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1 Introduction
Let C(R) be the complex (real) field and N = {, , . . . , n}. We call A = (aii···im ) a complex
(real) order m dimension n tensor, if

aii···im ∈C(R),

where ij = , . . . , n for j = , . . . , m [, ]. A tensor A = (aii···im ) is called symmetric [], if

aii···im = aπ (ii···im), ∀π ∈ �m,

where �m is the permutation group of m indices. Furthermore, an order m dimension n
tensor I = (δii···im ) is called the unit tensor [], if its entries

δii···im =

{
, if i = · · · = im,
, otherwise.

LetA = (aii···im ) be an order m dimension n complex tensor. If there exist a complex num-
ber λ and a nonzero complex vector x = (x, x, . . . , xn)T that are solutions of the following
homogeneous polynomial equations:

Axm– = λx[m–],

then we call λ an eigenvalue of A and x the eigenvector of A associated with λ [–],
Axm–, and λx[m–] are vectors, whose ith components are

(
Axm–)

i =
∑

i,...,im∈N

aii···im xi · · ·xim
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and

(
x[m–])

i = xm–
i ,

respectively. If the eigenvalue λ and the eigenvector x are real, then λ is called an
H-eigenvalue of A and x is its corresponding H-eigenvector [].

Throughout this paper, we will use the following definitions.

Definition  [] Let A = (aii···im ) be a tensor of order m dimension n. A is called a diag-
onally dominant tensor if

|aii···i| ≥
∑

i,...,im∈N
δii...im =

|aii···im |, ∀i ∈ N . ()

If all inequalities in () hold, then we call A a strictly diagonally dominant tensor.

Definition  [] Let A = (ai···im ) be an order m dimension n complex tensor. A is called
an H-tensor if there is a positive vector x = (x, x, . . . , xn)T ∈R

n such that

|aii···i|xm–
i >

∑
i,...,im∈N
δii ···im =

|aii···im |xi · · ·xim , i = , , . . . , n.

Definition  [] Let A = (aii···im ) be a tensor of order m dimension n, X = diag(x, x,
. . . , xn). Denote

B = (bi···im ) = AXm–, bii···im = aii···im xi xi · · ·xim , ij ∈ N , j ∈ N ,

we call B the product of the tensor A and the matrix X.

Definition  [] A complex tensor A = (ai···im ) of order m dimension n is called re-
ducible, if there exists a nonempty proper index subset I ⊂ N such that

aii···im = , ∀i ∈ I,∀i, . . . , im /∈ I.

If A is not reducible, then we call A irreducible.

Definition  LetA = (ai···im ) be an order m dimension n complex tensor, for i, j ∈ N (i �= j),
if there exist indices k, k, . . . , kr with

∑
i,...,im∈N
δksi ···im =

ks+∈{i,...,im}

|aksi···im | �= , s = , , . . . , r,

where k = i, kr+ = j, we call there is a nonzero elements chain from i to j.

For an mth-degree homogeneous polynomial of n variables f (x) can be denoted

f (x) =
∑

i,i,...,im∈N

aii···im xi xi · · ·xim , ()
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where x = (x, x, . . . , xn) ∈ R
n. The homogeneous polynomial f (x) in () is equivalent to

the tensor product of an order m dimensional n symmetric tensor A and xm defined by

f (x) ≡Axm =
∑

i,i,...,im∈N

aii···im xi xi · · ·xim , ()

where x = (x, x, . . . , xn) ∈ Rn [].
The positive definiteness of homogeneous polynomials have applications in automatic

control [, ], polynomial problems [], magnetic resonance imaging [, ], and spec-
tral hypergraph theory [, ]. However, for n >  and m > , it is a hard problem to iden-
tify the positive definiteness of such a multivariate form. For solving this problem, Qi []
pointed out that f (x) defined by () is positive definite if and only if the real symmetric
tensor A is positive definite, and Qi provided an eigenvalue method to verify the positive
definiteness of A when m is even (see Theorem ).

Theorem  [] Let A be an even-order real symmetric tensor, then A is positive definite if
and only if all of its H-eigenvalues are positive.

Although from Theorem  we can verify the positive definiteness of an even-order
symmetric tensor A (the positive definiteness of the mth-degree homogeneous poly-
nomial f (x)) by computing the H-eigenvalues of A, it is difficult to compute all these
H-eigenvalues when m and n are large. Recently, by introducing the definition ofH-tensor,
Li et al. [] provided a practical sufficient condition for identifying the positive definiteness
of an even-order symmetric tensor (see Theorem ).

Theorem  [] Let A = (aii···im ) be an even-order real symmetric tensor of order m di-
mension n with ak···k >  for all k ∈ N . If A is an H-tensor, then A is positive definite.

Theorem  provides a method for identifying the positive definiteness of an even-order
symmetric tensor by determining H-tensors. Thus the identification of H-tensors is use-
ful in checking the positive definiteness of homogeneous polynomials. In this paper, some
new criteria for identifying H-tensors are presented, which is easy to calculate since it only
depends on the entries of tensors. As an application of these criteria, some sufficient con-
ditions of the positive definiteness for an even-order real symmetric tensor are obtained.
Numerical examples are also given to verify the corresponding results.

2 Main results
In this section, we give some new criteria for H-tensors. First of all, we give some notation
and lemmas.

Let S be a nonempty subset of N and let N \ S be the complement of S in N . Given an
order m dimension n complex tensor A = (aii···im ), we denote

Ri(A) =
∑

i,...,im∈N
δii...im =

|aii···im | =
∑

i,...,im∈N

|aii···im | – |aii···i|,

N =
{

i ∈ N :  < |aii···i| ≤ Ri(A)
}

, N =
{

i ∈ N : |aii···i| > Ri(A)
}

,

si =
|aii···i|
Ri(A)

, ti =
Ri(A)
|aii···i| , r = max

{
max
i∈N

si, max
i∈N

ti

}
,
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Sm– = {ii · · · im : ij ∈ S, j = , , . . . , m},
Nm– \ Sm– =

{
ii · · · im : ii · · · im ∈ Nm– and ii · · · im /∈ Sm–}.

It is obvious that if N = ∅, then A is an H-tensor. It is known that, for an H-tensor A,
N �= ∅ []. So we always assume that both N and N are not empty. Otherwise, we assume
that A satisfies: aii···i �= , Ri(A) �= , ∀i ∈ N .

Lemma  [] If A is a strictly diagonally dominant tensor, then A is an H-tensor.

Lemma  [] Let A = (ai···im ) be a complex tensor of order m dimension n. If there exists
a positive diagonal matrix X such that AXm– is an H-tensor, then A is an H-tensor.

Lemma  [] Let A = (ai···im ) be a complex tensor of order m dimension n. If A is irre-
ducible,

|ai···i| ≥ Ri(A), ∀i ∈ N ,

and strictly inequality holds for at least one i, then A is an H-tensor.

Lemma  Let A = (ai···im ) be an order m dimension n complex tensor. If
(i) |aii···i| ≥ Ri(A), ∀i ∈ N ,

(ii) J(A) = {i ∈ N : |aii···i| > Ri(A)} �= ∅,
(iii) for any i /∈ J(A), there exists a nonzero elements chain from i to j, such that j ∈ J(A),

then A is an H-tensor.

Proof It is evident that the result holds with J(A) = N . Next, we assume that J(A) �= N .
Suppose J(A) = {k + , . . . , n}, N \ J(A) = {, . . . , k},  ≤ k < n. By hypothesis,

|akk···k| = Rk(A).

By the condition (iii), there exist indices k, k, . . . , kr such that

∑
i,...,im∈N
δksi ···im =

ks+∈{i,...,im}

|aksi···im | �= , s = , , . . . , r,

where k = k, kr+ = j, j ∈ J(A). Then

∑
i,...,im∈N
δkr i ···im =
j∈{i,...,im}

|akri···im | �= .

Further, without loss of generality, we assume that k, . . . , kr /∈ J(A), that is,  ≤ k, . . . , kr < k.
From j ∈ J(A), we have |ajj···j| > Rj(A), so there exists  < ε <  such that ε|ajj···j| > Rj(A).

Construct a positive diagonal matrix Xkr = diag(x, . . . , xn), where

xi =

{
ε


m– , i = j,

, i �= j.
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Let Akr = [a(kr)
ii···im ] = AXm–

kr
. Then

∣∣a(kr)
ii···i

∣∣ = |aii···i| = Ri(A) ≥ Ri(Akr ),  ≤ i ≤ k, i �= kr ,∣∣a(kr)
krkr ···kr

∣∣ = |akrkr ···kr | = Rkr (A) > Rkr (Akr ),∣∣a(kr)
ii···i

∣∣ = |aii···i| > Ri(A) ≥ Rkr (Akr ), i ∈ J(A), i �= j,∣∣a(kr)
jj···j

∣∣ = ε|ajj···j| > Rj(A) ≥ Rkr (Akr ).

Obviously, Akr is also a diagonally dominant tensor, and J(Akr ) = J(A) ∪ {kr}.
If J(Akr ) = N , then Akr is strictly diagonally dominant. By Lemma , A is an H-tensor.
If N \ J(Akr ) �= ∅, then Akr also satisfies the conditions of the lemma, that is, for any

i ∈ N \ J(Akr ), there exist indices l, l, . . . , ls, such that

∑
i,...,im∈N ,
δlt i ···im =,

lt+∈{i,...,im}

|alt i···im | �= , t = , , . . . , s,

where l = i, ls+ = j, j ∈ J(Akr ). Then

∑
i,...,im∈N ,
δlsi ···im =,
j∈{i,...,im}

|alsi···im | �= .

Similar to the above argument, for Akr , there exists a positive diagonal matrix Xls such
that Als = Akr Xm–

ls is diagonally dominant, and J(Als ) = J(Akr ) ∪ {ls}.
If J(Als ) = N , then Als is strictly diagonally dominant. By Lemma , A is an H-tensor.
If N \ J(Als ) �= ∅, then Als also satisfies the conditions of the lemma. Similarly as the

above argument, for Als , there exist at most k positive diagonal matrices Xkr , Xls , . . . , Xpq

such that B is strictly diagonally dominant, where B = A(Xkr Xls · · ·Xpq )m–. Hence, B is an
H-tensor, and by Lemma , A is an H-tensor. The proof is completed. �

Theorem  Let A = (ai···im ) be an order m dimension n complex tensor. If

|aii···i|si > r
∑

i···im∈Nm–\Nm–


δii...im =

|aii···im | +
∑

i···im∈Nm–


max
j∈{i,...,im}

{tj}|aii···im |, ∀i ∈ N, ()

then A is an H-tensor.

Proof Let

Mi =

|aii···i|si – r
∑

i···im∈Nm–\Nm–


δii...im =
|aii···im | –

∑
i···im∈Nm–


maxj∈{i,...,im}{tj}|aii···im |

∑
i···im∈Nm–


|aii···im | ,

∀i ∈ N. ()
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If
∑

ii···im∈Nm–


|aii···im | = , we denote Mi = +∞. From inequality (), we obtain Mi > 
(i ∈ N). Hence, there exists a positive number ε >  such that

 < ε < min
{

min
i∈N

Mi,  – max
i∈N

ti

}
. ()

Let the matrix X = diag(x, x, . . . , xn), where

xi =

{
(si)


m– , i ∈ N,

(ε + ti)


m– , i ∈ N.

By inequality (), we have (ε + ti)


m– <  (i ∈ N). As ε �= +∞, so xi �= +∞, which implies
that X is a diagonal matrix with positive entries. Let B = (bii···im ) = AXm–. Next, we will
prove that B is strictly diagonally dominant.

For all i ∈ N, if
∑

ii···im∈Nm–


|aii···im | = , then by inequality (), we have

Ri(B) =
∑

i···im∈Nm–\Nm–


δii ···im =

|bii···im | +
∑

i···im∈Nm–


|bii···im |

=
∑

i···im∈Nm–\Nm–


δii ···im =

|aii···im |xi · · ·xim +
∑

i···im∈Nm–


|aii···im |xi · · ·xim

≤ r
∑

i···im∈Nm–\Nm–


δii ···im =

|aii···im | < |aii···i|si = |bii···i|. ()

If
∑

ii···im∈Nm–


|aii···im | �= , then by inequalities () and (), we obtain

Ri(B) =
∑

i···im∈Nm–\Nm–


δii ···im =

|aii···im |xi · · ·xim +
∑

i···im∈Nm–


|aii···im |xi · · ·xim

=
∑

i···im∈Nm–\Nm–


δii ···im =

|aii···im |xi · · ·xim

+
∑

i···im∈Nm–


|aii···im |(ε + ti )


m– · · · (ε + tim )


m–

≤ r
∑

i···im∈Nm–\Nm–


δii ···im =

|aii···im | +
∑

i···im∈Nm–


|aii···im |
(
ε + max

j∈{i,...,im}
{tj}

)

= r
∑

i···im∈Nm–\Nm–


δii ···im =

|aii···im | +
∑

i···im∈Nm–


max
j∈{i,...,im}

{tj}|aii···im |

+ ε
∑

i···im∈Nm–


|aii···im |

< |aii···i|si = |bii···i|. ()
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Now, we consider i ∈ N. Since |aii···i| > Ri(A), we have

|aii···i| –
∑

ii···im∈Nm–


δii ···im =

|aii···im | >  ()

and

r
∑

i···im∈Nm–\Nm–


|aii···im | +
∑

i···im∈Nm–


δii ···im =

max
j∈{i,...,im}

{tj}|aii···im | – Ri(A) ≤ . ()

By inequalities (), (), and ε > , we get

ε >

r
∑

i···im∈Nm–\Nm–


|aii···im | +
∑

i···im∈Nm–


δii ···im =
maxj∈{i,...,im}{tj}|aii···im | – Ri(A)

|aii···i| –
∑

i···im∈Nm–


δii ···im =
|aii···im | . ()

From inequality (), for any i ∈ N, we obtain

|bii···i| – Ri(B) = |aii···i|(ε + ti) –
∑

i···im∈Nm–\Nm–


|aii···im |xi · · ·xim

–
∑

i···im∈Nm–


δii ···im =

|aii···im |(ε + ti )


m– · · · (ε + tim )


m–

≥ |aii···i|(ε + ti) – r
∑

i···im∈Nm–\Nm–


|aii···im |

–
∑

i···im∈Nm–


δii ···im =

|aii···im |
(
ε + max

j∈{i,...,im}
{tj}

)

= ε

(
|aii···i| –

∑
i···im∈Nm–


δii ···im =

|aii···im |
)

+ Ri(A)

– r
∑

i···im∈Nm–\Nm–


|aii···im | –
∑

i···im∈Nm–


δii ···im =

max
j∈{i,...,im}

{tj}|aii···im |

> . ()

Therefore, from inequalities (), (), and (), we obtain |bii···i| > Ri(B) for all i ∈ N , that is,
B is strictly diagonally dominant. By Lemma  and Lemma , A is an H-tensor. The proof
is completed. �

Theorem  Let A = (ai···im ) be an order m dimension n complex tensor. If A is irreducible
and

|aii···i|si ≥ r
∑

i···im∈Nm–\Nm–


δii...im =

|aii···im | +
∑

i···im∈Nm–


max
j∈{i,...,im}

{tj}|aii···im |, ∀i ∈ N, ()

and a strict inequality holds for at least one i ∈ N, then A is an H-tensor.
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Proof Let the matrix X = diag(x, x, . . . , xn), where

xi =

{
(si)


m– , i ∈ N,

(ti)


m– , i ∈ N.

By the irreducibility of A, we have xi �= +∞, then X is a diagonal matrix with positive
diagonal entries. Let B = [bi···im ] = AXm–.

Adopting the same procedure as in the proof of Theorem , we can obtain |bii···i| ≥ Ri(B)
(∀i ∈ N ), and there exists at least an i ∈ N such that |bii···i | > Ri (B).

On the other hand, since A is irreducible and so is B. Then by Lemma , we see that B
is an H-tensor. By Lemma , A is an H-tensor. The proof is completed. �

Let

J =
{

i ∈ N : |aii···i|si > r
∑

i···im∈Nm–\Nm–


δii...im =

|aii···im | +
∑

i···im∈Nm–


max
j∈{i,...,im}

{tj}|aii···im |
}

,

J =
{

i ∈ N : |aii···i|ti > r
∑

i···im∈Nm–\Nm–


|aii···im | +
∑

i···im∈Nm–


δii...im =

max
j∈{i,...,im}

{tj}|aii···im |
}

.

Theorem  Let A = (ai···im ) be an order m dimension n complex tensor. If

|aii···i|si ≥ r
∑

i···im∈Nm–\Nm–


δii...im =

|aii···im | +
∑

i···im∈Nm–


max
j∈{i,...,im}

{tj}|aii···im |, ()

J ∪ J �= ∅, and for ∀i ∈ (N \ J) ∪ (N \ J), there exists a nonzero elements chain from i to
j such that j ∈ J ∪ J, then A is an H-tensor.

Proof Let the matrix X = diag(x, x, . . . , xn), where

xi =

{
(si)


m– , i ∈ N,

(ti)


m– , i ∈ N.

Obviously xi �= +∞, then X is a diagonal matrix with positive diagonal entries. Let B =
[bi···im ] = AXm–. Similarly as in the proof of Theorem , we can obtain |bii···i| ≥ Ri(B)
(∀i ∈ N ). From J ∪ J �= ∅, there exists at least an i ∈ N such that |bii···i | > Ri (B).

On the other hand, if |bii···i| = Ri(B), then i ∈ (N \ J) ∪ (N \ J), by the assumption, we
know that there exists a nonzero elements chain from i to j of A such that j ∈ J ∪ J. Then
there exists a nonzero elements chain from i to j of B with j satisfying |bjj···j| > Rj(B).

Based on above analysis, we conclude that the tensor B satisfies the conditions of
Lemma , so B is an H-tensor. By Lemma , A is an H-tensor. The proof is completed.

�

Theorem  Let A = (aii···im ) be a complex tensor of order m dimension n. If

|aii···i|si > r
∑

i···im∈Nm–\Nm–


δii...im =

|aii···im |, ∀i ∈ N ()
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and

∑
i···im∈Nm–\Nm–



|aii···im | = , ∀i ∈ N, ()

then A is an H-tensor.

Proof By inequality (), for each i ∈ N, there exists a positive number Ki > , such that

|aii···i|si > r
∑

i···im∈Nm–\Nm–


δii...im =

|aii···im | +


Ki

( ∑
i···im∈Nm–



max
j∈{i,...,im}

{tj}|aii···im |
)

. ()

Let K ≡ maxi∈N{Ki}. By inequality (), we obtain

|aii···i|si > r
∑

i···im∈Nm–\Nm–


δii...im =

|aii···im | +

K

( ∑
i···im∈Nm–



max
j∈{i,...,im}

{tj}|aii···im |
)

,

∀i ∈ N. ()

Since |aii···i| ≤ Ri(A) (i ∈ N) and inequality (), so

∑
i···im∈Nm–



|aii···im | > , ∀i ∈ N. ()

For any i ∈ N, denote

Ti =

|aii···i|si – r
∑

i···im∈Nm–\Nm–


δii...im =
|aii···im | – 

K (
∑

i···im∈Nm–


maxj∈{i,...,im}{tj}|aii···im |)
∑

ii···im∈Nm–


|aii···im | .

From inequalities () and (), we have Ti > . Therefore there exists a positive number
ε >  such that

 < ε < min

{
min
i∈N

Ti,  – max
i∈N

ti

K

}
.

Let the matrix X = diag(x, x, . . . , xn), where

xi =

{
(si)


m– , i ∈ N,

(ε + ti
K ) 

m– , i ∈ N.

Mark B = AXm–. Similarly as in the proof of Theorem , we can prove that B is strictly
diagonally dominant. By Lemma  and Lemma , A is an H-tensor. The proof is com-
pleted. �

There is no inclusion relation between the conditions of Theorem  and the conditions
of Theorem . This can be seen from the following examples.
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Example  Consider a tensor A = (aijk) of order  dimension  defined as follows:

A =
[
A(, :, :), A(, :, :), A(, :, :)

]
,

A(, :, :) =

⎛
⎜⎝

  
  
  

⎞
⎟⎠ , A(, :, :) =

⎛
⎜⎝

  
  
  

⎞
⎟⎠ ,

A(, :, :) =

⎛
⎜⎝

  
  
  

⎞
⎟⎠ .

Obviously,

|a| = , R(A) = , |a| = ,

R(A) = , |a| = , R(A) = ,

so N = {}, N = {, }. By calculation, we have

s =
|a|
R(A)

=



, t =
R(A)
|a| =




, t =
R(A)
|a| =




, r =



.

Since

r
∑

jk∈N\N


δjk =

|ajk| +
∑

jk∈N


max
l∈{j,k}

{tl}|ajk| =



( +  +  + ) +



( +  +  + )

=



<



= |a|s,

we know that A satisfies the conditions of Theorem , then A is an H-tensor. But

∑
jk∈N\N



|ajk| =  �= ,
∑

jk∈N\N


|ajk| =  �= .

so A does not satisfy the conditions of Theorem .

Example  Consider a tensor A = (aijk) of order  dimension  defined as follows:

A =
[
A(, :, :), A(, :, :), A(, :, :)

]
,

A(, :, :) =

⎛
⎜⎝

  
  
  

⎞
⎟⎠ , A(, :, :) =

⎛
⎜⎝

  
  
  

⎞
⎟⎠ ,

A(, :, :) =

⎛
⎜⎝

  
 . .
  

⎞
⎟⎠ .
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Obviously,

|a| = , R(A) = , |a| = ,

R(A) = , |a| = , R(A) = ,

so N = {}, N = {, }. By calculation, we have

s =
|a|
R(A)

=



, t =
R(A)
|a| =




, t =
R(A)
|a| =




, r =



.

Since

r
∑

jk∈N\N


δjk =

|ajk| =



( +  +  + ) =



<



= |a|s

and

∑
jk∈N\N



|ajk| = ,
∑

jk∈N\N


|ajk| = ,

we see that A satisfies the conditions of Theorem , then A is an H-tensor. But

r
∑

jk∈N\N


δjk =

|ajk| +
∑

jk∈N


max
l∈{j,k}

{tl}|ajk| =



( +  +  + ) +



( +  +  + )

=  >



= |a|s,

so A does not satisfy the conditions of Theorem .

3 An application
In this section, based on the criteria for H-tensors in Section , we present some crite-
ria for identifying the positive definiteness of an even-order real symmetric tensor (the
positive definiteness of a multivariate form).

From Theorems -, we obtain easily the following result.

Theorem  Let A = (ai···im ) be an even-order real symmetric tensor of order m dimension
n with akk···k >  for all k ∈ N . If A satisfies one of the following conditions, then A is positive
definite:

(i) all the conditions of Theorem ;
(ii) all the conditions of Theorem ;
(iii) all the conditions of Theorem ;
(iv) all the conditions of Theorem .

Example  Let f (x) = Ax = x
 + x

 + x
 + x

 + x
 xx – xxxx be a th-

degree homogeneous polynomial. We can get an order  dimension  real symmetric ten-
sor A = (aiiii ), where

a = , a = , a = , a = ,
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a = a = a = a = a = a = ,

a = a = a = a = a = a = ,

a = a = a = a = a = a = –,

a = a = a = a = a = a = –,

a = a = a = a = a = a = –,

a = a = a = a = a = a = –,

and other aiiii = . It can be verified that A satisfies all the conditions of Theorem .
Thus, from Theorem , we see that A is positive definite, that is, f (x) is positive definite.
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