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Abstract
In this paper, we propose a hybrid CQ projection algorithm with two projection steps
and one Armijo-type line-search step for the split feasibility problem. The line-search
technique is intended to construct a hyperplane that strictly separates the current
point from the solution set. The next iteration is obtained by the projection of the
initial point on a regress region (the intersection of three sets). Hence, algorithm
converges faster than some other algorithms. Under some mild conditions, we show
the convergence. Preliminary numerical experiments show that our algorithm is
efficient.
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1 Introduction
Split feasibility problem (SFP) is to find a point x satisfying

x ∈ C, Ax ∈ Q, (.)

where C and Q are nonempty convex sets in �N and �M , respectively, and A is an M by N
real matrix. The SFP was originally introduced in [] and has broad applications in many
fields, such as image reconstruction problem, signal processing, and radiation therapy [–
]. Various algorithms have been invented to solve it (see [–] and references therein).
The well-known CQ algorithm presented in [] is defined as follows: Denote by PC the
orthogonal projection onto C, that is, PC(x) = arg miny∈C ‖x – y‖ for x ∈ C; then take an
initial point x arbitrarily and define the iterative step by

xk+ = PC
(
I – γ AT (I – PQ)A

)(
xk), (.)

where  < γ < /ρ(AT A), and ρ(AT A) is the spectral radius of AT A.
The algorithms mentioned use a fixed stepsize restricted by the Lipschitz constant L,

which depends on the largest eigenvalue (spectral radius) of the matrix. We know that
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computing the largest eigenvalue may be very hard and conservative estimate of the con-
stant L usually results in slow convergence. To overcome the difficulty in estimating the
Lipschitz constant, He et al. [] developed a selfadaptive method for solving variational
problems. The numerical results reported in [] have shown that the selfadaptive strategy
is valid and robust for solving variational inequality problems. Subsequently, many self-
adaptive projection methods were presented to solve the split feasibility problem [, ].
On the other hand, hybrid projection method was developed by Nakajo and Takahashi
[], Kamimure and Takahashi [], and Martines-Yanes and Xu [] to solve the prob-
lem of finding a common element of the set of fixed points of a nonexpansive mapping and
the set of solutions of an equilibrium problem. Many modified hybrid projection methods
were presented to solve different problems [, ].

In this paper, motivated by the selfadaptive method and hybrid projection method for
solving variational inequality problem, based on the CQ algorithm for the SFP, we propose
a hybrid CQ projection algorithm for the split feasibility problem, which uses different
variable stepsizes in two projection steps. Algorithm performs a computationally inexpen-
sive Armijo-type linear search along the search direction in order to generate separating
hyperplane, which is different from the general selfadaptive Armijo-type procedure [,
]. For the second projection step, we select the projection onto the intersection of the
set C with the halfspaces, which makes an optimal stepsize available at each iteration and
hence guarantees that the next iteration is the ‘closest’ to the solution set. Therefore, the
iterative sequence generated by the algorithm converges more quickly. The algorithm is
shown to be convergent to a point in the solution set under some assumptions.

The paper is organized as follows. In Section , we recall some preliminaries. In Sec-
tion , we propose a hybrid CQ projection algorithm for the split feasibility problem and
show its convergence. In Section , we give an example to test the efficiency. In Section ,
we give some concluding remarks.

2 Preliminaries
We denote by I the identity operator and by Fix(T) the set of fixed points of an operator T ,
that is, Fix(T) := {x|x = Tx}.

Recall that a mapping T : �n → � is said to be monotone if

〈
T(x) – T(y), x – y

〉 ≥ , ∀x, y ∈ �n.

For a monotone mapping T , if 〈T(x) – T(y), x – y〉 =  iff x = y, then it is said to be strictly
monotone.

A mapping T : �n → �n is called nonexpansive if

∥∥T(x) – T(y)
∥∥ ≤ ‖x – y‖, ∀x, y ∈ �n.

Lemma . Let � be a nonempty closed and convex subset in H . Then, for any x, y ∈ H
and z ∈ �, it is well known that the following statements hold:

() 〈P�(x) – x, z – P�(x)〉 ≥ .
() 〈P�(x) – P�(y), x – y〉 ≥ .
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() ‖P�(x) – P�(y)‖ ≤ ‖x – y‖, ∀x, y ∈ �n, or more precisely,

∥∥P�(x) – P�(y)
∥∥ ≤ ‖x – y‖ –

∥∥P�(x) – x + y – P�(y)
∥∥.

() ‖P�(x) – z‖ ≤ ‖x – z‖ – ‖P�(x) – x‖.

Remark . In fact, the projection property () also provides a sufficient and necessary
condition for a vector u ∈ K to be the projection of the vector x; that is, u = PK (x) if and
only if

〈u – x, z – u〉 ≥ , ∀z ∈ K .

Throughout the paper, we by denote � the solution set of split feasibility problem, that is,

� := {y ∈ C|Ay ∈ Q}. (.)

3 Algorithm and convergence analysis
Let

F(x) :=
(
AT (I – PQ)A

)
(x).

From [] we know that F is Lipschitz-continuous with constant L = /ρ(AT A) and is 
‖A‖ -

inverse strongly monotone. We first note that the solution set coincides with zeros of the
following projected residual function:

e(x) := x – PC
(
x – F(x)

)
, e(x,μ) := x – PC

(
x – μF(x)

)
;

with this definition, we have e(x, ) = e(x), and x ∈ � if and only if e(x,μ) = . For any x ∈ �N

and α ≥ , define

x(α) = PC
(
x – αF(x)

)
, e(x,α) = x – x(α).

The following lemma is useful for the convergence analysis in the next section.

Lemma . [] Let F be a mapping from �N into �N . For any x ∈ �N and α ≥ , we have

min{,α}∥∥e(x, )
∥∥ ≤ ∥∥e(x,α)

∥∥ ≤ max{,α}∥∥e(x, )
∥∥.

The detailed iterative processes are as follows:

Algorithm .
Step . Choose an arbitrary initial point x ∈ C, η > , and three parameters γ ∈ (, ),

σ ∈ (, ), and θ > , and set k = .
Step . Given the current iterative point xk , compute

zk = PC
[
xk – μkF

(
xk)], (.)

where μk := min{θηk–, }. Obviously, e(xk ,μk) = xk – zk . If e(xk ,μk) = , then stop;
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Step . Compute

yk = xk – ηke
(
xk ,μk

)
,

where ηk = γ mk μk with mk being the smallest nonnegative integer m satisfying

〈
F
(
xk – γ kμke

(
xk ,μk

))
, e

(
xk ,μk

)〉 ≥ σ

μk

∥
∥e

(
xk ,μk

)∥∥. (.)

Step . Compute

xk+ = PC∩H
k∩H

k

(
x), (.)

where

H
k =

{
x ∈ �N |〈x – yk , F

(
yk)〉 ≤ 

}
,

H
k =

{
x ∈ �N |〈x – xk , x – xk 〉 ≤ 

}
.

Select k = k +  and go to Step .

Remark . () In the algorithm, a projection from �N onto the intersection C ∩ H
k ∩ H

k
needs to be computed, that is, procedure (.) at each iteration. Surely, if the domain set
C has a special structure such as a box or a ball, then the next iteration xk+ can easily be
computed. If the domain set C is defined by a set of linear (in)equalities, then computing
the projection is equivalent to solving a strictly convex quadratic optimization problem.

() It can readily be verified that the hyperplane H
k strictly separates the current point

xk from the solution set � if xk is not a solution of the problem. That is, � ⊂ H–
k , and the

hyperplane H
k strictly separates the initial point x from the solution set �.

() Compared with the general hybrid projection method in [, ], besides the major
modification made in the projection domain in the last projection step, the values of some
parameters involved in the algorithm are also adjusted.

Before establishing the global convergence of Algorithm ., we first give some lemmas.

Lemma . For all k ≥ , there exists a nonnegative number m satisfying (.).

Proof Suppose that, for some k, (.) is not satisfied for any integer m, that is,

〈
F
(
xk – γ mμke

(
xk ,μk

))
, e

(
xk ,μk

)〉 ≤ σ

μk

∥∥e
(
xk ,μk

)∥∥. (.)

By the definition of e(xk ,μk) and Lemma . we know that

〈
PC

(
xk – μkF

(
xk)) –

(
xk – μkF

(
xk)), xk – PC

(
xk – μkF

(
xk))〉 ≥ .

Then

〈
F
(
xk), e

(
xk ,μk

)〉 ≥ 
μk

∥∥e
(
xk ,μk

)∥∥ > . (.)
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Since γ ∈ (, ) and μk := min{θηk–, }, from (.) we get

lim
m→∞

(
xk – γ mμke

(
xk ,μk

))
= xk .

Hence,

〈
F
(
xk), e

(
xk ,μk

)〉 ≤ σ

μk

∥∥e
(
xk ,μk

)∥∥. (.)

But (.) contradicts (.) because σ <  and ‖e(xk ,μk)‖ ≥ . Hence, (.) is satisfied for
some integer m. �

The following lemma shows that the halfspace H
k in Algorithm . strictly separates xk

from the solution set � if � is nonempty.

Lemma . If � �= ∅, then the halfspace H
k in Algorithm . separates the point xk from

the set �. Moreover,

� ⊂ H
k ∩ C, ∀k ≥ .

Proof By the definition of e(xk ,μk) and Algorithm . we have

yk = ( – ηk)xk + ηkzk = xk – ηke
(
xk ,μk

)
,

which can be rewritten as

ηke
(
xk ,μk

)
= xk – yk .

Then, by this and by (.) we get

〈
F
(
yk), xk – yk 〉 > . (.)

Hence, by the definition of H
k and by (.) we get xk /∈ H

k .
On the other hand, for any x∗ ∈ � and x ∈ C, by the monotonicity of F we have

〈
F(x), x – x∗〉 ≥ . (.)

By the convexity of C it is easy to see that yk ∈ C. Letting x = yk in (.), we have

〈
F
(
yk), yk – x∗〉 ≥ ,

which implies x∗ ∈ H
k . Moreover, it is easy to see that � ⊆ H

k ∩ C, ∀k ≥ . �

The following lemma says that if the solution set is nonempty, then � ⊂ H
k ∩ H

k ∩ C
and thus H

k ∩ H
k ∩ C is a nonempty set.

Lemma . If the solution set � �= ∅, then � ⊂ H
k ∩ H

k ∩ C for all k ≥ .
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Proof From the previous analysis it is sufficient to prove that � ⊂ H
k for all k ≥ . The

proof will be given by induction. Obviously, if k = , then

� ⊆ H
 = �N .

Now, suppose that

� ⊂ H
k

for k = l ≥ . Then

� ⊂ H
l ∩ H

l ∩ C.

For any x∗ ∈ �, by Lemma . and the fact that

xl+ = PH
l ∩H

l ∩C
(
x)

we have that

〈
x∗ – xl+, x – xl+〉 ≤ .

Thus, � ⊂ H
l+. This shows that � ⊂ H

k for all k ≥ , and the desired result follows.
For the case that the solution set is empty, we have that H

l ∩ H
l ∩ C is also nonempty

from the following lemma, which implies the feasibility of Algorithm .. �

Lemma . Suppose that � = ∅. Then H
l ∩ H

l ∩ C �= ∅ for all k ≥ .

We next prove our main convergence result.

Theorem . Suppose the solution set � is nonempty. Then the sequence {xk} generated by
Algorithm . is bounded, and all its cluster points belong to the solution set. Moreover, the
sequence {xk} globally converges to a solution x∗ such that x∗ = P�(x).

Proof Take an arbitrary point x∗ ∈ �. Then x∗ ∈ H
k ∩ H

k ∩ C. Since

xk+ = PH
k∩H

k ∩C
(
x),

by the definition of the projection we have that

∥
∥xk+ – x∥∥ ≤ ∥

∥x∗ – x∥∥.

So, {xk} is a bounded sequence, and so is {yk}.
Since xk+ ∈ H

k , from the definition of the projection operator it is obvious that

PH
k

(
xk+) = xk+.
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For xk , by the definition of H
k , for all z ∈ H

k , we have

〈
z – xk , x – xk 〉 ≤ .

Obviously, xk = PH
k
(x). Thus, using Lemma ., we have

∥
∥PH

k

(
xk+) – PH

k

(
x)∥∥ ≤ ∥

∥xk+ – x∥∥ –
∥
∥PH

k

(
xk+) – xk+ + x – PH

k

(
x)∥∥,

that is,

∥
∥xk+ – xk∥∥ ≤ ∥

∥xk+ – x∥∥ –
∥
∥xk – x∥∥,

which can be written as

∥
∥xk+ – xk∥∥ +

∥
∥xk – x∥∥ ≤ ∥

∥xk+ – x∥∥.

Thus, the sequence {‖xk – x‖} is nondecreasing and bounded and hence convergent,
which implies that

lim
k→∞

∥∥xk+ – xk∥∥ = . (.)

On the other hand, by xk+ ∈ H
k we get

〈
xk+ – yk , F

(
yk)〉 ≤ . (.)

Since

yk = ( – ηk)xk + ηkzk = xk – ηke
(
xk ,μk

)
,

by (.) we have

〈
xk+ – yk , F

(
yk)〉 =

〈
xk+ – xk + ηke

(
xk ,μk

)
, F

(
yk)〉 ≤ ,

which implies

ηk
〈
e
(
xk ,μk

)
, F

(
yk)〉 ≤ 〈

xk – xk+, F
(
yk)〉 ≤ .

Using the Cauchy-Schwarz inequality and (.), we obtain

ηk
σ

μk

∥∥e
(
xk ,μk

)∥∥ ≤ ηk
〈
e
(
xk ,μk

)
, F

(
yk)〉 ≤ ∥∥xk – xk+∥∥ · ∥∥F

(
yk)∥∥. (.)

By Lemma .,

∥∥e
(
xk ,μk)∥∥ ≥ min{,μk}

∥∥e
(
xk)∥∥.
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Since μk = min{θηk–, }, we have μk ≤ . Hence,

∥
∥e

(
xk ,μk)∥∥ ≥ min{,μk}

∥
∥e

(
xk)∥∥ ≥ μk

∥
∥e

(
xk)∥∥.

Therefore,

ηkμkσ
∥∥e

(
xk)∥∥ ≤ ηk

σ

μk

∥∥e
(
xk ,μk

)∥∥ ≤ ∥∥xk – xk+∥∥ · ∥∥F
(
yk)∥∥.

Taking into account that ηk = γ mk μk ≤ μk , we further obtain

η
kσ

∥
∥e

(
xk)∥∥ ≤ ηk

σ

μk

∥
∥e

(
xk ,μk

)∥∥ ≤ ∥
∥xk – xk+∥∥ · ∥∥F

(
yk)∥∥. (.)

Since F is continuous, there exists a constant M such that ‖F(yk)‖ ≤ M. By (.) and (.)
it follows that

lim
k→∞

ηk
∥
∥e

(
xk)∥∥ = . (.)

For any convergent subsequence {xkj} of {xk}, its limit is denoted by x̄, that is,

lim
j→∞ xkj = x̄.

Now, we consider the two possible cases for (.).
Suppose first that {ηkj} has a limit. Then

lim
j→∞ηkj = .

By the choice of ηkj in Algorithm . we know that

〈
F
(

xkj –
ηkj

γ
e
(
xkj ,μkj

)
)

, e
(
xkj ,μkj

)
〉
≤ σ

μk

∥∥e
(
xkj ,μkj

)∥∥. (.)

Since

lim
j→∞

(
xkj –

ηkj

γ
e
(
xkj ,μkj

))
= x̄.

Furthermore,

lim
j→∞ F

(
xkj –

ηkj

γ
e
(
xkj ,μkj

)
)

= F(x̄).

So, by (.) we obtain

lim
j→∞

〈
F
(

xkj –
ηkj

γ
e
(
xkj ,μkj

))
, e

(
xkj ,μkj

)〉

=
〈
F(x̄), e(x̄,μkj )

〉

≤ lim
j→∞

σ

μk

∥
∥e

(
xkj ,μkj

)∥∥ =
σ

μk

∥
∥e(x̄,μk)

∥
∥. (.)
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Using the similar arguments of (.), we have

〈
F(x̄), e(x̄,μkj )

〉 ≥ 
μk

∥
∥e(x̄,μk)

∥
∥.

Since

∥∥e
(
xk ,μk)∥∥ ≥ min{,μk}

∥∥e
(
xk)∥∥,

from (.) we get that e(x̄) = , and thus x̄ is a solution of problem (.).
Suppose now that lim supk→∞ ηk > . Because of (.), it must be that

lim infk→∞ ‖e(xk)‖ = . Since e(·) is continuous, we get e(x̄) = , and thus x̄ is a
solution of problem (.).

Now, we prove that the sequence {xk} converges to a point contained in �.
Let x∗ = P�(x). Since x∗ ∈ �, by Lemma . we have

x∗ ∈ H
kj– ∩ H

kj– ∩ C

for all j. So, by the iterative sequence of Algorithm . we have

∥
∥xkj – x∥∥ ≤ ∥

∥x∗ – x∥∥.

Thus,

∥∥xkj – x∗∥∥ =
∥∥xkj – x + x – x∗∥∥

=
∥∥xkj – x∥∥ +

∥∥x – x∗∥∥ + 
〈
xkj – x, x – x∗〉

≤ ∥∥x∗ – x∥∥ +
∥∥x – x∗∥∥ + 

〈
xkj – x, x – x∗〉.

Letting j → ∞, we have

∥
∥x̄ – x∗∥∥ ≤ 

∥
∥x – x∗∥∥ + 

〈
xkj – x, x – x∗〉

= 
〈
x̄ – x∗, x – x∗〉 ≤ ,

where the last inequality is due to Lemma . and the fact that x∗ = P�(x) and x̄ ∈ �. So,

x̄ = x∗ = P�

(
x).

Thus, the sequence {xk} has a unique cluster point P�(x), which shows the global conver-
gence of {xk}. �

4 Numerical experiments
To test the effectiveness of our algorithm in this paper, we implemented it in MATLAB
to solve the following example. We use ‖e(xk ,μk)‖ ≤ ε = – as the stopping criterion.
We denote Algorithm . in [] as Algorithm .∗. Throughout the computational exper-
iment, the parameters used in Algorithm . were set as γ = ., σ = ., θ = ., η = .,
β = . The numerical results of the example are given in Table , Iter denotes the number
of iterations, CPU denotes the computing time, and x∗ denotes the approximate solution.
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Table 1 Results for Example

Initiative point Algorithm 3.1∗ with β = 1 Algorithm 3.1

x0 = (3, 2, 0) Iter = 78; CPU (s) = 0.113 Iter = 43; CPU (s) = 0.098
x∗ = (0.0238, 0.0581, –0.1203) x∗ = (1.0512; –2.3679; 1.0613)

x0 = (0, –4, 0) Iter = 39; CPU (s) = 0.096 Iter = 20; CPU (s) = 0.053
x∗ = (–0.1608, –0.5033, 0.8663) x∗ = (–2.0711, 1.2634, 2.1036)

Example Let C = {x ∈ �|x
 + x

 ≤ } and Q = {x ∈ �|x – x
 ≤ }, A = I . Find x ∈ C

with Ax ∈ Q.

From the numerical experiments for the simple example we can see that our proposed
method has good convergence properties.

5 Some concluding remarks
This paper presented a hybrid CQ projection algorithm with two projection steps and one
Armijo linear-search step for solving the split feasibility problem (SFP). Different from the
self-adaptive projection methods proposed by Zhang et al. [], we use a new liner-search
rule, which ensures that the hyperplane Hk separates the current xk from the solution
set �. The next iteration is generated by the projection of the starting point on a shrink-
ing projection region (the intersection of three sets). Preliminary numerical experiments
demonstrate a good behavior. However, whether the idea can be used to solve multiple-set
SFP deserves further research.
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