order m dimension n complex tensor, for $i, j \in N(i \neq j)$, if there exist indices $k_{1}, k_{2}, \ldots, k_{r}$ with

$$
\sum_{\substack{i_{2}, \ldots, i_{m} \in N \\ \delta_{k_{s i} 2}, i_{m}=0 \\ k_{s+1} \in\left\{i_{2}, \ldots, i_{m}\right\}}}\left|a_{k_{s} i_{2} \cdots i_{m}}\right| \neq 0, \quad s=0,1, \ldots, r,
$$

where $k_{0}=i, k_{r+1}=j$, we call there is a nonzero elements chain from i to j.

For an m th-degree homogeneous polynomial of n variables $f(x)$ can be denoted

$$
\begin{equation*}
f(x)=\sum_{i_{1}, i_{2}, \ldots, i_{m} \in N} a_{i_{1} i_{2} \cdots i_{m}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}, \tag{2}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. The homogeneous polynomial $f(x)$ in (2) is equivalent to the tensor product of an order m dimensional n symmetric tensor \mathcal{A} and x^{m} defined by

$$
\begin{equation*}
f(x) \equiv \mathcal{A} x^{m}=\sum_{i_{1}, i_{2}, \ldots, i_{m} \in N} a_{i_{1} i_{2} \cdots i_{m}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}, \tag{3}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}[1]$.
The positive definiteness of homogeneous polynomials have applications in automatic control [12,13], polynomial problems [14], magnetic resonance imaging [15, 16], and spectral hypergraph theory $[17,18]$. However, for $n>3$ and $m>4$, it is a hard problem to identify the positive definiteness of such a multivariate form. For solving this problem, Qi [1] pointed out that $f(x)$ defined by (3) is positive definite if and only if the real symmetric tensor \mathcal{A} is positive definite, and Qi provided an eigenvalue method to verify the positive definiteness of \mathcal{A} when m is even (see Theorem 1).

Theorem 1 [1] Let \mathcal{A} be an even-order real symmetric tensor, then \mathcal{A} is positive definite if and only if all of its H-eigenvalues are positive.

Although from Theorem 1 we can verify the positive definiteness of an even-order symmetric tensor \mathcal{A} (the positive definiteness of the m th-degree homogeneous polynomial $f(x)$) by computing the H-eigenvalues of \mathcal{A}, it is difficult to compute all these H-eigenvalues when m and n are large. Recently, by introducing the definition of \mathcal{H}-tensor, Li et al. [9] provided a practical sufficient condition for identifying the positive definiteness of an even-order symmetric tensor (see Theorem 2).

Theorem 2 [9] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ be an even-order real symmetric tensor of order m dimension n with $a_{k \cdots k}>0$ for all $k \in N$. If \mathcal{A} is an \mathcal{H}-tensor, then \mathcal{A} is positive definite.

Theorem 2 provides a method for identifying the positive definiteness of an even-order symmetric tensor by determining \mathcal{H}-tensors. Thus the identification of \mathcal{H}-tensors is useful in checking the positive definiteness of homogeneous polynomials. In this paper, some new criteria for identifying \mathcal{H}-tensors are presented, which is easy to calculate since it only depends on the entries of tensors. As an application of these criteria, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor are obtained. Numerical examples are also given to verify the corresponding results.

2 Main results

In this section, we give some new criteria for \mathcal{H}-tensors. First of all, we give some notation and lemmas.

Let S be a nonempty subset of N and let $N \backslash S$ be the complement of S in N. Given an order m dimension n complex tensor $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$, we denote

$$
\begin{aligned}
& R_{i}(\mathcal{A})=\sum_{\substack{i_{2}, \ldots, i_{m} \in N \\
\delta_{i i_{2} \ldots}, i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|=\sum_{i_{2}, \ldots, i_{m} \in N}\left|a_{i i_{2} \cdots i_{m}}\right|-\left|a_{i i \cdots i}\right|, \\
& N_{1}=\left\{i \in N: 0<\left|a_{i i \cdots i}\right| \leq R_{i}(\mathcal{A})\right\}, \quad N_{2}=\left\{i \in N:\left|a_{i i \cdots i}\right|>R_{i}(\mathcal{A})\right\}, \\
& s_{i}=\frac{\left|a_{i i \cdots i}\right|}{R_{i}(\mathcal{A})}, \quad t_{i}=\frac{R_{i}(\mathcal{A})}{\left|a_{i i \cdots i}\right|}, \quad r=\max \left\{\max _{i \in N_{1}} s_{i}, \max _{i \in N_{2}} t_{i}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& S^{m-1}=\left\{i_{2} i_{3} \cdots i_{m}: i_{j} \in S, j=2,3, \ldots, m\right\}, \\
& N^{m-1} \backslash S^{m-1}=\left\{i_{2} i_{3} \cdots i_{m}: i_{2} i_{3} \cdots i_{m} \in N^{m-1} \text { and } i_{2} i_{3} \cdots i_{m} \notin S^{m-1}\right\} .
\end{aligned}
$$

It is obvious that if $N_{1}=\emptyset$, then \mathcal{A} is an \mathcal{H}-tensor. It is known that, for an \mathcal{H}-tensor \mathcal{A}, $N_{2} \neq \emptyset$ [9]. So we always assume that both N_{1} and N_{2} are not empty. Otherwise, we assume that \mathcal{A} satisfies: $a_{i \cdots \cdots i} \neq 0, R_{i}(\mathcal{A}) \neq 0, \forall i \in N$.

Lemma 1 [8] If \mathcal{A} is a strictly diagonally dominant tensor, then \mathcal{A} is an \mathcal{H}-tensor.

Lemma 2 [10] Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ be a complex tensor of order m dimension n. If there exists a positive diagonal matrix X such that $\mathcal{A} X^{m-1}$ is an \mathcal{H}-tensor, then \mathcal{A} is an \mathcal{H}-tensor.

Lemma 3 [9] Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ be a complex tensor of order m dimension n. If \mathcal{A} is irreducible,

$$
\left|a_{i \cdots i}\right| \geq R_{i}(\mathcal{A}), \quad \forall i \in N,
$$

and strictly inequality holds for at least one i, then \mathcal{A} is an \mathcal{H}-tensor.

Lemma 4 Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ be an order m dimension n complex tensor. If
(i) $\left|a_{i i \cdots i}\right| \geq R_{i}(\mathcal{A}), \forall i \in N$,
(ii) $J(\mathcal{A})=\left\{i \in N:\left|a_{i i \cdots i}\right|>R_{i}(\mathcal{A})\right\} \neq \emptyset$,
(iii) for any $i \notin J(\mathcal{A})$, there exists a nonzero elements chain from i to j, such that $j \in J(\mathcal{A})$, then \mathcal{A} is an \mathcal{H}-tensor.

Proof It is evident that the result holds with $J(\mathcal{A})=N$. Next, we assume that $J(\mathcal{A}) \neq N$. Suppose $J(\mathcal{A})=\{k+1, \ldots, n\}, N \backslash J(\mathcal{A})=\{1, \ldots, k\}, 1 \leq k<n$. By hypothesis,

$$
\left|a_{k k \cdots k}\right|=R_{k}(\mathcal{A}) .
$$

By the condition (iii), there exist indices $k_{1}, k_{2}, \ldots, k_{r}$ such that

$$
\sum_{\substack{i_{2}, \ldots, i_{m} \in N \\ \delta_{k_{s s i}}, i_{m}=0 \\ k_{s+1} \in\left\{i_{2}, \ldots, i_{m}\right\}}}\left|a_{k_{s} i_{2} \cdots i_{m}}\right| \neq 0, \quad s=0,1, \ldots, r
$$

where $k_{0}=k, k_{r+1}=j, j \in J(\mathcal{A})$. Then

$$
\sum_{\substack{i_{2}, \ldots, i_{m} \in N \\ \delta_{k r i_{2}} \cdots i_{2}=0 \\ j \in\left\{i_{2}, \ldots, i_{m}\right\}}}\left|a_{k_{r} i_{2} \cdots i_{m}}\right| \neq 0
$$

Further, without loss of generality, we assume that $k_{1}, \ldots, k_{r} \notin J(\mathcal{A})$, that is, $1 \leq k_{1}, \ldots, k_{r}<k$. From $j \in J(\mathcal{A})$, we have $\left|a_{j j \ldots j}\right|>R_{j}(\mathcal{A})$, so there exists $0<\varepsilon<1$ such that $\varepsilon\left|a_{j j \ldots j}\right|>R_{j}(\mathcal{A})$.
Construct a positive diagonal matrix $X_{k_{r}}=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$, where

$$
x_{i}= \begin{cases}\varepsilon^{\frac{1}{m-1}}, & i=j, \\ 1, & i \neq j .\end{cases}
$$

Let $\mathcal{A}_{k_{r}}=\left[a_{i_{1} i_{2} \cdots i_{m}}^{\left(k_{r}\right)}\right]=\mathcal{A} X_{k_{r}}^{m-1}$. Then

$$
\begin{aligned}
& \left|a_{i i \cdots i}^{\left(k_{r}\right)}\right|=\left|a_{i i \cdots i}\right|=R_{i}(\mathcal{A}) \geq R_{i}\left(\mathcal{A}_{k_{r}}\right), \quad 1 \leq i \leq k, i \neq k_{r}, \\
& \left|a_{k_{r} k_{r} \cdots k_{r}}^{\left(k_{r}\right)}\right|=\left|a_{k_{r} k_{r} \cdots k_{r}}\right|=R_{k_{r}}(\mathcal{A})>R_{k_{r}}\left(\mathcal{A}_{k_{r}}\right), \\
& \left|a_{i i \cdots i}^{\left(k_{r}\right)}\right|=\left|a_{i i \cdots i}\right|>R_{i}(\mathcal{A}) \geq R_{k_{r}}\left(\mathcal{A}_{k_{r}}\right), \quad i \in J(\mathcal{A}), i \neq j, \\
& \left|a_{j j \cdots j}^{\left(k_{r}\right)}\right|=\varepsilon\left|a_{j j \ldots j}\right|>R_{j}(\mathcal{A}) \geq R_{k_{r}}\left(\mathcal{A}_{k_{r}}\right) .
\end{aligned}
$$

Obviously, $\mathcal{A}_{k_{r}}$ is also a diagonally dominant tensor, and $J\left(\mathcal{A}_{k_{r}}\right)=J(\mathcal{A}) \cup\left\{k_{r}\right\}$.
If $J\left(\mathcal{A}_{k_{r}}\right)=N$, then $\mathcal{A}_{k_{r}}$ is strictly diagonally dominant. By Lemma $2, \mathcal{A}$ is an \mathcal{H}-tensor.
If $N \backslash J\left(\mathcal{A}_{k_{r}}\right) \neq \emptyset$, then $\mathcal{A}_{k_{r}}$ also satisfies the conditions of the lemma, that is, for any $i \in N \backslash J\left(\mathcal{A}_{k_{r}}\right)$, there exist indices $l_{1}, l_{2}, \ldots, l_{s}$, such that

$$
\sum_{\substack{i_{2}, \ldots, i_{m} \in N, \delta_{l+i_{2}} \cdots i_{2}=0, l_{t+1} \in\left\{i_{2}, \ldots, i_{m}\right\}}}\left|a_{l_{t} i_{2} \cdots i_{m}}\right| \neq 0, \quad t=0,1, \ldots, s,
$$

where $l_{0}=i, l_{s+1}=j, j \in J\left(\mathcal{A}_{k_{r}}\right)$. Then

$$
\sum_{\substack{i_{2}, \ldots, i_{m} \in N, \delta_{l s} i_{2} \cdots i_{i}=0, j \in\left\{i_{2}, \ldots, i_{m}\right\}}}\left|a_{l_{s} i_{2} \cdots i_{m}}\right| \neq 0 .
$$

Similar to the above argument, for $\mathcal{A}_{k_{r}}$, there exists a positive diagonal matrix $X_{l_{s}}$ such that $\mathcal{A}_{l_{s}}=\mathcal{A}_{k_{r}} X_{l_{s}}^{m-1}$ is diagonally dominant, and $J\left(\mathcal{A}_{l_{s}}\right)=J\left(\mathcal{A}_{k_{r}}\right) \cup\left\{l_{s}\right\}$.
If $J\left(\mathcal{A}_{l_{s}}\right)=N$, then $\mathcal{A}_{l_{s}}$ is strictly diagonally dominant. By Lemma $2, \mathcal{A}$ is an \mathcal{H}-tensor.
If $N \backslash J\left(\mathcal{A}_{l_{s}}\right) \neq \emptyset$, then $\mathcal{A}_{l_{s}}$ also satisfies the conditions of the lemma. Similarly as the above argument, for $\mathcal{A}_{l_{s}}$, there exist at most k positive diagonal matrices $X_{k_{r}}, X_{l_{s}}, \ldots, X_{p_{q}}$ such that \mathcal{B} is strictly diagonally dominant, where $\mathcal{B}=\mathcal{A}\left(X_{k_{r}} X_{l_{s}} \cdots X_{p_{q}}\right)^{m-1}$. Hence, \mathcal{B} is an \mathcal{H}-tensor, and by Lemma $2, \mathcal{A}$ is an \mathcal{H}-tensor. The proof is completed.

Theorem 3 Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ be an order m dimension n complex tensor. If

$$
\begin{equation*}
\left|a_{i i \cdots i}\right| s_{i}>r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\ \delta_{i i_{2} \cdots i_{m}}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1}}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right|, \quad \forall i \in N_{1}, \tag{4}
\end{equation*}
$$

then \mathcal{A} is an \mathcal{H}-tensor.

Proof Let

$$
\begin{align*}
& M_{i}=\frac{\left|a_{i i \cdots i}\right| s_{i}-r \sum_{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1}}^{\delta_{i i_{2} \ldots m_{m}}=0} \mid}{}\left|a_{i i_{2} \cdots i_{m}}\right|-\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right| \\
& \sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| \tag{5}
\end{align*},
$$

If $\sum_{i_{2} i_{3} \cdots i_{m} \in N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|=0$, we denote $M_{i}=+\infty$. From inequality (4), we obtain $M_{i}>0$ $\left(i \in N_{1}\right)$. Hence, there exists a positive number $\varepsilon>0$ such that

$$
\begin{equation*}
0<\varepsilon<\min \left\{\min _{i \in N_{1}} M_{i}, 1-\max _{i \in N_{2}} t_{i}\right\} . \tag{6}
\end{equation*}
$$

Let the matrix $X=\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where

$$
x_{i}= \begin{cases}\left(s_{i}\right)^{\frac{1}{m-1}}, & i \in N_{1}, \\ \left(\varepsilon+t_{i}\right)^{\frac{1}{m-1}}, & i \in N_{2} .\end{cases}
$$

By inequality (6), we have $\left(\varepsilon+t_{i}\right)^{\frac{1}{m-1}}<1\left(i \in N_{2}\right)$. As $\varepsilon \neq+\infty$, so $x_{i} \neq+\infty$, which implies that X is a diagonal matrix with positive entries. Let $\mathcal{B}=\left(b_{i_{1} i_{2} \cdots i_{m}}\right)=\mathcal{A} X^{m-1}$. Next, we will prove that \mathcal{B} is strictly diagonally dominant.
For all $i \in N_{1}$, if $\sum_{i_{2} i_{3} \cdots i_{m} \in N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|=0$, then by inequality (4), we have

$$
\begin{align*}
R_{i}(\mathcal{B}) & =\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\
\delta_{i_{2}} \cdots i_{m}=0}}\left|b_{i i_{2} \cdots i_{m}}\right|+\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}}\left|b_{i i_{2} \cdots i_{m}}\right| \\
& =\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\
\delta_{i_{2} \cdots i_{m}}^{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}}+\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}} \\
& \leq r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\
\delta_{i i_{2} \cdots i i_{m}}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|<\left|a_{i i \cdots i}\right| s_{i}=\left|b_{i i \cdots i}\right| . \tag{7}
\end{align*}
$$

If $\sum_{i_{2} i_{3} \cdots i_{m} \in N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| \neq 0$, then by inequalities (5) and (6), we obtain

$$
\begin{align*}
R_{i}(\mathcal{B})= & \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\
\delta_{i i_{2} \cdots i_{m}}^{m}}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}}+\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}} \\
= & \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \\
\delta_{i i_{2} \cdots i_{m}}=0}}\left|a_{i i_{2} \cdots i_{2}^{m-1}}\right| x_{i_{2}} \cdots x_{i_{m}} \\
& +\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|\left(\varepsilon+t_{i_{2}}\right) \frac{1}{m-1} \cdots\left(\varepsilon+t_{i_{m}} \frac{1}{m-1}\right. \\
\leq & r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\
\delta_{i i_{2} \cdots i_{m}}^{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|\left(\varepsilon+\max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\right) \\
= & \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\
\delta_{i i_{2} \cdots i_{m}}^{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right| \\
& +\varepsilon \sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1}}}\left|a_{i i_{2} \cdots i_{m}}\right| \\
< & \left|a_{i i \cdots i}\right| s_{i}=\left|b_{i \cdots \cdots i}\right| . \tag{8}
\end{align*}
$$

Now, we consider $i \in N_{2}$. Since $\left|a_{i i \cdots i}\right|>R_{i}(\mathcal{A})$, we have

$$
\begin{equation*}
\left|a_{i i \cdots i}\right|-\sum_{\substack{i_{2} \cdots i_{3} \in i_{2}^{m-1} \\ i_{2} \cdots i_{m}=N_{2} \\ \delta_{i} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|>0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1}}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1} \\ \delta_{i i_{2} \cdots i_{m}}=0}} \max _{j \in\left\{i_{2} \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right|-R_{i}(\mathcal{A}) \leq 0 . \tag{10}
\end{equation*}
$$

By inequalities (9), (10), and $\varepsilon>0$, we get

$$
\varepsilon>\frac{r \sum_{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1} \\ \delta_{i i_{2} \cdots i_{m}}=0}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right|-R_{i}(\mathcal{A})}{\left|a_{i \cdots \cdots i}\right|-\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1} \\ \delta_{i i_{2} \cdots i_{m}}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|} .
$$

From inequality (11), for any $i \in N_{2}$, we obtain

$$
\begin{equation*}
>0 . \tag{12}
\end{equation*}
$$

Therefore, from inequalities (7), (8), and (12), we obtain $\left|b_{i \cdots \cdots i}\right|>R_{i}(\mathcal{B})$ for all $i \in N$, that is, \mathcal{B} is strictly diagonally dominant. By Lemma 1 and Lemma $2, \mathcal{A}$ is an \mathcal{H}-tensor. The proof is completed.

Theorem 4 Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ be an order m dimension n complex tensor. If \mathcal{A} is irreducible and

$$
\begin{equation*}
\left|a_{i i \cdots i}\right| s_{i} \geq r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\ \delta_{i i_{2} \ldots i_{m}}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1}}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right|, \quad \forall i \in N_{1}, \tag{13}
\end{equation*}
$$

and a strict inequality holds for at least one $i \in N_{1}$, then \mathcal{A} is an \mathcal{H}-tensor.

$$
\begin{aligned}
& \left|b_{i i \cdots i}\right|-R_{i}(\mathcal{B})=\left|a_{i i \cdots i}\right|\left(\varepsilon+t_{i}\right)-\sum_{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}} \\
& -\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1} \\
\delta_{i i_{2} \cdots} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|\left(\varepsilon+t_{i_{2}}\right)^{\frac{1}{m-1}} \cdots\left(\varepsilon+t_{i_{m}}\right)^{\frac{1}{m-1}} \\
& \geq\left|a_{i i \cdots i}\right|\left(\varepsilon+t_{i}\right)-r \sum_{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| \\
& -\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1} \\
\delta_{i i_{2} \cdots i_{m}}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|\left(\varepsilon+\max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\right) \\
& =\varepsilon\left(\left|a_{i i \cdots i}\right|-\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1} \\
\delta_{i i_{2} \cdots} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|\right)+R_{i}(\mathcal{A}) \\
& -r \sum_{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|-\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1} \\
\delta_{i i_{2} \cdots} \cdots i_{m}=0}} \max _{j \in\left\{i_{2} \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right|
\end{aligned}
$$

Proof Let the matrix $X=\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where

$$
x_{i}= \begin{cases}\left(s_{i}\right)^{\frac{1}{m-1}}, & i \in N_{1}, \\ \left(t_{i}\right)^{\frac{1}{m-1}}, & i \in N_{2} .\end{cases}
$$

By the irreducibility of \mathcal{A}, we have $x_{i} \neq+\infty$, then X is a diagonal matrix with positive diagonal entries. Let $\mathcal{B}=\left[b_{i_{1} \cdots i_{m}}\right]=\mathcal{A} X^{m-1}$.

Adopting the same procedure as in the proof of Theorem 3, we can obtain $\left|b_{i i \cdots i}\right| \geq R_{i}(\mathcal{B})$ $(\forall i \in N)$, and there exists at least an $i_{0} \in N_{1}$ such that $\left|b_{i_{0} i_{0} \cdots i_{0}}\right|>R_{i_{0}}(\mathcal{B})$.

On the other hand, since \mathcal{A} is irreducible and so is \mathcal{B}. Then by Lemma 3, we see that \mathcal{B} is an \mathcal{H}-tensor. By Lemma $2, \mathcal{A}$ is an \mathcal{H}-tensor. The proof is completed.

Let

$$
\begin{aligned}
& J_{1}=\left\{i \in N_{1}:\left|a_{i i \cdots i}\right| s_{i}>r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\
\delta_{i_{2}} \ldots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1}}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right|\right\}, \\
& J_{2}=\left\{i \in N_{2}:\left|a_{i i \cdots i}\right| t_{i}>r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1}}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1} \\
\delta_{i i_{2} \ldots i_{m}}^{m}=0}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m} \mid}\right|\right\} .
\end{aligned}
$$

Theorem 5 Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ be an order m dimension n complex tensor. If

$$
\begin{equation*}
\left|a_{i i \cdots i}\right| s_{i} \geq r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\ \delta_{i i_{2} \ldots i_{m}}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N_{2}^{m-1}}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right| \tag{14}
\end{equation*}
$$

$J_{1} \cup J_{2} \neq \emptyset$, and for $\forall i \in\left(N_{1} \backslash J_{1}\right) \cup\left(N_{2} \backslash J_{2}\right)$, there exists a nonzero elements chain from i to j such that $j \in J_{1} \cup J_{2}$, then \mathcal{A} is an \mathcal{H}-tensor.

Proof Let the matrix $X=\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where

$$
x_{i}= \begin{cases}\left(s_{i}\right)^{\frac{1}{m-1}}, & i \in N_{1}, \\ \left(t_{i}\right)^{\frac{1}{m-1}}, & i \in N_{2} .\end{cases}
$$

Obviously $x_{i} \neq+\infty$, then X is a diagonal matrix with positive diagonal entries. Let $\mathcal{B}=$ $\left[b_{i_{1} \cdots i_{m}}\right]=\mathcal{A} X^{m-1}$. Similarly as in the proof of Theorem 3, we can obtain $\left|b_{i i \cdots i}\right| \geq R_{i}(\mathcal{B})$ $(\forall i \in N)$. From $J_{1} \cup J_{2} \neq \emptyset$, there exists at least an $i_{0} \in N$ such that $\left|b_{i_{0} i_{0} \cdots i_{0}}\right|>R_{i_{0}}(\mathcal{B})$.

On the other hand, if $\left|b_{i i \cdots i}\right|=R_{i}(\mathcal{B})$, then $i \in\left(N_{1} \backslash J_{1}\right) \cup\left(N_{2} \backslash J_{2}\right)$, by the assumption, we know that there exists a nonzero elements chain from i to j of \mathcal{A} such that $j \in J_{1} \cup J_{2}$. Then there exists a nonzero elements chain from i to j of \mathcal{B} with j satisfying $\left|b_{j j \ldots j}\right|>R_{j}(\mathcal{B})$.

Based on above analysis, we conclude that the tensor \mathcal{B} satisfies the conditions of Lemma 4 , so \mathcal{B} is an \mathcal{H}-tensor. By Lemma $2, \mathcal{A}$ is an \mathcal{H}-tensor. The proof is completed.

Theorem 6 Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ be a complex tensor of order m dimension n. If

$$
\begin{equation*}
\left|a_{i i \cdots i}\right| s_{i}>r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\ \delta_{i i_{2} \cdots i_{m}}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|, \quad \forall i \in N_{1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|=0, \quad \forall i \in N_{2}, \tag{16}
\end{equation*}
$$

then \mathcal{A} is an \mathcal{H}-tensor.

Proof By inequality (15), for each $i \in N_{1}$, there exists a positive number $K_{i}>1$, such that

$$
\begin{equation*}
\left|a_{i i \cdots i}\right| s_{i}>r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\ \delta_{i i_{2} \ldots} \ldots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|+\frac{1}{K_{i}}\left(\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right|\right) . \tag{17}
\end{equation*}
$$

Let $K \equiv \max _{i \in N_{1}}\left\{K_{i}\right\}$. By inequality (17), we obtain

$$
\begin{align*}
& \left|a_{i i \cdots i}\right| s_{i}>r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\
\delta_{i i_{2} \ldots}^{m}}}\left|a_{i i_{2} \cdots i_{m}}\right|+\frac{1}{K}\left(\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right|\right), \\
& \quad \forall i \in N_{1} . \tag{18}
\end{align*}
$$

Since $\left|a_{i i \cdots i}\right| \leq R_{i}(\mathcal{A})\left(i \in N_{1}\right)$ and inequality (15), so

$$
\begin{equation*}
\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|>0, \quad \forall i \in N_{1} . \tag{19}
\end{equation*}
$$

For any $i \in N_{1}$, denote

$$
T_{i}=\frac{\left|a_{i i \cdots i}\right| s_{i}-r \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{2}^{m-1} \\ \delta_{i i_{2} \ldots i_{m}}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|-\frac{1}{K}\left(\sum_{i_{2} \cdots i_{m} \in N_{2}^{m-1}} \max _{j \in\left\{i_{2}, \ldots, i_{m}\right\}}\left\{t_{j}\right\}\left|a_{i i_{2} \cdots i_{m}}\right|\right)}{\sum_{i_{2} i_{3} \cdots i_{m} \in N_{2}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|} .
$$

From inequalities (18) and (19), we have $T_{i}>0$. Therefore there exists a positive number $\varepsilon>0$ such that

$$
0<\varepsilon<\min \left\{\min _{i \in N_{1}} T_{i}, 1-\max _{i \in N_{2}} \frac{t_{i}}{K}\right\} .
$$

Let the matrix $X=\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where

$$
x_{i}= \begin{cases}\left(s_{i}\right)^{\frac{1}{m-1}}, & i \in N_{1}, \\ \left(\varepsilon+\frac{t_{i}}{K}\right)^{\frac{1}{m-1}}, & i \in N_{2} .\end{cases}
$$

Mark $\mathcal{B}=\mathcal{A} X^{m-1}$. Similarly as in the proof of Theorem 3, we can prove that \mathcal{B} is strictly diagonally dominant. By Lemma 1 and Lemma $2, \mathcal{A}$ is an \mathcal{H}-tensor. The proof is completed.

There is no inclusion relation between the conditions of Theorem 3 and the conditions of Theorem 6. This can be seen from the following examples.

Example 1 Consider a tensor $\mathcal{A}=\left(a_{i j k}\right)$ of order 3 dimension 3 defined as follows:

$$
\begin{aligned}
& \mathcal{A}=[A(1,:,:), A(2,:,:), A(3,:,:)], \\
& A(1,:,::)=\left(\begin{array}{ccc}
15 & 1 & 0 \\
1 & 10 & 0 \\
1 & 1 & 10
\end{array}\right), \quad A(2,:,:)=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 12 & 0 \\
1 & 0 & 1
\end{array}\right), \\
& A(3,:,:)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 15
\end{array}\right) .
\end{aligned}
$$

Obviously,

$$
\begin{array}{lll}
\left|a_{111}\right|=15, & R_{1}(\mathcal{A})=24, & \left|a_{222}\right|=12, \\
R_{2}(\mathcal{A})=4, & \left|a_{333}\right|=15, & R_{3}(\mathcal{A})=5,
\end{array}
$$

so $N_{1}=\{1\}, N_{2}=\{2,3\}$. By calculation, we have

$$
s_{1}=\frac{\left|a_{111}\right|}{R_{1}(\mathcal{A})}=\frac{15}{24}, \quad t_{2}=\frac{R_{2}(\mathcal{A})}{\left|a_{222}\right|}=\frac{1}{3}, \quad t_{3}=\frac{R_{3}(\mathcal{A})}{\left|a_{333}\right|}=\frac{1}{3}, \quad r=\frac{15}{24} .
$$

Since

$$
\begin{aligned}
r \sum_{\substack{j k \in N^{2} \backslash N_{2}^{2} \\
\delta_{1 j k}=0}}\left|a_{1 j k}\right|+\sum_{j k \in N_{2}^{2}} \max _{l \in\{j, k\}}\left\{t_{l}\right\}\left|a_{1 j k}\right| & =\frac{15}{24}(1+0+1+1)+\frac{1}{3}(0+1+10+10) \\
& =\frac{213}{24}<\frac{225}{24}=\left|a_{111}\right| s_{1}
\end{aligned}
$$

we know that \mathcal{A} satisfies the conditions of Theorem 3, then \mathcal{A} is an \mathcal{H}-tensor. But

$$
\sum_{j k \in N^{2} \backslash N_{2}^{2}}\left|a_{2 j k}\right|=3 \neq 0, \quad \sum_{j k \in N^{2} \backslash N_{2}^{2}}\left|a_{3 j k}\right|=2 \neq 0 .
$$

so \mathcal{A} does not satisfy the conditions of Theorem 6.

Example 2 Consider a tensor $\mathcal{A}=\left(a_{i j k}\right)$ of order 3 dimension 3 defined as follows:

$$
\begin{aligned}
& \mathcal{A}=[A(1,:,:), A(2,:,:), A(3,:,:)], \\
& A(1,:,:)=\left(\begin{array}{ccc}
8 & 1 & 0 \\
1 & 10 & 0 \\
1 & 1 & 10
\end{array}\right), \quad A(2,:,:)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 8 & 2 \\
0 & 1 & 1
\end{array}\right), \\
& A(3,:,:)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2.5 & 1.5 \\
0 & 1 & 10
\end{array}\right) .
\end{aligned}
$$

Obviously,

$$
\begin{array}{lll}
\left|a_{111}\right|=8, & R_{1}(\mathcal{A})=24, & \left|a_{222}\right|=8 \\
R_{2}(\mathcal{A})=4, & \left|a_{333}\right|=10, & R_{3}(\mathcal{A})=5,
\end{array}
$$

so $N_{1}=\{1\}, N_{2}=\{2,3\}$. By calculation, we have

$$
s_{1}=\frac{\left|a_{111}\right|}{R_{1}(\mathcal{A})}=\frac{1}{3}, \quad t_{2}=\frac{R_{2}(\mathcal{A})}{\left|a_{222}\right|}=\frac{1}{2}, \quad t_{3}=\frac{R_{3}(\mathcal{A})}{\left|a_{333}\right|}=\frac{1}{2}, \quad r=\frac{1}{2} .
$$

Since

$$
r \sum_{\substack{j k \in N^{2} \backslash N_{2}^{2} \\ \delta_{1 j k}=0}}\left|a_{1 j k}\right|=\frac{1}{2}(1+0+1+1)=\frac{3}{2}<\frac{8}{3}=\left|a_{111}\right| s_{1}
$$

and

$$
\sum_{j k \in N^{2} \backslash N_{2}^{2}}\left|a_{2 j k}\right|=0, \quad \sum_{j k \in N^{2} \backslash N_{2}^{2}}\left|a_{3 j k}\right|=0,
$$

we see that \mathcal{A} satisfies the conditions of Theorem 6 , then \mathcal{A} is an \mathcal{H}-tensor. But

$$
\begin{aligned}
r \sum_{\substack{j k \in N^{2} \backslash N_{2}^{2} \\
\delta_{1 j k}=0}}\left|a_{1 j k}\right|+\sum_{j k \in N_{2}^{2}} \max _{l \in j, k\}}\left\{t_{l}\right\}\left|a_{1 j k}\right| & =\frac{1}{2}(1+0+1+1)+\frac{1}{2}(0+1+10+10) \\
& =12>\frac{8}{3}=\left|a_{111}\right| s_{1},
\end{aligned}
$$

so \mathcal{A} does not satisfy the conditions of Theorem 3 .

3 An application

In this section, based on the criteria for \mathcal{H}-tensors in Section 2, we present some criteria for identifying the positive definiteness of an even-order real symmetric tensor (the positive definiteness of a multivariate form).
From Theorems 2-6, we obtain easily the following result.

Theorem 7 Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ be an even-order real symmetric tensor of order m dimension n with $a_{k k \cdots k}>0$ for all $k \in N$. If \mathcal{A} satisfies one of the following conditions, then \mathcal{A} is positive definite:
(i) all the conditions of Theorem 3;
(ii) all the conditions of Theorem 4;
(iii) all the conditions of Theorem 5;
(iv) all the conditions of Theorem 6.

Example 3 Let $f(x)=\mathcal{A} x^{4}=11 x_{1}^{4}+18 x_{2}^{4}+18 x_{3}^{4}+12 x_{4}^{4}+12 x_{1}^{2} x_{2} x_{3}-24 x_{1} x_{2} x_{3} x_{4}$ be a 4 thdegree homogeneous polynomial. We can get an order 4 dimension 4 real symmetric tensor $\mathcal{A}=\left(a_{i_{1} i_{2} i_{3} i_{4}}\right)$, where

$$
a_{1111}=11, \quad a_{2222}=18, \quad a_{3333}=18, \quad a_{4444}=12
$$

$$
\begin{aligned}
& a_{1123}=a_{1132}=a_{1213}=a_{1312}=a_{1231}=a_{1321}=1 \\
& a_{2113}=a_{2131}=a_{2311}=a_{3112}=a_{3121}=a_{3211}=1 \\
& a_{1234}=a_{1243}=a_{1324}=a_{1342}=a_{1423}=a_{1432}=-1 \\
& a_{2134}=a_{2143}=a_{2314}=a_{2341}=a_{2413}=a_{2431}=-1 \\
& a_{3124}=a_{3142}=a_{3214}=a_{3241}=a_{3412}=a_{3421}=-1 \\
& a_{4123}=a_{4132}=a_{4213}=a_{4231}=a_{4312}=a_{4321}=-1
\end{aligned}
$$

and other $a_{i_{1} i_{2} i_{3} i_{4}}=0$. It can be verified that \mathcal{A} satisfies all the conditions of Theorem 3. Thus, from Theorem 7, we see that \mathcal{A} is positive definite, that is, $f(x)$ is positive definite.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The two authors contributed equally to this work. Both authors read and approved the final manuscript.

Acknowledgements

The authors are very indebted to the referees for their valuable comments and corrections, which improved the original manuscript of this paper. This work was supported by the National Natural Science Foundation of China (11361074), the Foundation of Science and Technology Department of Guizhou Province ([2015]2073, [2015]7206), the Natural Science Programs of Education Department of Guizhou Province ([2015]420), and the Research Foundation of Guizhou Minzu University (15XRY004).

Received: 25 March 2015 Accepted: 10 March 2016 Published online: 24 March 2016

References

1. Qi, LQ: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302-1324 (2005)
2. Lim, LH: Singular values and eigenvalues of tensors: a variational approach. In: CAMSAP '05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 129-132 (2005)
3. Li, CQ, Qi, LQ, Li, YT: MB-Tensors and $M B_{0}$-tensors. Linear Algebra Appl. 484, 141-153 (2015)
4. Yang, YN, Yang, QZ: Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517-2530 (2010)
5. Qi, LQ, Wang, YJ, Wu, EX: D-Eigenvalues of diffusion kurtosis tensors. J. Comput. Appl. Math. 221, 150-157 (2008)
6. Cartwright, D, Sturmfels, B: The number of eigenvalues of a tensor. Linear Algebra Appl. 438, 942-952 (2013)
7. Kolda, TG, Mayo, JR: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095-1124 (2011)
8. Ding, WY, Qi, LQ, Wei, YM: M-Tensors and nonsingular M-tensors. Linear Algebra Appl. 439, 3264-3278 (2013)
9. Li, CQ, Wang, F, Zhao, JX, Zhu, Y, Li, YT: Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math. 255, 1-14 (2014)
10. Kannana, MR, Mondererb, NS, Bermana, A: Some properties of strong \mathcal{H}-tensors and general \mathcal{H}-tensors. Linear Algebra Appl. 476, 42-55 (2015)
11. Chang, KC, Pearson, K, Zhang, T: Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507-520 (2008)
12. Zhang, LP, Qi, LQ, Zhou, GL: M-Tensors and some applications. SIAM J. Matrix Anal. Appl. 35, 437-542 (2014)
13. Wang, F, Qi, LQ: Comments on explicit criterion for the positive definiteness of a general quartic form. IEEE Trans. Autom. Control 50, 416-418 (2005)
14. Reznick, B: Some concrete aspects of Hilbert's 17th problem. In: Real Algebraic Geometry and Ordered Structures. Contemp. Math., vol. 253, pp. 251-272. Am. Math. Soc., Providence (2000)
15. Qi, LQ, Yu, GH, Wu, EX: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416-433 (2010)
16. Qi, LQ, Yu, GH, Xu, Y: Nonnegative diffusion orientation distribution function. J. Math. Imaging Vis. 45, 103-113 (2013)
17. Hu, SL, Qi, LQ, Shao, JY: Cored hypergraphs, power hypergraphs and their Laplacian eigenvalues. Linear Algebra Appl. 439, 2980-2998 (2013)
18. Li, GY, Qi, LQ, Yu, GH: The Z-eigenvalues of a symmetric tensor and its application to spectral hyper graph theory. Numer. Linear Algebra Appl. 20, 1001-1029 (2013)
