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Abstract
One goal of this paper is to show that a big number of inequalities for functions in
Lp(R+), p≥ 1, proved from time to time in journal publications are particular cases of
some known general results for integral operators with homogeneous kernels
including, in particular, the statements on sharp constants. Some new results are also
included, e.g. the similar general equivalence result is proved and applied for
0 < p < 1. Some useful new variants of these results are pointed out and a number of
known and new Hardy-Hilbert type inequalities are derived. Moreover, a new
Pólya-Knopp (geometric mean) inequality is derived and applied. The constants in all
inequalities in this paper are sharp.
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1 Introduction
Let p >  and denote by p′ the conjugate parameter defined by 

p + 
p′ =  (p′ = ∞ when

p = ). We also let f and g denote arbitrary measurable positive functions on (,∞). The
constants in all inequalities below and in all of this paper are sharp.

Hilbert’s inequality: The inequality

∫ ∞



∫ ∞




x + y

f (x)g(y) dx dy

≤ π

sin π
p

(∫ ∞


f p(x) dx

)/p(∫ ∞


gp′

(y) dy
)/p′

for p >  ()

is called Hilbert’s inequality. It can equivalently be written in the form

∫ ∞



(∫ ∞




x + y

f (x) dx
)p

dy ≤
(

π

sin π
p

)p(∫ ∞


f p(x) dx

)
. ()

Remark  Hilbert himself considered only the case p =  and the corresponding discrete
form of () (see his paper [] from  and also [, ] and the historical description in
[]). Lp-spaces with p �=  appeared only later (around ). Concerning the equivalence
of () and () see our Lemma  for a more general statement.
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Hardy’s inequality: The first weighted form of Hardy’s inequality can be written in the
following way:

∫ ∞



(
xα–

∫ x



f (y)
yα

dy
)p

dx ≤
(

p
p – α – 

)p(∫ ∞


f p(x) dx

)
, ()

where p ≥ , α < p – . The (equivalent) dual form of () reads

∫ ∞



(
xα–

∫ ∞

x

f (y)
yα

dy
)p

dx ≤
(

p
 + α – p

)p(∫ ∞


f p(x) dx

)
, ()

where p ≥ , α > p – .

Remark  For the case α =  () is the classical Hardy inequality. The almost  years of
research until Hardy finally proved this inequality in  (see []) is described in detail in
[]. In particular, it is completely clear that Hardy’s motivation was to find an elementary
proof of Hilbert’s inequality for the discrete case. Also the weighted variant () was first
proved by Hardy (see []). The further development of inequalities () and () to what to-
day is called Hardy-type inequalities is very extensive and still a very active area of research
(see e.g. the monographs [] and [] and []) and the references given there.

Hardy-Hilbert type inequalities for homogeneous kernels: The inequalities ()-() can all
be written in the unified form

∫ ∞



(∫ ∞


k(x, y)f (x) dx

)p

dy ≤ Cp
∫ ∞


f p(x) dx, p ≥  ()

with different kernels k(x, y)which are homogeneous of degree –. A kernel k(x, y) is said
to be homogeneous of degree λ, λ ∈ R, if

k(tx, ty) = tλk(x, y) for all x, y ∈ R+.

It is also well known that the inequality () can be equivalently rewritten in the form

∫ ∞



∫ ∞


k(x, y)f (x)g(y) dx dy ≤ C

(∫ ∞


f p(x) dx

) 
p
(∫ ∞


gp′ (y) dy

) 
p′

, p ≥ , ()

with the same sharp constant C.

Remark  There are a huge number of papers devoted to the proof of () and () for con-
crete kernels k(x, y) other than the classical Hilbert kernel k(x, y) = /(x + y). In this con-
nection we refer to the monograph [] and the references there. Moreover, we announce
that by using a standard dilation argument in ()-() we see that such kernels must be ho-
mogeneous of degree –. One weakness with many of these results is that the authors do
not refer to the fact that already in  (see [] and also []) it was given necessary and
sufficient conditions for () to hold and with sharp constant and general kernel of degree
–. See Theorem .
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One main aim of this paper is to discuss, complete, and apply this result to get an
overview of the current situation partly described in Remark . See Theorem  and the
discussion in Remark . Moreover, the following new results are included:

(a) A general reversed version of the inequalities described in Remark  yielded for
 < p < . See Theorem .

(b) A corresponding equivalence theorem for homogeneous kernels of any order λ but
with the right-hand sides in Theorem  and Remark  replaced by some
corresponding weighted Lp-spaces so that our main results can be used. See
Theorem  and Remark .

(c) In order to be able to cover also some other results in the literature we derive a
version for ‘skew symmetric’ kernels of order – (for the definition see ()). See
Theorem  and Remark .

(d) A completely new geometric mean (Pólya-Knopp) type inequality is derived (see
Theorem ). Moreover, we present a number of applications of this, which seems
to be new too.

(e) As applications a number of new (and also well-known) sharp inequalities are
presented.

Remark  The inequality

∫ ∞


exp

(

x

∫ x


ln f (y) dy

)
dx ≤ e

(∫ ∞


f (x) dx

)
()

is just a limit case as p → ∞ of the Hardy inequality

∫ ∞



(

x

∫ x


f (y) dy

)p

dx ≤
(

p
p – 

)p ∫ ∞


f p(x) dx. ()

In fact, just replace f (x) by (f (x))/p in () and use the fact that (the scale of power means)
( 

x
∫ x

 f (y)/p dy)p converges to the geometric mean

exp

(

x

∫ x


f (y) dy

)
and

(
p

p – 

)p

→ e as p → ∞.

Sometimes () is called Knopp’s inequality with reference to his paper [] from  but
Hardy himself in his  paper [] said that Pólya pointed out this argument to him so
we prefer to call the inequality () the Pólya-Knopp inequality.

The paper is organized as follows: Some main results are presented and commented
in Section . The detailed proofs are given in Section . Some applications concerning
Hardy and Hardy-Hilbert type inequalities are presented in Section . Finally, Section  is
reserved for another main result, namely the announced new Pólya-Knopp type inequality.
Some applications of this result are also given. All inequalities in this paper have sharp
constants.

2 Main results
We consider the integral operator K defined by

Kf (x) :=
∫ ∞


k(x, y)f (y) dy, x ∈ R+, ()



Lukkassen et al. Journal of Inequalities and Applications  (2016) 2016:114 Page 4 of 18

with nonnegative kernel k(x, y) (a measurable function on R+ ×R+), which is homogeneous
of degree –, i.e.

k(tx, ty) = t–k(x, y), x, y ∈ R+, t > . ()

For such kernels we also define the constant

κp :=
∫ ∞


k(, y)y–/p dy =

∫ ∞


k(x, )x–/p′

dx, p > . ()

Here and in the sequel 
p + 

p′ =  when p �= , and p′ = ∞ when p =  (e.g. x–/p′ =  when
p = ).

Our first main results reads as follows.

Theorem  Let p ≥ , the kernel k(x, y) satisfy () and κp be the constant defined by ().
Then the following three statements are equivalent:

(i) The constant κp < ∞.
(ii) The inequality

∫ ∞



∫ ∞


k(x, y)f (x)g(y) dx dy ≤ C‖f ‖p‖g‖p′ ()

holds for some finite constant C for all f ∈ Lp and g ∈ Lp′ .
(iii) The inequality

∫ ∞



(∫ ∞


k(x, y)f (x) dx

)p

dy ≤ Cp
∫ ∞


f p(x) dx ()

holds for the same finite constant C as in () and all f ∈ Lp.

Moreover, the constant C = κp is sharp in both () and ().

Remark  The proof of () under the condition κp < ∞ was given already in the book
[], Theorem .. Apart from the original proof in [], this sufficiency part may be
derived, via a change of variables, from the Young theorem for convolutions in R, for details
see [] and []. In this way the sharpness of the constant is derived from the fact that
the Young inequality ‖h ∗ f ‖p ≤ ‖h‖‖f ‖p holds with the sharp constants ‖h‖ when h
is nonnegative. Hence, by using the results in [] and [] and the equivalence result in
Lemma , Theorem  is essentially known even if it has not been formulated in this way
before. However, to make our paper self-contained we include a proof which also guides
us how to prove the other results in this section.

For the case  < p <  it is expected that the inequalities () and () hold in the reversed
direction but now with the natural restrictions

I =
∫ ∞



∫ ∞


k(x, y)f (x)g(y) dx dy < ∞ ()

and

I =
∫ ∞



(∫ ∞


k(x, y)f (x) dx

)p

dy < ∞, ()
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so the reversed inequalities () and () make sense. We also need the following minor
technical condition:

lim
ε→+

∫ ε


k(, y)y–/py(p–)ε dy =

∫ ε


k(, y)y–/p dy ()

for some ε > .

Theorem  Let  < p <  and the kernel k(x, y) satisfy (). Moreover, assume that ()-()
hold. Then all the statements in Theorem  hold with inequalities () and () holding in
reversed direction.

Since p′ <  in this case we have ‖g‖p′ = (
∫ ∞

 |g(y)|p/(p–) dy)
p–

p and we assume that  <
‖g‖p′ < ∞ here and in the sequel.

Remark  For the proof of the fact that κp < ∞ implies the equivalent reversed conditions
() and () we do not need the restriction ().

A kernel k(x, y) is said to be homogeneous of degree λ if

kλ (tx, ty) = tλ k(x, y), x, y ∈ R, t > . ()

Remark  By using a standard dilation argument it is seen that the inequalities considered
in Theorem  can hold if and only if λ = –. However, by changing the norms in the left-
hand sides in () and () to power-weighted norms we can from our result obtain a
similar result for homogeneous kernels of any degree λ. In order to be able to compare
with a result in [] we formulate this result as follows.

Theorem  Let p ≥  and α,β ∈ R. Let the kernel kλ (x, y) satisfy () for λ = – + α + β ,
and define

κp,β =
∫ ∞


kλ (, y)y–β–(/p) dy. ()

Then the following three conditions are equivalent:

(i∗) The constant κp,β < ∞.
(ii∗) The inequality

∫ ∞



∫ ∞


kλ (x, y)f (x)g(y) dx dy ≤ C‖f ‖p,xα‖g‖p′ ,xβ ()

holds for some finite constant C for all f ∈ Lp,xα and g ∈ Lp′ ,xβ .
(iii∗) The inequality

∫ ∞



(
y–β

∫ ∞


k(x, y)f (x) dx

)p

dy ≤ Cp
∫ ∞


f p(x)xαp dx ()

holds for the same finite constant C as in () and all f ∈ Lp,xα .
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(iv∗) The constant C = κp,β (defined by ()) is sharp in both () and ().

Remark  By choosing λ = –λ, α =  – λ
r – 

p , β =  – λ
s – 

p′ (= – λ
s + 

p ) with s > , 
r + 

s = 
we can compare with Theorem . in []. For the case p > , λ >  the equivalence in
(ii∗) and (iii∗) were established already in this Theorem and also the sharpness in (iv∗) for
these cases. However, the necessity pointed out in (i∗) was not explicitly pointed out in
this paper.

Remark  By using our Theorem  and making similar calculations as in the proof of
Theorem  we can obtain a similar complement and strengthening of Theorem . in
[] yielding for  < p <  and kernels of any homogeneity λ ∈ R.

In order to cover even more direct applications we finally also state another consequence
(but also formal generalization) of Theorem . We consider here (skew-symmetric) ker-
nels with the following generalized homogeneity of order –:

k
(
tax, tby

)
= t–k(x, y), a, b �= . ()

Theorem  Let p ≥  and let the kernel k(x, y) satisfy () with (generalized duality) con-
dition a

p′ + b
p =  and define

κp,β (a, b) :=
(

a
b

) 
p′ ∫ ∞


k(, t)t


b [( b–

p +)]– dt.

Then the following conditions are equivalent:

(i) The constant κp(a, b) < ∞.
(ii) The inequality

∫ ∞



∫ ∞


k(x, y)f (x)g(y) dx dy ≤ C‖f ‖p‖g‖p′ ()

holds for some finite constant C for all f ∈ Lp and g ∈ Lp′ .
(iii) The inequality

∫ ∞



(∫ ∞


k(x, y)f (x) dy

)p

dx ≤ Cp
∫ ∞


f p(x) dx ()

holds for the same finite constant C as in () and all f ∈ Lp.
(iv) The sharp constant in both () and () is C = κp(a, b).

Remark  By using a similar proof to that of Theorem  we can obtain a similar conse-
quence (and formal extension) also of our Theorem .

For the proof of these Theorems we need a lemma of independent interest, which we
state and prove in a little more general form. Let k(x, y) denote a positive kernel on R+ ×R+.

Lemma 
(a) Let p ≥ . The following statements are equivalent:
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(i) The inequality
∫ ∞



∫ ∞


k(x, y)f (x)g(y) dx dy ≤ C‖f ‖p‖g‖p′ ()

holds for some finite constant C and all f ∈ Lp and g ∈ Lp′ .
(ii) The inequality

∫ ∞



(∫ ∞


k(x, y)f (x) dx

)p

dy ≤ Cp
∫ ∞


f p(x) dx ()

holds for the same finite constant C as in () and all f ∈ Lp.
(b) Let  < p < . A similar equivalence to that in (a) holds also in this case but with the

inequalities in () and () reversed (here we use the same convention concerning
‖g‖p′ as before, see the sentence after Theorem ).

Remark  The statement in (a) is well known and follows from a more general statement
in functional analysis. However, we give here another simple direct proof which works also
to prove that part (b) holds, which seems not to have been explicitly stated before.

3 Proofs
Proof of Lemma  (a) Let p > . Assume that () holds. Then, by using Hölder’s inequal-
ity, we find that

I =
∫ ∞



∫ ∞


k(x, y)f (x)g(y) dx dy

≤
(∫ ∞



(∫ ∞


k(x, y)f (x) dx

)p

dy
)/p(∫ ∞


gp′

(y) dy
) 

p′

≤ C‖f ‖p‖g‖p′ ,

so () holds. Now assume that () holds and choose

g(y) =
(∫ ∞


k(x, y)f (x) dx

)p–

∈ Lp′ .

With this choice

I =
∫ ∞



(∫ ∞


k(x, y)f (x) dx

)p

dy := I.

Thus, by (),

I ≤ C‖f ‖p

(∫ ∞



(∫ ∞


k(x, y)f (x) dx

)p

dy
) 

p′

= C‖f ‖pI

p′

 .

Hence,

I ≤ C‖f ‖p

so () holds.
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Let p =  so p′ = ∞. By applying () with g(y) ≡  we see that () implies (). More-
over, by using that g(y) ≤ ‖g‖∞, y ∈ (,∞), we find that () implies ().

(b) Hölder’s inequality holds in the reversed direction in this case. Hence, the proof of
(b) only consists of obvious modifications of the proof of (a). �

Proof of Theorem  Let p >  and assume that i) holds. Then, by Hölder’s inequality and
K defined by (), we have

Kf (x) =
∫ ∞


k(x, y)f (y) dy

=
∫ ∞


y– 

p′p (
k(x, y)

) 
p′ y


p′p (

k(x, y)
) 

p dy

≤
(∫ ∞


y– 

p k(x, y) dy
) 

p′ (∫ ∞


y– 

p′ k(x, y)f p(y) dy
) 

p
:= I


p′

 I

p

 .

In I we change the variable y to yx and use () and () to obtain

I =
∫ ∞


(yx)– 

p k(x, xy)x dy

= x– 
p

∫ ∞


k(, y)y– 

p dy = x– 
p κp.

We conclude that

‖Kf ‖Lp ≤ κ


p′

p

(∫ ∞


x– 

p

∫ ∞


y


p′ k(x, y)f p(y) dy

) 
p

. ()

We now change the variable x to xy using () and () to find that

I :=
∫ ∞


x– 

p′ y

p′ k(x, y)f p(y) dy

=
∫ ∞


(xy)– 

p′ y

p′ k(xy, y)f p(y)x dy =

∫ ∞


x– 

p k(x, )f p(y) dy.

Hence, by (), (), and the Fubini theorem,

‖Kf ‖Lp ≤ κ


p′

p κ

p

p ‖f ‖p = κp‖f ‖p,

which means that () holds with C = κ
p
p for any f ∈ Lp.

Next we assume that () holds for some C < ∞ and all f ∈ Lp. By using the sharpness
in Hölder’s inequality we have the following representation formula:

‖Kf ‖Lp = sup
‖�‖p′ =

∫ ∞



∫ ∞


k(x, y)f (y) dy�(x) dx. ()

Let ε >  and consider the following test function:

fε(y) =

{
y– 

p –ε , y ≥ ,
,  ≤ y < .
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Moreover, let

� = �ε(y) = (εp)

p′ (fε(y)

)p–,

which has the property ‖�‖p′ = .
We note that

‖fε‖p =
(


εp

) 
p

. ()

Moreover,

I :=
∫ ∞



∫ ∞


k(x, y)f p

ε (y) dy�ε(x) dx

= (εp)

p′

∫ ∞


x– 

p′ –ε(p–)
(∫ ∞


k(x, y)y– 

p –ε dy
)

dx. ()

Furthermore, by changing the variable y to yx and using () we find that

∫ ∞


k(x, y)y– 

p –ε dy =
∫ ∞


x

k(x, yx)xy– 
p –ε dy

= x– 
p –ε

∫ ∞


x

k(, y)y– 
p –ε dy.

We insert this into () and use Fubini’s theorem to obtain

I = (εp)

p′

∫ ∞


x––εp

∫ ∞


x

k(, y)y– 
p –ε dy dx

= (εp)

p′

∫ ∞


k(, y)y– 

p –ε

(∫ ∞

max(,/y)
x––εp dx

)
dy

= (εp)– 
p

∫ ∞


k(, y)y– 

p –ε(max(, /y)
)εp dy.

Hence, by using (), (), (), together with this inequality, we conclude that

C ≥
∫ ∞


k(, y)y– 

p –ε(max(, /y)
)εp dy. ()

Thus, by letting ε → + in () and using the Fatou lemma, we see that (i) holds and

κp ≤ C < ∞.

The proof of the equivalence of (i) and (iii) is complete including the fact that C = κ
p
p is the

sharp constant in ().
Moreover, by using Lemma , we see that statements (i) and (ii) are equivalent includ-

ing the fact that the constant C = κp is sharp also in (). We have thus also proved that
statement (iv) is correct.
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For the case p =  we again change the variable x to yx and use () to obtain

∫ ∞



∫ ∞


k(x, y)f (y) dy dx =

∫ ∞



∫ ∞


k(yx, y)f (y)x dy dx

=
∫ ∞



∫ ∞


k(x, ) dx f (y) dy = κ

∫ ∞


f (y) dy

i.e. () holds even with equality with constant κ and all f ∈ L. In particular, the equiva-
lence of (i) and (iii) is proved. The equivalence of (ii) and (iii) follows from Lemma  and
the statement (iv) is obvious. The proof is complete. �

Proof of Theorem  First we note that Hölder’s inequality holds in the reversed direction
so the proof of the necessity part follows exactly as in the proof of Theorem . For the proof
of the sufficiency part instead of the representation formula () in the case  < p <  we
use the corresponding representation formula,

‖Kf ‖Lp = inf‖�‖p′ =

∫ ∞



∫ ∞


k(x, y)f (y) dy�(x) dx,

with the same interpretation of ‖�‖p′ as mentioned just after Theorem . By using the
same test function fε and the corresponding �ε we now come to that () holds in the
reversed direction but the problem is now that we cannot use the Fatou lemma. However,
according to () we have

C

p ≤

∫ ε


k(, y)y– 

p y(p–)ε dy

+ ε
(p–)ε


∫ 

ε

k(, y)y– 
p dy

+
∫ ∞


k(, y)y– 

p dy

→ κp as ε → .

This shows that the constant C = κ
p
p is sharp in the reversed form of (). The remaining

part of the proof follows by applying Lemma (b). �

Proof of Theorem  Consider Theorem  with f replaced by fxα , g replaced by gxβ , and
the kernel

k(x, y) :=
kλ (x, y)

xαyβ

which is homogeneous of degree –. Hence, Theorem  follows from Theorem . (Note
that k(, y) = kλ (, y)y–β .) �

Proof of Theorem  Introduce the auxiliary kernel k(x, y) := k(aa, yb) which obviously
is homogeneous of order – in usual sense. Moreover, in () we make the changes of
variables x = ua and y = vb and define

F(u) := f
(
ua)u

a–
p
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and

G(v) := gp′(
vb)v

b–
p .

This leads us to consider the kernel

k(u, v) := k(u, v)u
a–
p′ v

b–
p .

In order that also this kernel shall have homogeneity – we must assume that

a – 
p′ +

b – 
p

=  i.e. that
a
p′ +

b
p

= .

We now apply Theorem  with f and g replaced by F and G and with the kernel k(u, v)
and the proof follows. �

4 Examples of inequalities covered by the results in Section 3
First we present two simple standard examples.

Example  Let f (x, y) = 
x+y and p > . Then Theorem  guarantees that the following

equivalent inequalities hold:

∫ ∞



(∫ ∞



f (y)
x + y

dy
)p

dx ≤ κp
p

∫ ∞


f p(x) dx

and

∫ ∞



∫ ∞



f (x)f (y)
x + y

dx dy ≤ κp

(∫ ∞


f p(x) dx

) 
p
(∫ ∞


gp′ (y) dy

) 
p′

with the sharp constant

κp =
∫ ∞



y– 
p

 + y
dy =

π

sin π
p

.

In a similar way we can get a great number of so called Hardy-Hilbert type inequalities by
using other related kernels of homogeneous type –. For example, if λp′ >  we have the
following equivalent inequalities:

∫ ∞



(
xλ–

∫ ∞



f (y)
xλ + yλ

dy
)p

dx ≤ κp
p

∫ ∞


f p(x) dx ()

and

∫ ∞



∫ ∞



xλ–f (y)g(x)
xλ + yλ

dx dy ≤ κp

(∫ ∞


f p(y) dy

) 
p
(∫ ∞


gp′

(x) dx
) 

p′
()

with sharp constant

κp =
∫ ∞



y– 
p

 + yλ
dy =


λ

∫ ∞



y


λp′ –

 + y
dy =

π

λ sin π
λp′

.
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Remark  Inequalities of the type () and () are in several papers called Hardy-Hilbert
or Hilbert type inequalities. As we have pointed out they are a consequence of Theorem 
and can be obtained if and only if the kernel k(x, y) is homogeneous of type –. A great
number of examples have been presented in the literature but most such results can also
be derived from Theorem  for  ≤ p < ∞ and from the reversed forms from Theorem 
for  < p < .

Example  Let k(x, y) = xα–y–α ,  < y ≤ x, k(x, y) = , y > x. Then Theorem  implies the
following equivalent inequalities:

∫ ∞



(
xα–

∫ x



f (y)
yα

dy
)p

dx ≤ κp
p

∫ ∞


f p(x) dx ()

and

∫ ∞



∫ x



xα–f (y)g(x)
yα

dy dx ≤ κp

(∫ ∞


f p(y) dy

) 
p
(∫ ∞


gp′

(x) dx
) 

p′

with the sharp constant

κp =
∫ 


y–αy– 

p dy =
p

p –  – αp
, α <


p′ ,  ≤ p ≤ ∞.

By instead using the kernel k(x, y) = xα–y–α , y ≥ x, k(x, y) = ,  < y < x, Theorem  implies
the equivalent inequalities

∫ ∞



(
xα–

∫ ∞

x

f (y)
yα

dy
)p

dx ≤ κp
p

∫ ∞


f p(x) dx ()

and

∫ ∞



∫ ∞

x

xα–f (y)g(x)
yα

dy dx ≤ κp

(∫ ∞


f p(y) dy

) 
p
(∫ ∞


gp′

(x) dx
) 

p′

with the sharp constant

κp =
p

αp – p + 
, α >


p′ ,  ≤ p ≤ ∞.

Remark  The inequality () is the first weighted form of Hardy’s original inequality
proved by Hardy himself in  (see []). Equation () is sometimes called the dual form
of (), in fact these inequalities are in a sense equivalent.

In our next example we unify and generalize the inequalities in Examples  and 
by presenting a scale of inequalities between these inequalities (a genuine Hardy-Hilbert
inequality).

Example  Apply Theorem  with the kernel

k(x, y) =
xα+β–

yα(x + y)β
,  < y ≤ x and k(x, y) = , y > x.
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We find that the (Hardy-Hilbert type) inequality
∫ ∞



(
xα+β–

∫ ax



f (y)
yα(x + y)β

dy
)p

dx ≤ κp
p

∫ ∞


f p(x) dx, ()

where  < a ≤ ∞, holds with the sharp constant

κp =
∫ a



y– 
p

yα(x + y)β
dy =

∫ a
+a


t–α– 

p ( – t)α+ 
p +β– dx

= B a
+a

(

p′ – α,α + β –


p′

)
,

where  < a ≤ ∞,  ≤ p ≤ ∞,
{

α < 
p′ , β ∈ R, if a < ∞,

α < 
p′ , α + β > 

p′ , if a = ∞.

and Bz(u, v) denotes the incomplete beta-function

Bz(u, v) =
∫ z


t–u( – t)v– dt,  < z ≤ .

Remark  Concerning () note especially that

(∗) if a = , β = , we obtain the Hardy inequality () in Example ,
(∗∗) if a = ∞, β = , α =  we get the Hilbert inequality in Example ,

(∗∗∗) in all (Hardy like) cases β =  we have the sharp constant

a

p′ –α


p′ – α

, α <

p′ .

Remark  Recall also that the incomplete beta-function is a particular case of the Gauss
hypergeometric function: Bz(u, v) = ( zu

u )F(u,  – v; u + ; z), which gives an alternative ex-
pression for the sharp constant

κp =
p′

 – αp′

(
a

 + a

) 
p′ –α

F

(

p′ – α,


p′ +  – α – β ;


p′ +  – α;

a
 + a

)
.

Making use of the various known properties of the Gauss function, one can produce
further particular cases of the above Hardy-Hilbert inequality with ‘nice’ sharp constants.
For instance, it is known that

F(, ; ; z) =

z

ln


 – z
,

see [], formula ... Then, under the choice β =  and α = – 
p in (), this yields the

following particular case of ():

∫ ∞



∣∣∣∣
∫ ax



(
y
x

) 
p f (y) dy

x + y

∣∣∣∣
p

dx ≤ κ
p
p

∫ ∞



∣∣f (x)
∣∣p dx

with the sharp constant κp = ln( + a),  < a < ∞.
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The following example is a dual counterpart to Example .

Example  Applying Theorem  with the kernel

k(x, y) =
xα+β

yα(x + y)β
, y ≥ x and k(x, y) = ,  < y ≤ x,

and we find that

∫ ∞



∣∣∣∣xα+β

∫ ∞

ax

f (y) dy
y+α(x + y)β

∣∣∣∣
p

dx ≤ κ
p
p

∫ ∞



∣∣f (x)
∣∣p dx,

where  ≤ a < ∞, with the sharp constant

κp =
∫ ∞

a

dy

y+α+ 
p ( + y)β

=
∫ 

+a


tα+β+ 

p –( – t)–α– 
p – dt

= B 
+a

(
α + β +


p

, –α –

p

)
,

where  ≤ a < ∞,  ≤ p ≤ ∞, and

{
–β < α + 

p , β ∈ R, if a > ,
–β < α + 

p < , β > , if a = .

Example  (Hardy-Littlewood inequality []) We have

∫ ∞




xα

∣∣∣∣
∫ x



f (y) dy
(x – y)–α

∣∣∣∣
p

dx ≤ κ
p
p

∫ ∞



∣∣f (x)
∣∣p dx

with the sharp constant

κp =
∫ 



dy

y

p ( – y)–α

= B
(

α,

p′

)
, α > ,  < p < ∞.

The following example is also a particular case of Theorem .

Example  (Unifying Examples  and ) We have

∫ ∞


xα+β–

∣∣∣∣
∫ x



f (y) dy
yα(x – y)β

∣∣∣∣
p

dx ≤ κ
p
p

∫ ∞



∣∣f (x)
∣∣p dx

with the sharp constant

κp =
∫ 



dy

yα+ 
p ( – y)β

= B
(

 – β ,

p′ – α

)
, α <


p′ ,β < ,  < p < ∞.

As a simple generalization of Example , the next example also easily follows from The-
orem .
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Example  (Hilbert type inequality) We have

∫ ∞



∣∣∣∣
∫ ∞



a( y
x )

x + y
f (y) dy

∣∣∣∣
p

dx ≤ κ
p
p

∫ ∞



∣∣f (x)
∣∣p dx

under the assumption that

κp =
∫ ∞



|a(y)|dy

y

p ( + y)

< ∞,  ≤ p < ∞.

This constant κp is sharp when a(y) ≥ . In particular,

∫ ∞



∣∣∣∣
∫ ∞



(
x
y

)γ f (y)
x + y

dy
∣∣∣∣
p

dx ≤ κ
p
p

∫ ∞



∣∣f (x)
∣∣p dx

with the sharp constant

κp =
∫ ∞



dy

yγ + 
p ( + y)

=
π

sinπ (γ + 
p )

, –

p

< γ <

p′ ,  ≤ p < ∞

and

∫ ∞



∣∣∣∣
∫ ∞



(
x
y

)γ ln( + y
x )

x + y
f (y) dy

∣∣∣∣
p

dx ≤ κ
p
p

∫ ∞



∣∣f (x)
∣∣p dx

with the sharp constant

κp =
∫ ∞



ln( + y) dy

y

p ( + y)

= p,  < p < ∞.

We finish this section by also giving the following application of our Theorem .

Example  Let α > , p > , and λ, μ satisfy that


λp′ +


μp

= α,  – p <


αμ
< .

Then the following inequalities hold and are equivalent:
(i)

∫ ∞


∫ ∞
 ( 

xλ+yμ )αf (x)g(y) dx dy ≤ C‖f ‖p‖g‖p′ for all f ∈ Lpand g ∈ Lp′ .
(ii)

∫ ∞
 (

∫ ∞
 ( 

xλ+yμ )αf (x) dy)p dx ≤ Cp ∫ ∞
 f p(x) dx for all f ∈ Lp.

The sharp constant C in both (i) and (ii) is

C =


|λ| 
p′ |μ| 

p
B(a, a),

with a = 
p (α – 

μ
) and a = α – a.

In fact, the proof follows by just using Theorem  with a = 
λα

, b = 
μα

and making some
straightforward calculations.
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Remark  In the classical Hilbert case α = λ = μ =  we obtain

C = B
(


p

,

p′

)
=

π

sin( π
p )

so that (i) coincides with the classical form () of Hilbert’s inequality.

5 A new general geometric mean type inequality
In addition to the constant κp defined in (), we also introduce the constants

κ∞ :=
∫ ∞


k(, y) dy

and

κ
∗ :=

∫ ∞
 k(, y) ln 

y dy∫ ∞
 k(, y) dy

assuming that k(x, y) ≥  and maybe zero only on a set of measure zero.
Our new general geometric mean inequality reads as follows.

Theorem  Let f (x) ≥ , let κ∞ < ∞ for some p > . If κ∗ < ∞, then
∫ ∞


exp

(


κ∞

∫ ∞


k(x, y) ln f (y) dy

)
dx ≤ eκ

∗
∫ ∞


f (x) dx ()

and the constant eκ∗ is sharp.

Proof First we observe that

κ∞ < ∞ and κp < ∞ for some p �⇒ κq < ∞ for all q > p,

because

κq ≤
∫ 


k(, t)t– 

p dt +
∫ ∞


k(, t) dt ≤ κp + κ∞.

Therefore, we can apply the inequality () for all sufficiently large p.
We rewrite this inequality as

∥∥∥∥ 
κ∞

∫ ∞


k(x, y)f (y) dy

∥∥∥∥
Lp(R+)

≤ κp

κ∞
‖f ‖Lp(R+).

Here, we replace f (x) by f (x)λ, and also p by 
λ

, where λ is an arbitrarily small positive
number, and we make use of the relation

∥∥f λ
∥∥

p = ‖f ‖λ
λp.

We get

∥∥∥∥
(


κ∞

∫ ∞


k(x, y)f (y)λ dy

) 
λ
∥∥∥∥

L(R+)
≤

(
κ 

λ

κ∞

) 
λ ‖f ‖L(R+). ()
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Denote

gλ(x) =


κ∞

∫ ∞


k(x, y)f (y)λ dy.

Since limλ→(gλ(x)) =  for almost all x we have

lim
λ→

(
gλ(x)

) 
λ = lim

λ→
e

ln gλ(x)
x = elimλ→

d
dλ

ln gλ(x) = exp

(


κ∞

∫ ∞


k(x, y) ln f (y) dy

)
.

Similarly

lim
λ→

(
κ 

λ

κ∞

) 
λ

= e


κ∞
∫ ∞

 k(,t) ln 
t dt

and from () we arrive at (). �

Example  (Generated by a weighted Hardy inequality) Take k(x, y) = xa–

yα when y ≤ x
and k(x, y) =  otherwise, where α < . Then κ∞ = 

–α
and

κ
∗ = ( – α)

∫ 


y–α ln


y

dy = ( – α)
∫ ∞


te–(–α)t dt =


 – α

and () turns into
∫ ∞


exp

(
( – α)xα–

∫ x



ln f (y) dy
yα

)
dx ≤ e


–α

∫ ∞


f (x) dx

with e 
–α as the sharp constant. For α =  this is the classical Pólya-Knopp inequality (see

()).

Example  (Generated by weighted Hilbert inequality) Take k(x, y) = ( x
y )α 

x+y where  <
α < . Then

κ∞ =
∫ ∞



dy
yα( + y)

=
π

sinαπ
.

To calculate κ
∗ we differentiate the last equality in α and get

∫ ∞



ln 
y dy

yα( + y)
= –

π cosαπ

sin απ

so that κ∗ = –π cotαπ and () turns into the sharp inequality

∫ ∞


exp

(
πxα

sinαπ

∫ ∞



ln f (y)
yα(x + y)

dy
)

dx ≤ e–π cotαπ

∫ ∞


f (x) dx.

Example  (Generated by the Hardy-Littlewood inequality) Take k(x, y) = 
xα (x–y)–α

when y < x and k(x, y) =  otherwise, where α > . Then κ∞ = 
α

. Via integration by parts
and some additional tricks it may be shown that

∫ ∞


k(, y) ln


y

dy =
∫ ∞



ln 
y

( – y)–α
dy =

ψ( + α) – ψ()
α

,
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where ψ(z) = �′(z)
�(z) is the Euler psi function and we find that () turns into the Pólya-Knopp

type inequality

∫ ∞


exp

(
α

xα

∫ ∞



ln f (y)
(x – y)–α

dy
)

dx ≤ e
ψ(+α)–ψ()

α

∫ ∞


f (x) dx. ()

Note that in the case α =  the inequality () turns into the classical Pólya-Knopp in-
equality (see ()) with the sharp constant e in view of the property ψ() = ψ() +  of the
psi function.
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