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1 Introduction
Let C(R) be the complex (real) field and N = {1,2,...,n}. We call A = (a;;,...;,,) @ complex
(real) order m dimension # tensor, if

Aijiy iy € (C(R),
whereij=1,...,nforj=1,...,m[1, 2]. A tensor A = (4;;,...;,,) is called symmetric [3], if
Aigig-iyg = Ar(igin--im) Ve Hm,

where IT,, is the permutation group of m indices. Furthermore, an order m dimension #
tensor Z = (8;,4,...i,,) is called the unit tensor [4], if its entries

1, ifilz"':im7
ipioim = 0
»

)
otherwise.

Let A = (a4,/y..i,,) be an order m dimension n complex tensor. If there exist a complex num-
ber A and a nonzero complex vector x = (x1, %y, ... ,%,)T that are solutions of the following
homogeneous polynomial equations:

Axm—l _ )\x[m—l] ,

then we call A an eigenvalue of A and x the eigenvector of A associated with A [5-7],
Ax1, and Ax!""-1 are vectors, whose ith components are

(.Axm—l)i = Z Wiy iy Kiny * * * Kiyy

12,0l €N
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and

(), =,

respectively. If the eigenvalue A and the eigenvector x are real, then A is called an
H-eigenvalue of A and « is its corresponding H-eigenvector [1].
Throughout this paper, we will use the following definitions.

Definition1 [8] Let A = (a;;,..;,,) be a tensor of order m dimension 7. A is called a diag-
onally dominant tensor if

|aii...il > Z |@iiy...i, |,  Vi€N. 1)

12,0l €N
=0

iio.im

If all inequalities in (1) hold, then we call A a strictly diagonally dominant tensor.

Definition 2 [9] Let A = (a;,..;,) be an order m dimension n complex tensor. A is called
an H-tensor if there is a positive vector x = (x1,%y,...,%,)7 € R” such that

-1 ,
|ai,a..,4|xf" > Z |ﬂii2-~~im |x,'2 Xy L= 1,2,...,n.

Definition 3 [10] Let A = (a;;,..;,,) be a tensor of order m dimension n, X = diag(x;, %>,
...,%,). Denote

B = (bi1-"im) = AXm_l, bi1i2-"im = AijigeiggKigKiz = " Kipys ij S N,] S N,
we call B3 the product of the tensor A and the matrix X.

Definition 4 [11] A complex tensor A = (a;;..;,,) of order m dimension # is called re-
ducible, if there exists a nonempty proper index subset I C N such that

Aijin- iy :0, Vll EI,Vig,...,im ¢l
If A is not reducible, then we call A irreducible.

Definition5 Let A = (a;,...;,,) be an order m dimension n complex tensor, for i,j € N (i #}),
if there exist indices ki, ko, ..., k, with

Z |@kgin-ig| 70, $=0,1,...,71,

ks+1€{ig,e i}

where kg = i, k41 =j, we call there is a nonzero elements chain from i to j.

For an mth-degree homogeneous polynomial of # variables f(x) can be denoted

Sx) = Z Ay vy Ky Ky * " Ky 2)

11,09l EN
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where x = (x1,%5,...,%,) € R”. The homogeneous polynomial f(x) in (2) is equivalent to
the tensor product of an order m dimensional # symmetric tensor A and ™ defined by

f(x) = .Axm = Z Aijiy-iygKirXin *** Kiyys (3)

11,02, 0im €N

where x = (x,%2,...,%,) € R" [1].

The positive definiteness of homogeneous polynomials have applications in automatic
control [12,13], polynomial problems [14], magnetic resonance imaging [15, 16], and spec-
tral hypergraph theory [17, 18]. However, for # > 3 and m > 4, it is a hard problem to iden-
tify the positive definiteness of such a multivariate form. For solving this problem, Qi [1]
pointed out that f(x) defined by (3) is positive definite if and only if the real symmetric
tensor A is positive definite, and Qi provided an eigenvalue method to verify the positive
definiteness of A when m is even (see Theorem 1).

Theorem 1 [1] Let A be an even-order real symmetric tensor, then A is positive definite if
and only if all of its H-eigenvalues are positive.

Although from Theorem 1 we can verify the positive definiteness of an even-order
symmetric tensor A (the positive definiteness of the mth-degree homogeneous poly-
nomial f(x)) by computing the H-eigenvalues of A, it is difficult to compute all these
H-eigenvalues when m and 7 are large. Recently, by introducing the definition of 7 -tensor,
Lietal. [9] provided a practical sufficient condition for identifying the positive definiteness
of an even-order symmetric tensor (see Theorem 2).

Theorem 2 [9] Let A = (a;j,..i,,) be an even-order real symmetric tensor of order m di-
mension n with ay..x > 0 for all k € N. If A is an H-tensor, then A is positive definite.

Theorem 2 provides a method for identifying the positive definiteness of an even-order
symmetric tensor by determining H-tensors. Thus the identification of H-tensors is use-
ful in checking the positive definiteness of homogeneous polynomials. In this paper, some
new criteria for identifying H-tensors are presented, which is easy to calculate since it only
depends on the entries of tensors. As an application of these criteria, some sufficient con-
ditions of the positive definiteness for an even-order real symmetric tensor are obtained.

Numerical examples are also given to verify the corresponding results.

2 Main results
In this section, we give some new criteria for #-tensors. First of all, we give some notation
and lemmas.

Let S be a nonempty subset of N and let N \ S be the complement of S in N. Given an

order m dimension n complex tensor A = (4;;,..,,), we denote

Ny ={ieN:0<|a;.i| <Ri(A)}, N = {i € N :]aj...| > Ri(A)},

_aii..l _ Ri(A)
Si = ) ti = )
Ri(A) |i...i|

r= max[max S, maxt; },
ieNp ieNy
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" =Aiyiz iy 1 i; €S,j=2,3,...,m},

N7\ 8" = {igis i 2 inis -+ iy € N and dpiz -+ - iy & S™7'}.

It is obvious that if Nj = @, then A is an H-tensor. It is known that, for an H-tensor A,
N, # @ [9]. So we always assume that both N; and N, are not empty. Otherwise, we assume
that A satisfies: a;;..; 70, R;(A) #0,Vie N.

Lemma 1 [8] If A is a strictly diagonally dominant tensor, then A is an H-tensor.

Lemma 2 [10] Let A = (a;,...,,) be a complex tensor of order m dimension n. If there exists
a positive diagonal matrix X such that AX™ ™ is an H-tensor, then A is an H-tensor.

Lemma 3 [9] Let A = (a;...,,) be a complex tensor of order m dimension n. If A is irre-
ducible,

|a;..il > Ri(A), VieN,
and strictly inequality holds for at least one i, then A is an H-tensor.

Lemma4 Let A= (a,..;,) be an order m dimension n complex tensor. If
(1) laj....l = Ri(A), Yie N,
(ii) J(A) ={i e N :|aj...| > Ri(A)} # 0,
(iii) for any i ¢ J(A), there exists a nonzero elements chain from i to j, such that j € J(A),
then A is an H-tensor.

Proof 1t is evident that the result holds with J(A) = N. Next, we assume that /(A4) # N.
Suppose J(A) = {k+1,...,n}, N\ J(A) ={1,...,k}, 1 < k < n. By hypothesis,

|aik...k| = Ri(A).
By the condition (iii), there exist indices ky, ka, . .., k, such that

Z |ksiy-ig| 70,  $=0,1,...,71,

where kg = k, k;1 =J,j € J(A). Then

D ki, #0.

Further, without loss of generality, we assume that &y, ..., k. ¢ J(A), thatis, 1 < ky,..., k. < k.
From j € J(A), we have |aj..;| > R;(A), so there exists 0 < & <1 such that ¢|aj;..;| > R;(A).
Construct a positive diagonal matrix Xy, = diag(xy,...,%,), where

1 ..
Eem-1, l:]’

Xi =
1, i#].
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Let Ay, = [al7) ;1= AX}". Then
|615,]ff?i = |aji..il = Ri(A) = Ri(Ay,), 1=<i<k,i#k,

1&’;7(),...;(, = |a ke -ky | = R, (A) > Ri, (Ag,),
|a§f.i’i = @il > Ri(A) = Ri, (Ax,), i€ J(A),i #J,

|| = elaji.i| > Ri(A) > Re, (Ag,)-
Obviously, Ay, is also a diagonally dominant tensor, and J(Ag,) = J(A) U {k,}.
If J(Ay,) = N, then Ay is strictly diagonally dominant. By Lemma 2, A is an H-tensor.
If N\ J(Ag,) # 9, then Ay, also satisfies the conditions of the lemma, that is, for any
i € N\ J(Ag,), there exist indices f, ly, ..., L, such that

> layiyei,| 70, £=0,1,...5,

i2,.lmEN,
ltiz'“im:O’
ler1€{i2eenim}

where ly =i, [,1 =, j € J(Ag,). Then

> Nasiyein] #0.

i2,.sim €N,
Isi - in =0»
jelig,eeim}

Similar to the above argument, for Ay, there exists a positive diagonal matrix X;, such
that Aj, = .Ak,X,’S"’l is diagonally dominant, and J(A;,) = J(Ax,) U {i}.
If J(A;,) = N, then A, is strictly diagonally dominant. By Lemma 2, A is an H-tensor.
If N\ J(Ay) # 9, then A, also satisfies the conditions of the lemma. Similarly as the
above argument, for Ay, there exist at most k positive diagonal matrices Xj,, X, ..., Xp,
such that B is strictly diagonally dominant, where B = A(X;, X, - - -qu)'”‘l. Hence, B is an
‘H-tensor, and by Lemma 2, A is an H-tensor. The proof is completed. d

Theorem 3 Let A = (a,...,,) be an order m dimension n complex tensor. If

|ﬂii---i|si >r E |aii2~»im| + E ie{rjnw; }{tj}lﬂiiz---im |, Vie Nl, (4)
25ever
igim N L\NP1 ip+-im Ny "
Sty ..y =0

then A is an H-tensor.

Proof Let

M Biiy...imy =0
i= ’
Ziz---imesz'l @ity s |

Vie N;. (5)
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If Zizign-imeN;”’l |@iiy-..i, | = 0, we denote M; = +oo. From inequality (4), we obtain M; > 0

(i € Np). Hence, there exists a positive number ¢ > 0 such that

0<s<min{minM,«,1—maxt,«}, (6)

ieNp ieNy

Let the matrix X = diag(x, %, ...,%,), where

1
(Si)mr ieNl:

1
(8+ti)m, iENz.

By inequality (6), we have (¢ + ti)ﬁ <1(i e N,). As & # +00, s0 x; # +00, which implies
that X is a diagonal matrix with positive entries. Let B = (b, ..;,,) = AX™'. Next, we will

prove that B is strictly diagonally dominant.

For all i € Ny, if Zizi&__imesz-1 |@iiy...ir, | = 0, then by inequality (4), we have
Ri(B) = Z [Disy. iy | + Z [Disy.cip |
ip-imeN™-I\NJ1-1 ipim N
8552...5m=0
= Z | By i | Xy + Ky + Z | iy iy | %y + + + X
g imeN™-I\NJ1-L ipim €N
8[,’2...5},”:0
<r Z | @iy iy | < |@isilSi = D] (7)
i i eN"I\NL
8,’,’2...,'},” =0

If Zizigmime\/;”'l |@iiy...i,,| # 0, then by inequalities (5) and (6), we obtain

Ri(B) = Z @iy iy | Ky - Ky + Z | @iy iy |y = - Ky
i imeN"I\N ip-rim eNJL
siiz---im=0
= Z | @iy i iy~ - - Ky
i imeN"I\N1
S[iz.._,'mzo
1 1
+ Z |ﬂii2---im |(8 + tiz)m—l e (8 + tim)m—l
i imeNyL
<r Z |@iiy...ipy | + Z |(ll’i2...im|(8 + max {tj})
Jelio,enim}
ipimeNI\NP ip-im N1
‘Siiz---im =0
=r Z |@iiy...ipyy | + Z - max {t]‘}|ﬂ”‘2...im
Jelin,emim)
i i eNI\NP ip-im N1
8”2"'im =0
+ & Z |aii2---im
i imeNPL
< laii...ilsi = |bij...il. (8)
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Now, we consider i € N,. Since |a;;...;| > R;(A), we have

|a....| — Z |@iiy-ipy | > 0 %)
ipig--imeNy'
Biioy iy =0
and
P2 el D0 max {G)lai,.,| - Ri(A) <0, (10)
Jelinni
i imeNM-I\N1 ip+imeNYL Bt
5,','2,.A,'m:0

By inequalities (9), (10), and ¢ > 0, we get

rZiz---imeN’”*l\Nf"l | @iy iy | + Ziz---imeNg”l MAXje(iy,...im} 16} iy iy | — Ri(A)

8 iy =0
(9 > llz im ) (11)
|6Zl'l'u.i| — ZizmimeNf”l |aii2~-im|
5,‘,’2..Aim =0
From inequality (11), for any i € N, we obtain
bii-..i] = Ri(B) = laji...i|(e + ;) — Z iy iy %y * + + %,

igimeNM-I\N'1

1 1
= Y ity (e + L) T (6 4 1, )T

ipimeN}L
Siig-rripy =0

|a...il(e +t;) — 1 Z | @ity |

ig i eNM-I\NZ1

- Z |a,~i24..im|(£ + max {t,»})

1 j€lineim}
in--im €Ny~
S =0

v

iy i

8<|ﬂz’z’---i|— Z |ﬂii2---im|>+Ri(A)

igim €N

aiiz"'im=0
—r E | @iy iy | = E _max  {t}ai,y...q,,
1 1/€{l2w~;lm}
i i ENM-L\NJ- ip-+-im €NY'™
5ii2---im=0
> 0. 12)

Therefore, from inequalities (7), (8), and (12), we obtain |b;;...;| > R;(B) for all i € N, that is,
B is strictly diagonally dominant. By Lemma 1 and Lemma 2, A is an H-tensor. The proof
is completed. d

Theorem 4 Let A = (ay,...;,,) be an order m dimension n complex tensor. If A is irreducible

and
—_ m . . .
|ii...;lsi = 1 Z [ Z }e{rzna)i }{t}}|dzzz»»~zm|; i €N, (13)
2peee
ip i €N \N1 ipimeNYL "
Biig..im =0

and a strict inequality holds for at least one i € Ny, then A is an H-tensor.
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Proof Let the matrix X = diag(xy, %, ...,%,), where

1
(Si)ﬁ’ iENl;
Xi= o,

(ti) m=T, i€ Nj.

By the irreducibility of A, we have x; # +00, then X is a diagonal matrix with positive
diagonal entries. Let B = [b;,..;,] = AX™L.

Adopting the same procedure as in the proof of Theorem 3, we can obtain |b;;..;| > R;(5)
(Vi € N), and there exists at least an iy € N; such that |b; ..., | > R;, (B).

On the other hand, since A is irreducible and so is B. Then by Lemma 3, we see that B
is an H-tensor. By Lemma 2, A is an H-tensor. The proof is completed. d

Let

Ji= {l' €N :laji.ilsi>r E |@iiy iy | + E /e[gnax' }{tj}|ﬂii2~~im|}:
D
ig i eNMT\N-1 i imeNyIL "
Biiy...imy =0

J2= {i € No:laji.ilti > > iy + D  hax ]{f/}lﬂiiz~~~im|}~
JE{i2500si,
ip- i eNM-I\NP1 ip-im N1 2t
) 20

i i

Theorem 5 Let A = (a,...;,,) be an order m dimension n complex tensor. If

|aii...ilsi =7 E @iy | + E },E{Iina?i }{t}'}|ﬂii2»~im|, (14)
2 peees
ip i €N \N1 iy imeNYL "
Biig..im =0

J1UJy #0, and for Vi e (N1 \ J1) U (N3 \ J2), there exists a nonzero elements chain from i to
jsuchthatjeJy UJ,, then A is an H-tensor.

Proof Let the matrix X = diag(xy, x5, .. .,%,), where

{ (Si)ﬁr ieN,

Xi = 1,

(t)m1, i€N,.

Obviously x; # +00, then X is a diagonal matrix with positive diagonal entries. Let B =
[biy...i,,] = AX™ L. Similarly as in the proof of Theorem 3, we can obtain |b;..;| > R;(B)
(Vi e N). From J; U J, # , there exists at least an iy € N such that |b;;,...;,| > R;, (B).

On the other hand, if |;;...;| = R;(3), then i € (N1 \ 1) U (N3 \ J2), by the assumption, we
know that there exists a nonzero elements chain from i to j of A such that j € J; UJ,. Then
there exists a nonzero elements chain from i to j of B with j satisfying |b;;..;| > R;(B).

Based on above analysis, we conclude that the tensor B satisfies the conditions of
Lemma 4, so B is an H-tensor. By Lemma 2, A is an H-tensor. The proof is completed.

a
Theorem 6 Let A =(ay;;,..i,,) be a complex tensor of order m dimension n. If
|6l,','m,'|Si >r Z |ﬂii2~~im |, Vie Nl (15)
i im €N \NL
3 =0

i ..im



Wang and Sun Journal of Inequalities and Applications (2016) 2016:96 Page 9 of 12

and

> |diiy..ipy| =0, Vi€ Ny, (16)

ig-r-i eNM-I\NP1
then A is an H-tensor.

Proof By inequality (15), for each i € Ny, there exists a positive number K; > 1, such that

1
|6l,','m,'|Si >r Z |aii2~~~im| + — Z ) max {tj}|ﬂii2mim| . (17)
K; jE€{igsemim}
ipim N I\ND ip-+im N1
$ =0

[
Let K = max;en, {K;}. By inequality (17), we obtain

1
|@ji...ilsi > ¥ Z | @iy | + E( Z max }{t,'}|aii2u.im|>,

JElinsesim
igim N I\ND i imeNyIL

Biiy iy =0

VieN,. (18)
Since |a;;...;| < Ri(A) (i € N1) and inequality (15), so

> il >0, VieN. (19)

i i eNYL
For any i € N;, denote

1
|...|s: — rZiz...,-meNm—l\Ngt—l | @iy iy | — z(ziz...,‘mez\[gﬂ MAXje(in,..im} 1} | Fity-eins )
T, = 8iiy iy =0

Zi2i3“~imeN§“‘1 |aii2'~~im|
From inequalities (18) and (19), we have T; > 0. Therefore there exists a positive number

& > 0 such that

. . L
0 <& <min mlnT,-,l—max—l .
ieN] ieNy K

Let the matrix X = diag(x;, x»,...,%,), where

1
(Si)ﬁ’ ieNl;
X = L.
(e+ )™ T, ieN,.

Mark B = AX™L. Similarly as in the proof of Theorem 3, we can prove that B is strictly
diagonally dominant. By Lemma 1 and Lemma 2, A is an #-tensor. The proof is com-
pleted. d

There is no inclusion relation between the conditions of Theorem 3 and the conditions

of Theorem 6. This can be seen from the following examples.
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Example 1 Consider a tensor A = (a;%) of order 3 dimension 3 defined as follows:

A=[AL:2),A12,5:),A3,51)],

15 1 0 1 1 O
Al,,)=11 10 o], A2,:) 0 12 0],
1 1 10 1 0
2 0 O
A(3,:,2) 0 3 0
0 0 15
Obviously,
la| =15, Ri(A) =24, |aga| =12,
Ry(A) =4, |asss| = 15, R3(A) =5,

so N; = {1}, N, = {2, 3}. By calculation, we have

s |61111 | 15 R2 (.A) 1 Rg (.A) 1 , 15
1: :—, 2: :—, 3: :—, = —,
Ri(A) 24 laxal 3 lasss| 3 24
Since
r Z lai| + Z max {t;}|ai| = 15(1+O+1+1)+ 1(O+1+10+10)
1jk lelik) 1 1kl = 2% 3
jkeN*\N? jkeN?
511‘/(:0
213 225 | |
= — < — =|als,
24 < oa 111181

we know that A satisfies the conditions of Theorem 3, then A is an H-tensor. But

Y lasil=270.

. 2
JkENZ\N3

Y lapl =370,

: 2
JKENZ\N3

so A does not satisfy the conditions of Theorem 6.

Example 2 Consider a tensor A = (a;) of order 3 dimension 3 defined as follows:

A=[AQ,:1),A12,5),A(3,57)],

8§ 1 O 0 0 O
Al,)=]1 10 0|, A2,,)=10 8 2|,
1 1 10 01 1
0 0 O
ABB,5)=]10 25 15

0 1 10

Page 10 of 12
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Obviously,

lan| =8, Ri(A) =24, |a22z| = 8,

Ry(A) =4, |aszz| = 10, R3(A) =5,

so N; = {1}, N, = {2, 3}. By calculation, we have

. lam| 1 CRy(A) 1 CR3(A) 1 e 1
1= = 2= = 3= = =<

Ri(A) 3 || 2 lasss| 2 2
Since

1 3 8
r Z @] = 5(1+O+1+1)=§ <§ = |a|s1
jkeN*\N?
511'](:0

and

Z |asjk| = 0, Z lazjc| = 0,

JkeN2\N? JkeN2\N2

we see that A satisfies the conditions of Theorem 6, then A is an H-tensor. But

1 1
r Z @yl + Z g{f}?}{tz}laykl = 5(1 +0+1+1)+ 5(0 +1+10 +10)
JkeN*\N? jkeN}
31jk=0

12 8 |an |

= > —=|a S ,
3 111181

so A does not satisfy the conditions of Theorem 3.

3 An application
In this section, based on the criteria for H-tensors in Section 2, we present some crite-
ria for identifying the positive definiteness of an even-order real symmetric tensor (the
positive definiteness of a multivariate form).

From Theorems 2-6, we obtain easily the following result.

Theorem 7 Let A =(a;,...;,) be an even-order real symmetric tensor of order m dimension
nwith aj...k > 0 for all k € N. If A satisfies one of the following conditions, then A is positive
definite:
(i) all the conditions of Theorem 3;
(ii) all the conditions of Theorem 4;
(ili) all the conditions of Theorem 5;
(iv) all the conditions of Theorem 6.

Example 3 Let f(x) = Ax* = 11x} + 18x5 + 18x5 + 124} + 12x7xpx3 — 24w1x003%4 be a 4th-
degree homogeneous polynomial. We can get an order 4 dimension 4 real symmetric ten-
sor A = (4,1, ), Wwhere

ann =11, a2 =18, asssz =18, Assqs =12,
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ans = dizp = 41213 = 41312 = 41231 = 41321 = 1,
a3 = an31 = d311 = 43112 = d3121 = A3 = 1,
1234 = A1243 = A1324 = A1342 = A1423 = A1432 = —1,
A134 = A2143 = A2314 = A2341 = A2413 = A2431 = —1,

a3124 = A3142 = 43214 = A3241 = A3412 = d3421 = —1,

|
|
=

44123 = A4132 = A4213 = 4231 = A4312 = A4321 =

and other a;,;,;,;, = 0. It can be verified that A satisfies all the conditions of Theorem 3.

Thus, from Theorem 7, we see that A is positive definite, that is, f(x) is positive definite.
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