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Abstract
We introduce the notion of statistical weighted A-summability of a sequence and
establish its relation with weighted A-statistical convergence. We also define
weighted regular matrix and obtain necessary and sufficient conditions for the matrix
A to be weighted regular. As an application, we prove the Korovkin type
approximation theorem through statistical weighted A-summability and using the
BBH operator to construct an illustrative example in support of our result.
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1 Introduction and preliminaries
The term ‘statistical convergence’ was first presented by Fast []; it is a generalization of the
concept of ordinary convergence. Actually, a root of the notion of statistical convergence
can be detected by Zygmund [] (also see []), where he used the term ‘almost conver-
gence’ which turned out to be equivalent to the concept of statistical convergence. Sta-
tistical convergence was further investigated by Schoenberg [], Šalát [], Fridy [], and
Connor [].

Recall the definition of natural (or asymptotic) density as follows: Suppose that E ⊆N :=
{, , . . .} and En = {k ≤ n : k ∈ E}. Then

δ(E) = lim
n


n

|En|

is called the natural density of E provided that the limit exists, where | · | denotes the
cardinality of the enclosed set. A sequence s = (sk) is said to be statistically convergent,
shortly S-convergent, [] to L, in symbols, we shall write S-lim x = L, if δ(Kε) =  for every
ε > , where

Kε :=
{

k ∈N : |sk – L| ≥ ε
}

,
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equivalently,

lim
n

n–∣∣{k ≤ n : |sk – L| ≥ ε
}∣∣ = .

We remark that every convergent sequence is statistically convergent but its converse is
not always valid.

In , the concept of weighted statistical convergence was defined and studied by
Karakaya and Chishti [] and further modified by Mursaleen et al. [] in .

Let p = (pk) be a sequence of nonnegative numbers such that p >  and

Pn =
n∑

k=

pk → ∞ as n → ∞.

The lower and upper weighted densities of E ⊆ N are defined by

δN̄ (E) = lim inf
n


Pn

∣∣{k ≤ Pn : k ∈ E}∣∣

and

δN̄ (E) = lim sup
n


Pn

∣∣{k ≤ Pn : k ∈ E}∣∣,

respectively. We say that E has weighted density, denoted by δN̄ (E), if the limits of both
above densities exist and are equal, that is, one writes

δN̄ (E) = lim
n


Pn

∣∣{k ≤ Pn : k ∈ E}∣∣.

The sequence s = (sk) is said to be weighted statistically convergent (or SN̄ -convergent)
to L if for every ε > , the set {k ∈N : pk|sk – L| ≥ ε} has weighted density zero, i.e.

lim
n


Pn

∣∣{k ≤ Pn : pk|sk – L| ≥ ε
}∣∣ = .

In this case we write L = SN̄ -lim s.

Remark . If pk =  for all k then weighted statistical convergence is reduced to statistical
convergence.

In , Belen and Mohiuddine [] presented a generalization of this notion through
de la Vallée-Poussin mean and called this weighted λ-statistical convergence (in short, SN̄

λ -
convergence). Recently, the notion was modified by Ghosal [] by adding the condition
lim inf pk > .

Let X and Y be two sequence spaces and let A = (an,k) be an infinite matrix. If for each
s = (sk) in X the series

Ans =
∑

k

an,ksk =
∞∑

k=

an,ksk
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converges for each n ∈ N and the sequence As = (Ans) belongs to Y , then we say that matrix
A maps X into Y . By the symbol (X, Y ) we denote the set of all matrices which map X
into Y .

A matrix A (or a matrix map A) is called regular if A ∈ (c, c), where the symbol c denotes
the spaces of all convergent sequences, and

lim
n

Ans = lim
k

sk

for all s ∈ c. The well-known Silverman-Toeplitz theorem (see []) asserts that A = (an,k)
is regular if and only if

(i) supn
∑

k |an,k| < ∞;
(ii) limn an,k =  for each k;

(iii) limn
∑

k an,k = .
Kolk [] extended the definition of statistical convergence with the help of the non-

negative regular matrix A = (an,k), which he called it A-statistical convergence. For any
nonnegative regular matrix A, we say that a sequence s = (sk) is A-statistically convergent,
shortly SA-convergent, to L provided that for every ε >  we have

lim
n

∑

k:|sk–L|≥ε

an,k = .

Edely and Mursaleen [] introduced statistical A-summability (or, AS-summability) and
showed that SA-convergence implies AS-summability under the assumption of bounded
sequence but the converse is not valid always.

2 Statistical weighted A-summability
In the present section we introduce the notion of statistical weighted A-summability and
prove that this method of summability is stronger than the weighted A-statistically con-
vergent notion. We also define and characterize a weighted regular matrix.

Let s = (sk)k∈N be a sequence of real or complex numbers. The weighted means σn here
are of the form

σn =


Qn

n∑

k=

qksk (n ≥ ),

where q = (qk)k∈N is a given sequence of nonnegative numbers such that lim infk qk >  and
Q the sequence with Qn =

∑n
k= qk �=  for all n ≥ . If

lim
n

∣∣∣∣


Qn

n∑

k=

qksk – L
∣∣∣∣ = ,

then we say that s = (sk)k∈N is weighted summable, called cN̄ -summable, to some number L.
In symbols, we shall write cN̄ -lim s = L and cN̄ denotes the space of all weighted summable
sequences. In particular, if we take qk =  for all k then cN̄ -summability is reduced to (C, )-
summability while the sequence (sk)k∈N is Cesàro summable (shortly, (C, )-summable) to
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L if limn→∞ σ ′
n = L, where

σ ′
n =


n

n∑

k=

sk .

Definition . A sequence s = (sk)k∈N is said to be weighted A-summable if the A-
transform of s is weighted summable. It is said to be weighted A-summable to L if the
A-transform of s is weighted summable to L, that is,

lim
m

∣∣∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,ksk – L

∣∣∣∣∣
= .

For convenience, we shall use the convention that

AN̄
m(s) =


Qm

m∑

n=

∞∑

k=

qnan,ksk .

Definition . The matrix A (or a matrix map A) is said to be weighted regular matrix,
or weighted regular method, if As ∈ cN̄ for all s = (sk) ∈ c with cN̄ -lim As = lim s and one
denotes this by A ∈ (c, cN̄ ). Clearly, A ∈ (c, cN̄ ) means that AN̄

m(s) exists for each m ∈ N and
each s ∈ c and that AN̄

m(s) → L (m → ∞) whenever sk → L (k → ∞).

We prove the following characterization of a weighted regular matrix.

Theorem . The matrix A = (an,k) is weighted regular, that is, A ∈ (c, cN̄ ), if and only if

sup
m

∞∑

k=


Qm

∣∣∣∣∣

m∑

n=

qnan,k

∣∣∣∣∣
< ∞; ()

lim
m


Qm

m∑

n=

qnan,k =  for each k; ()

lim
m


Qm

m∑

n=

∞∑

k=

qnan,k = . ()

Proof Sufficiency. Let the conditions ()-() hold, and suppose that sk ∈ c with sk → L as
k → ∞. Then for each ε >  there exists N ∈N such that |sk| < |L|+ε for k > N . One writes


Qm

m∑

n=

∞∑

k=

qnan,ksk =


Qm

∞∑

k=

m∑

n=

qnan,ksk

=


Qm

m–∑

k=

m∑

n=

qnan,ksk +


Qm

∞∑

k=m–

m∑

n=

qnan,ksk .

Therefore
∣∣∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,ksk

∣∣∣∣∣
≤ ‖s‖

m–∑

k=


Qm

m∑

n=

qnan,k +
(|L| + ε

) 
Qm

m∑

n=

∞∑

k=

qnan,k .
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Taking m → ∞ and using () and (), we obtain

∣∣∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,ksk

∣∣∣∣∣
≤ |L| + ε

and consequently

lim
m


Qm

m∑

n=

∞∑

k=

qnan,ksk = L = lim sk (since ε was arbitrary).

This shows that A is weighted regular.
Necessity. Let A ∈ (c, cN̄ ). Taking ek , e ∈ c, where ek is the sequence with  in place k and

 elsewhere and e = (, , , . . . ), then the A-transforms of the sequence ek and e belong to
cN̄ and hence ek ∈ c gives condition () and e ∈ c proves the validity of ().

Let us write

AN̄
m(s) =


Qm

m∑

n=

qnβn(s), βn(s) =
∞∑

k=

an,ksk .

Clearly, βn ∈ c′ (the linear space of all continuous linear functionals of c) and so AN̄
m ∈ c′.

Since A is almost regular, AN̄
m(x) exists for each m ∈ N and each s ∈ c and cN̄ -lim Am(s) =

L = lim sk . It follows that (AN̄
m(s)) is bounded for s ∈ c. Hence (‖AN̄

m‖) is bounded by the
uniform boundedness principle.

For each b ∈ Z
+, the positive integers, we define x = (xk) by

xk =

{
sgn

∑m
n= qnan,k for  ≤ k ≤ b,

 for k > b.

Then x ∈ c, ‖x‖ = , and also

∣∣AN̄
m(x)

∣∣ =


Qm

b∑

k=

∣∣∣∣∣

m∑

n=

qnan,k

∣∣∣∣∣
.

Hence

∣∣AN̄
m(x)

∣∣ ≤ ∥∥AN̄
m
∥∥‖x‖ =

∥∥AN̄
m
∥∥.

Therefore


Qm

∞∑

k=

∣∣∣∣∣

m∑

n=

qnan,k

∣∣∣∣∣
≤ ∥∥AN̄

m
∥∥,

so () is valid. �

The authors of [] defined a notion of weighted A-statistically convergent which is in-
correct because they did not consider the fraction ‘ 

Qn
’ as mentioned above in the defini-

tion of weighted mean, so here we present its slight modified version as follows.
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Definition . Let A = (an,k) be a nonnegative weighted regular matrix and let E ⊆ N.
Then the weighted A-density of E is given by

δA
N̄ (E) = lim

m


Qm

m∑

n=

∑

k∈E

qnan,k

provided that the limit exists. A sequence x = (xk) of real or complex numbers is said to be
weighted A-statistically convergent, denoted by SN̄

A -convergent, to L if for every ε > 

δA
N̄

(
E(ε)

)
= ,

where

E(ε) =
{

k ∈N : |xk – L| ≥ ε
}

.

In symbols, we shall write SN̄
A -lim x = L.

Definition . Let A = (an,k) be a nonnegative weighted regular matrix. A sequence s =
(sk) of real or complex numbers is said to be statistically weighted A-summable, denoted
by AN̄

S -summable, to L, in symbols, we shall write AN̄
S -lim s = L, if the following equality

holds for each ε > :

δ(Eε) = ,

where Eε = {m ∈N : |Tm – L| ≥ ε} and

Tm = AN̄
m(s) =


Qm

m∑

j=

∞∑

k=

qjaj,ksk ,

equivalently, we can write

lim
n


n

∣∣{m ≤ n : |Tm – L| ≥ ε
}∣∣ = .

Thus, a sequence s = (sk) is AN̄
S -summable to L if and only if AN̄

m(s) is S-convergent to L.

Theorem . If a sequence s = (sk) is bounded and weighted A-statistically convergent to
L then it is weighted A-summable to L and hence statistically weighted A-summable to L
but not conversely.

Proof Let (sk) be bounded and weighted A-statistically convergent to L, and let E(ε) = {k ∈
N : |sk – L| ≥ ε}. Then

∣∣∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,ksk – L

∣∣∣∣∣

=

∣∣
∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,k(sk – L) + L

(


Qm

m∑

n=

∞∑

k=

qnan,k – 

)∣∣∣∣∣
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≤
∣∣∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,k(sk – L)

∣∣∣∣∣
+ |L|

∣∣∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,k – 

∣∣∣∣∣

≤
∣∣∣∣∣


Qm

m∑

n=

∑

k∈E(ε)

qnan,k(sk – L)

∣∣∣∣∣
+

∣∣∣∣∣


Qm

m∑

n=

∑

k /∈E(ε)

qnan,k(sk – L)

∣∣∣∣∣

+ |L|
∣∣∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,k – 

∣∣∣∣∣

≤ sup
k

|sk – L| 
Qm

m∑

n=

∑

k∈E(ε)

qnan,k + ε


Qm

m∑

n=

∑

k /∈E(ε)

qnan,k

+ |L|
∣∣∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,k – 

∣∣∣∣∣
.

Using the definition of weighted A-statistical convergence and the conditions of a
weighted regularity of the matrix A, we have

lim
m

∣∣∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,ksk – L

∣∣∣∣∣
=  (since ε was arbitrary),

that is, s is weighted A-summable to L. Hence

S-lim
m

∣∣∣∣∣


Qm

m∑

n=

∞∑

k=

qnan,ksk – L

∣∣∣∣∣
= .

This shows that the sequence s is AN̄
S -summable to L. �

Example . Let us take A as Cesàro matrix (or, (C, )-matrix) and is defined as follows:

an,k =

{

n if  ≤ k ≤ n,
 if k > n.

Consider a bounded sequence s = (sk) which is defined by

sk =

{
 if k is odd,
 if k is even,

and suppose also that qn =  for all n = , . . . , m and so Qm = m. Then we see that s is
weighted A-summable to / and hence statistically weighted A-summable to the same
limit but not weighted A-statistically convergent.

3 Application
In this final section, we apply our previous notion of summability, i.e. AN̄

S -summability, to
obtain the Koronkin type approximation theorem.

The approximation theorem investigated by Korovkin [] nowadays called Korovkin’s
type approximation theorem and he stated that the convergence to h (real-valued func-
tions) of a positive linear operator is dependent only on the convergence at the functions
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, x, x (or other equivalent test functions). Many mathematicians extended the Korovkin’s
type approximation theorems by using various test functions in several setup, including
Banach spaces, abstract Banach lattices, function spaces, Banach algebras, and so on. First
of all, Gadjiev and Orhan [] established the classical Korovkin theorem through statis-
tical convergence and displayed an interesting example in support of the result. Recently,
Korovkin’s type theorems have been obtained by Mohiuddine [] and Edely et al. [] for
almost convergence and λ-statistical convergence, respectively. The authors of [] es-
tablished these types of approximation theorem in weighted Lp spaces, where  ≤ p < ∞,
through A-summability, which is stronger than ordinary convergence. For these type of
approximation theorems and related concepts, one may refer to [–] and the refer-
ences therein.

We use the notation CB(D) to denote the space of all continuous and bounded real-
valued functions on D = I × I equipped with the following norm:

‖h‖CB(D) := sup
(x,y)∈D

∣∣h(x, y)
∣∣, h ∈ CB(D),

where I = [,∞). Suppose h is a real-valued function on D such that

∣∣h(g, r) – h(x, y)
∣∣ ≤ ω∗

(
h;

√(
g

 + g
–

x
 + x

)

+
(

r
 + r

–
y

 + y

))
,

and the space of such functions is denoted by Hω∗ (D). In this case ω∗ is used for the mod-
ulus of continuity and is defined by

ω∗(h; δ) = sup
(g,r),(x,y)∈K

{∣∣h(g, r) – h(x, y)
∣∣ :

√
(g – x) + (r – y) ≤ δ, δ > 

}
.

We remark that any function h ∈ Hω∗ (D) is continuous and bounded on D, and a necessary
and sufficient condition for h ∈ Hω∗ (D) is that

lim
δ→

ω∗(h; δ) = .

We are writing the Korovkin type approximation theorem of Çakar and Gadjiev []
through the usual convergence for the following test functions:

h(g, r) = , h(g, r) =
g

 + g
, h(g, r) =

r
 + r

,

and

h(g, r) =
(

g
 + g

)

+
(

r
 + r

)

.

Theorem . Let (Jk) be a sequence of positive linear operators (PLO) from Hω∗ (D) into
CB(D). Then

lim
k→∞

∥∥Jk(h; x, y) – h(x, y)
∥∥

CB(D) = 
(∀h ∈ Hω∗ (D)

)
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if and only if

lim
k→∞

∥∥Jk(hi; x, y) – hi
∥∥

CB(D) = ,

where i = , , , .

For SA-convergence and AS-summability, proofs are in [] and [], respectively. We
prove the following Çakar and Gadjiev [] type theorem through a statistically weighted
A-summability method.

Theorem . Let A = (aj,k) be a nonnegative weighted regular matrix and (Jk) be a se-
quence of PLO from Hω∗ (D) into CB(D). Then

S-lim

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk(h; x, y) – h(x, y)

∥∥∥∥∥
CB(D)

= 
(∀h ∈ Hω∗ (D)

)
()

if and only if

S-lim

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk(; x, y) – 

∥∥∥∥∥
CB(D)

= , ()

S-lim

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk

(
g

 + g
; x, y

)
–

x
 + x

∥∥∥∥∥
CB(D)

= , ()

S-lim

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk

(
r

 + r
; x, y

)
–

y
 + y

∥∥∥∥∥
CB(D)

= , ()

S-lim

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk

((
g

 + g

)

+
(

r
 + r

)

; x, y
)

–
((

x
 + x

)

+
(

y
 + y

))∥∥∥∥∥
CB(K )

= . ()

Proof The conditions ()-() follow immediately from () by taking into account that each
of the functions hi belongs to Hω∗ (K), where i = , , , . Let h ∈ Hω∗ (K) and (x, y) ∈ D be
fixed. Let ε >  be given. Then there exist δ, δ >  such that

∣∣h(g, r) – h(x, y)
∣∣ < ε

holds for all (g, r) in D satisfying the conditions:

∣∣∣∣
g

 + g
–

x
 + x

∣∣∣∣ < δ and
∣∣∣∣

r
 + r

–
y

 + y

∣∣∣∣ < δ.

Consider D(δ) of the form

D(δ) :=
{

(g, r) ∈ D :

√(
g

 + g
–

x
 + x

)

+
(

r
 + r

–
y

 + y

)

< δ

}
,
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where δ = min{δ, δ}. Therefore, we obtain

∣∣h(g, r) – h(x, y)
∣∣ =

∣∣h(g, r) – (x, y)
∣∣χD(δ)(g, r) +

∣∣h(g, r) – h(x, y)
∣∣χD\D(δ)(g, r)

≤ ε + AχD\D(δ)(g, r), ()

where χK stands for the characteristic function of K and A = ‖h‖CB(D). Also, we obtain

χD\D(δ)(g, r) ≤ 
δ



(
g

 + g
–

x
 + x

)

+

δ



(
r

 + r
–

y
 + y

)

. ()

The inequalities () and () give

∣∣h(g, r) – h(x, y)
∣∣ ≤ ε +

A
δ

{(
g

 + g
–

x
 + x

)

+
(

r
 + r

–
y

 + y

)}
. ()

By a direct computation, we see that

∣∣Jk(h; x, y) – h(x, y)
∣∣ ≤ ε + N

{∣∣Jk(h; x, y) – h(x, y)
∣∣

+
∣∣Jk(h; x, y) – h(x, y)

∣∣ +
∣∣Jk(h; x, y) – h(x, y)

∣∣

+
∣∣Jk(h; x, y) – h(x, y)

∣∣}, ()

where

N := ε + A +
A
δ .

Consequently, by writing


Qm

m∑

j=

∞∑

k=

qjaj,kJk(hi; x, y)

instead of Jk(hi; x, y) (i = , , , ) and considering the supremum over (x, y) ∈ D, one ob-
tains

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk(h; x, y) – h(x, y)

∥∥∥∥∥
CB(D)

≤ ε + N

(∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk(h; x, t) – h(x, y)

∥∥∥∥∥
CB(D)

+

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk(h; x, y) – h(x, y)

∥∥∥∥∥
CB(D)

+

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk(h; x, y) – h(x, y)

∥∥∥∥∥
CB(D)

+

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk(h; x, y) – h(x, y)

∥∥∥∥∥
CB(D)

)

.
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For a given t >  choose ε >  such that ε < t, we shall define the following sets:

V =

{

m ∈N :

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk(h; x, y) – h(x, y)

∥∥∥∥∥
CB(D)

≥ t

}

,

and

Vi =

{

m ∈ N :

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk(hi; x, y) – hi(x, y)

∥∥∥∥∥
CB(D)

≥ t – ε

N

}

,

where i = , , , . This shows that V ⊂ ⋃
i= Vi and so

δ(V ) ≤ δ(V) + δ(V) + δ(V) + δ(V).

Hence, using assumptions ()-(), we get

S-lim

∥∥∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,kJk(h; x, y) – h(x, y)

∥∥∥∥∥
CB(D)

= .
�

Finally, we conclude our work by the following illustration, Example ., which shows
that Theorem . is stronger than Theorem ..

Example . For any given k ∈ N, let us write the Bleimann et al. [] (in short, BBH)
operators of two variables as below:


k(h; x, y) :=


( + x)k( + y)k

k∑

i=

k∑

u=

h
(

i
k – i + 

,
u

k – u + 

)(
k
i

)(
k
u

)
xiyu, ()

where h ∈ Hω(D) and D = [,∞) × [,∞). We know that

( + x)k =
k∑

i=

(
k
i

)
xi. ()

By considering the test function h(x, y) =  and solving () and (), one obtains


k(h; x, y) →  = h(x, y).

Again by solving () and () and taking h(x, y) = x
+x , we get


k(h; x, y) =


( + x)k

k∑

i=

i
k + 

(
k
i

)
xi,

=
x

( + x)k
k

k + 

k–∑

i=

(
k – 

i

)
xi

=
x

( + x)
k

k + 
,
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and consequently


k(h; x, y) → x
 + x

= h(x, y).

Similarly, for the test functions h and h, we obtain


k(h; x, y) =
y

( + y)
k

k + 
→ y

 + y
= h(x, y)

and


k(h; x, y) =
(

x
 + x

) k(k – )
(k + ) +

x
 + x

k
(k + ) +

(
y

 + y

) k(k – )
(k + ) +

x
 + x

k
(k + )

→
(

x
 + x

)

+
(

y
 + y

)

= h(x, y).

We now suppose that A is a (C, )-matrix, the sequence s = (sk) is the same as taken in
Example ., and qn =  for all n = , , . . . , m. Then S-lim AN̄

m(s) =  but s is not convergent.
Also we have the sequence of operators 
∗

k : Hω∗(D) → CB(D) such that


∗
k(h; x, y) = ( + sk)
k(h; x, y).

We see that the sequence (
∗
k) satisfies the conditions ()-() of Theorem . and conse-

quently, we obtain

S-lim

∥∥
∥∥∥


Qm

m∑

j=

∞∑

k=

qjaj,k

∗
k(h; x, y) – h(x, y)

∥∥
∥∥∥

CB(D)

= .

But, on the other hand, Theorem . does not hold for (
∗
k), since the sequence s = (sk)

(and so the sequence of operators 
∗
k ) is not convergent. Therefore, we conclude that The-

orem . is stronger than Theorem ..
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