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Abstract
In this paper, considering the nonparametric regression model Yni = g(ti) + εi
(1 ≤ i ≤ n), where εi =

∑∞
j=–∞ ajei–j and ei–j are identically distributed and ρ-mixing

sequences. This paper obtains the Berry-Esseen bounds of the wavelet estimator of
g(·), the rates of the normal approximation are shown as O(n–1/6) under certain
conditions.

MSC: 60G20; 60F05

Keywords: wavelet estimator; ρ-mixing; Berry-Esseen bound; linear process

1 Introduction
The Berry-Esseen theorem of probability distribution concerns mainly research of statis-
tics convergence to a certain distribution and the measure of the probability distributions
of the statistics which determines the distribution as regards the absolute distance that
can be controlled as an optimal problem.

In recent years, the Berry-Esseen bounds theorem has got extensive investigation. For
instance, Xue [] discussed the Berry-Esseen bound of an estimator for the variance in a
semi-parametric regression model under some mild conditions, Liang and Li [] studied
the asymptotic normality and the Berry-Esseen type bound of the estimator with linear
process error, Li et al. [] derived the Berry-Esseen bounds of the wavelet estimator for
a nonparametric regression model with linear process errors generated by ϕ-mixing se-
quences, Li et al. [] investigated the Berry-Esseen bounds of the wavelet estimator in a
semi-parametric regression model with linear process errors.

To investigate the estimation of the fixed design nonparametric regression model in-
volves a regression function g(·) which is defined on [, ]:

Yi = g(ti) + εi ( ≤ i ≤ n), (.)

where {ti} are known fixed design points, we assume {ti} and to be ordered  ≤ t ≤ · · · ≤
tn ≤ , and {εi} are random errors.

It is well known that a regression function estimation is an important method in data
analysis and has a wide range of applications in filtering and prediction in communica-
tion and control systems, pattern recognition and classification, and econometrics. So the
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model (.) has been studied widely. The model (.) has been applied in solving many
practical problems and kinds of estimation methods have been used to obtain estimators
of g(·).

For model (.), the following wavelet estimator of g(·) will be considered:

gn(t) =
n∑

i=

Yi

∫

Ai

Em(t, s) ds. (.)

The wavelet kernel Em(t, s) can be considered as follows: Em(t, s) = mE(mt, ms) =
m ∑

k∈Z φ(mt – k)φ(ms – k), where φ(·) is a scaling function, the smooth parameter
m = m(n) >  depending only on n, and Ai = [si–, si] being a partition of interval [, ],
si = (/)(ti + ti+), and ti ∈ Ai,  ≤ i ≤ n.

As we know wavelets have been used widely in many engineering and technological
fields, especially in picture handling by computers. Since the s, in order to meet prac-
tical demands, some authors began to consider using wavelet methods in statistics.

Definition . Let {Xi : i = , , . . .} be a sequence of random variables. Write the ρ-mixing
coefficient

ρ(n) = sup
k∈N

sup
X∈L(Fk

 ),Y∈L(F∞
k+n)

|E(X – EX)(Y – EY )|√
Var X Var Y

,

where Fb
a := σ {{Xi : a ≤ i ≤ b}}, L(Fb

a) is the set of square integrable random variables on
the condition of Fb

a.

Definition . A sequence of random variables {Xi : i = , , . . .} is ρ-mixing if ρ(n) → ,
n → ∞.

Kolmogorov and Rozanov [] put forward a ρ-mixing random variables sequence. For
the wide use of ρ-mixing in science and technology and economics, many scholars have
investigated the ρ-mixing and got fruitful meaningful results. For instance, the central
limit theorem for ρ-mixing, the law of large numbers for ρ-mixing, the strong invari-
ant principle and weak invariant principle for ρ-mixing, the complete convergence the-
orem of ρ-mixing, which we can see in Shao’s work [, ]. Recently, Jiang [] discussed
the convergence rates in the law of the logarithm of the ρ-mixing random variables, ob-
taining a sufficient condition for the law of logarithm of ρ-mixing and the convergence
rates in the law of the iterated logarithm. Chen and Liu [] achieved the sufficient and
necessary conditions of complete moment convergence for a sequence of identically dis-
tributed ρ-mixing random variables. Zhou and Lin [] investigated the estimation prob-
lems of partially linear models for longitudinal data with ρ-mixing error structures, and
they studied the strong consistency for the least squares estimator of the parametric com-
ponent; the strong consistency and uniform consistency for the estimator of nonpara-
metric function were studied under some mild conditions. Tan and Wang [] studied the
complete convergence for weighted sums of non-identically distributed ρ-mixing random
variables sequence, and they gave the Marcinkiewicz-Zygmund type strong law of large
numbers.
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2 Assumptions and main results
First, we give some basic assumptions as follows:

(A) {εj}j∈Z has a linear representation εj =
∑∞

k=–∞ akek–j, where {ak} is a sequence of
real numbers with

∑∞
k=–∞ |ak| < ∞, {ej} are identically distributed, ρ-mixing

random variables with Eej = , E|ej|r < ∞ for some r > , and ρ(n) = O(n–λ) for
λ > .

(A) The spectral density function f (ω) of {εi} satisfies  < c ≤ f (ω) ≤ c < ∞ for all
ω ∈ (–π ,π ].

(A) (i) φ(·) is said to be σ -regular (φ ∈ Sσ , σ ∈ N ) if for any κ ≤ σ and any integer t,
one has |dκ

φ/dxκ | ≤ Ct( + |x|)–, the Ct depending only on t;
(ii) φ(·) satisfies the Lipschitz condition with order  and |φ̂(ξ ) – | = O(ξ ) as

ξ → ∞, where φ̂ is the Fourier transform of φ.
(A) (i) g(·) satisfies the Lipschitz condition of order ;

(ii) g(·) ∈ Hμ, μ > /, A function space Hμ (μ ∈ R) is said to be Sobolev space of
order V , i.e., if h ∈ Hμ then

∫ |ĥ(w)|( + w)μ dw < ∞, where ĥ is the Fourier
transform of h.

(A) max≤i≤n |si – si– – n–| = o(n–).
(A) Set p := p(n) and q := q(n), write k := [n/(p + q)] such that for p + q ≤ n,

qp– → , and ζin → , i = , , , , where ζn = qp–m, ζn = p m

n ,
ζn = n(

∑
|j|>n |aj|), ζn = kρ(q).

Remark . (A) are the general conditions of the ρ-mixing sequence, such as Shao [, ],
(A) is weaker than Li et al.’s [], (A)-(A) are mild regularity conditions for the wavelet
estimate in the recent literature, such as Li et al. [, , ], Liang and Qi []. In (A), p, q,
m can be defined as increasing sequences, and ζin → , i = , , , , are easily satisfied, if
p, q and m are chosen reasonable. See e.g. Liang and Li [], Li et al. [, , ].

In order to facilitate the discussion, write σ 
n := σ 

n (t) = Var(ĝn(t)), Sn := Sn(t) = σ –
n {ĝn(t)–

Eĝn(t)}, u(n) =
∑∞

j= ρ(j), ‖X‖β = (E|X|β )/β , a∧b = min{a, b}. Next, we give the main results
as follows.

Theorem . Suppose that (A)-(A) hold, then for each t ∈ [, ], we can get

sup
u

∣
∣P

(
Sn(t) ≤ u

)
– �(u)

∣
∣ ≤ C

{
ζ /

n + ζ /
n + ζ δ/

n + ζ /
n + ζ /

n + u(q)
}

.

Corollary . Suppose that (A)-(A) hold, then for each t ∈ [, ], we can get

sup
u

∣
∣P

(
Sn(t) ≤ u

)
– �(u)

∣
∣ = ◦().

Corollary . Suppose that (A)-(A) hold, assume that

m

n
= O(n–θ ) and sup

n≥

(
n

λθ+λ+θ+
(λ+)

)∑

|j|>n

|aj| < ∞

for some 
–λ

< θ ≤  and for some λ > , we can get

sup
u

∣
∣P

(
Sn(t) ≤ u

)
– �(u)

∣
∣ ≤ C

{
ζ /

n + ζ /
n + ζ /

n + ζ /
n + u(q)

}
,
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sup
u

∣
∣P

(
Sn(t) ≤ u

)
– �(u)

∣
∣ = O

(
n– λ(θ–)+(θ–)

λ+
)
.

Observe, taking θ ≈  as λ → ∞, that it follows that supu |P(Sn(t) ≤ u) – �(u)| = O(n–/).

3 Some lemmas
From (.), we can see that

Sn = σ –
n

n∑

i=

εi

∫

Ai

Em(t, s) ds

= σ –
n

n∑

i=

∫

Ai

Em(t, s) ds
n∑

j=–n

ajei–j

+ σ –
n

n∑

i=

∫

Ai

Em(t, s) ds
∑

|j|>n

ajei–j

:= Sn + Sn.

Write

Sn =
n∑

l=–n

σ –
n

(
min{n,l+n}∑

i=max{,l–n}
ai–l

∫

Ai

Em(t, s) ds

)

el :=
n∑

l=–n

Wnl,

set Sn = S′
n + S′′

n + S′′′
n, where S′

n =
∑k

v= ynv, S′′
n =

∑k
w= y′

nv, S′′′
n = y′

nk+,

ynv =
kv+p–∑

i=kv

Wni, y′
nv =

lv+q–∑

i=lv

Wni, y′
nk+ =

n∑

i=k(p+q)–n+

Wni,

kv = (v – )(p + q) +  – n, lv = (v – )(p + q) + p +  – n, w = , . . . , k,

then

Sn = S′
n + S′′

n + S′′′
n + Sn.

Next, we give the main lemmas as follows.

Lemma . Let {Xi : i = , , . . .} be a ρ-mixing sequence, p, p are two integers, let ηl :=
∑(l–)(p+p)+p

(l–)(p+p)+ Xi, for  ≤ l ≤ k. If r > , s > , and /r + /s = , then

∣
∣
∣
∣
∣
E exp

(

it
k∑

l=

ηl

)

–
k∏

l=

E exp(itηl)

∣
∣
∣
∣
∣
≤ C|t|ρ/s(p)

k∑

l=

‖ηl‖r .

Proof of Lemma . We can easily see that

I : =
∣
∣ϕξ,...,ξm (t, . . . , tm) – ϕξ (t) · · ·ϕξm (tm)

∣
∣

=
∣
∣ϕξ,...,ξm (t, . . . , tm) – ϕξ,...,ξm– (t, . . . , tm–)ϕξm (tm)

∣
∣

+
∣
∣ϕξ,...,ξm– (t, . . . , tm–) – ϕξ (t) · · ·ϕξm– (tm–)

∣
∣ =: I + I. (.)
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As exp(ix) = cos(x) + i sin(x), sin(x + y) = sin(x) cos(y) + cos(x) sin(y), cos(x + y) = cos(x) ×
cos(y) – sin(x) sin(y), we can get

I =

∣
∣
∣
∣
∣
E exp

(

i
m∑

l=

tlξl

)

– E exp

(

i
m–∑

l=

tlξl

)

E exp(itξm)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
Cov

(

cos

(m–∑

l=

tlξl

)

, cos(tmξm)

)∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
Cov

(

sin

(m–∑

l=

tlξl

)

, sin(tmξm)

)∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
Cov

(

sin

(m–∑

l=

tlξl

)

, cos(tmξm)

)∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
Cov

(

cos

(m–∑

l=

tlξl

)

, sin(tmξm)

)∣
∣
∣
∣
∣

=: I + I + I + I. (.)

It follows from Lemma . and | sin(x)| ≤ |x| that we have

I ≤ Cρ/S()
∥
∥sin(tmξm)

∥
∥

r ≤ Cρ/S()|tm|∥∥sin(ξm)
∥
∥

r ,

I ≤ Cρ/S()|tm|∥∥sin(ξm)
∥
∥

r .
(.)

Notice that cos(x) =  –  sin (x). Then one has

I =

∣
∣
∣
∣
∣
Cov

(

cos

(m–∑

l=

tlξl

)

,  –  sin(tmξm/)

)∣
∣
∣
∣
∣

= 

∣
∣
∣
∣
∣
Cov

(

cos

(m–∑

l=

tlξl

)

, sin(tmξm/)

)∣
∣
∣
∣
∣
≤ Cρ/s()E/s∣∣sin(tmξm/)

∣
∣r

≤ Cρ/s()E/s∣∣sin(tmξm/)
∣
∣r ≤ Cρ/s()|tm|‖ξm‖r . (.)

Similarly,

I ≤ Cρ/s()|tm|‖ξm‖r . (.)

Therefore, we can obtain

I ≤ Cρ/s()|tm|‖ξm‖r . (.)

Thus, as follows from (.) and (.), we can get

I =
∣
∣ϕξ,...,ξm (t, . . . , tm) – ϕξ (t) · · ·ϕξm (tm)

∣
∣ ≤ Cρ/s()|tm|‖ξm‖r + I. (.)

For I in (.), using the same decomposition as in (.) above, it can be found that

I :=
∣
∣ϕξ,...,ξm– (t, . . . , tm) – ϕξ (t) · · ·ϕξm (tm)

∣
∣

=
∣
∣ϕξ,...,ξm– (t, . . . , tm) – ϕξ,...,ξm– (t, . . . , tm–)ϕξm– (tm–)

∣
∣

+
∣
∣ϕξ,...,ξm– (t, . . . , tm–) – ϕξ (t) · · ·ϕξm– (tm–)

∣
∣ =: I + I, (.)
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and similarly to the proof of I, we can get

I ≤ Cρ/s()|tm–|‖ξm–‖r .

Then, we obtain

I ≤ Cρ/s()|tm–|‖ξm–‖r + I. (.)

Combining (.)-(.), it suffices to show Lemma .. �

Lemma . Suppose that (A)-(A) hold, then we have

σ 
n (t) ≥ Cmn– and σ –

n (t)
∣
∣
∣
∣

∫

Ai

Em(t, s) ds
∣
∣
∣
∣ ≤ C.

Proof of Lemma . From (A) and (.), we can get

σ 
n = σ 

n∑

i=

(∫

Ai

Em(t, s) ds
)

+ 
∑

≤i≤j≤n

E(εi, εj)
∫

Ai

Em(t, s) ds
∫

Aj

Em(t, s) ds

= σ 
n∑

i=

(∫

Ai

Em(t, s) ds
)

+ I.

By Lemma A., we obtain

I ≤ 
∑

≤i≤j≤n

ρ(j – i)
∣
∣
∣
∣

∫

Ai

Em(t, s) ds
∫

Aj

Em(t, s) ds
∣
∣
∣
∣‖εi‖‖εj‖

=
n–∑

k=

ρ(k)
n–k∑

i=

∣
∣
∣
∣

∫

Ai

Em(t, s) ds
∫

Ak+i

Em(t, s) ds
∣
∣
∣
∣‖εi‖‖εj‖

≤ σ 
n–∑

k=

ρ(k)
n–k∑

i=

[(∫

Ai

Em(t, s) ds
)

+
(∫

Ak+i

Em(t, s) ds
)]

≤ σ 
n∑

k=

ρ(k)
n∑

i=

(∫

Ai

Em(t, s) ds
)

.

Therefore, from applying (A) and Lemma A., we obtain

σ 
n ≤ σ 

(

 + 
n∑

k=

ρ(k)

) n∑

i=

(∫

Ai

Em(t, s) ds
)

= Cmn–.

In addition, the same result as () was deduced, see Liang and Qi [], and by (A), (A),
and (A), we have

σ 
n (t) ≥ Cmn– and σ –

n (t)
∣
∣
∣
∣

∫

Ai

Em(t, s) ds
∣
∣
∣
∣ ≤ C. �

Lemma . Assume that (A)-(A) hold, we can get
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() E(S′′
n) ≤ Cζn, E(S′′′

n) ≤ Cζn, E(Sn) ≤ Cζn;
() P(|S′′

n| ≥ ζ /
n ) ≤ Cζ /

n , P(|S′′′
n| ≥ ζ /

n ) ≤ Cζ /
n , P(|Sn| ≥ ζ /

n ) ≤ Cζ /
n .

Proof of Lemma . Let (A)-(A) be satisfied, and applying Lemmas . and A.(i) in the
Appendix, we can refer to Li et al.’s [] Lemma . of the proof process. �

Lemma . Assume that (A)-(A) hold, let s
n =

∑k
v= Var(ynv), we can get

∣
∣s

n – 
∣
∣ ≤ C

(
ζ /

n + ζ /
n + ζ /

n + u(q)
)
.

Let {ηnv : v = , . . . , k} be independent random variables and ηnv
D= ynv, v = , . . . , k. Set

Tn =
∑k

v= ηnv. Then we get the following.

Proof of Lemma . Let �n =
∑

≤i<j≤k Cov(yni, ynj), then s
n = E(S′

n) – �n. By E(Sn) = ,
Lemma .(), the Cr-inequality, and the Cauchy-Schwarz inequality, we have

E
(
S′

n
) = E

[
Sn –

(
S′′

n + S′′′
n + Sn

)] =  + E
(
S′′

n + S′′′
n + Sn

) – E
[
Sn

(
S′′

n + S′′′
n + Sn

)]
,

E
(
S′′

n + S′′′
n + Sn

) ≤ 
[
E
(
S′′

n
) + E

(
S′′′

n
) + E(Sn)] ≤ C(ζn + ζn + ζn),

E
[
Sn

(
S′′

n + S′′′
n + Sn

)] ≤ E/(S
n
)
E/(S′′

n + S′′′
n + Sn

) ≤ C
(
ζ /

n + ζ /
n + ζ /

n
)
.

It has been found that

∣
∣E

(
S′

n
) – 

∣
∣ =

∣
∣E

(
S′′

n + S′′′
n + Sn

) – E
{

Sn
(
S′′

n + S′′′
n + Sn

)}∣
∣

≤ C
(
ζ /

n + ζ /
n + ζ /

n
)
. (.)

On the other hand, from the basic definition of ρ-mixing, Lemmas ., A.(iv), and (A),
we can prove that

|�n| ≤
∑

≤i<j≤k

ki+p–∑

s=ki

kj+p–∑

t=kj

∣
∣Cov(Wns , Wnt )

∣
∣

≤
∑

≤i<j≤k

ki+p–∑

s=ki

kj+p–∑

t=kj

min{n,s+n}∑

u=max{,s–n}

min{n,t+n}∑

v=max{,t–n}
σ –

n

∣
∣
∣
∣

∫

Au

Em(t, s) ds
∫

Av

Em(t, s) ds
∣
∣
∣
∣

· |au–s av–t |
∣
∣Cov(es , et )

∣
∣

≤ C
∑

≤i<j≤k

ki+p–∑

s=ki

kj+p–∑

t=kj

min{n,s+n}∑

u=max{,s–n}

min{n,t+n}∑

v=max{,t–n}

∣
∣
∣
∣

∫

Au

Em(t, s) ds
∣
∣
∣
∣|au–s av–t |

· ρ(t – s)
√

Var(es ) Var(et )

≤ C
k–∑

i=

ki+p–∑

s=ki

min{n,s+n}∑

u=max{,s–n}

∣
∣
∣
∣

∫

Au

Em(t, s) ds
∣
∣
∣
∣|au–s |

k∑

j=i+

kj+p–
∑

t=kj

ρ(t – s)

·
min{n,t+n}∑

v=max{,t–n}
|av–t |
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≤ C
k–∑

i=

ki+p–∑

s=ki

min{n,s+n}∑

u=max{,s–n}

∣
∣
∣
∣

∫

Au

Em(t, s) ds
∣
∣
∣
∣|au–s |

∞∑

j=q

ρ(j)

≤ Cu(q)
k–∑

i=

ki+p–∑

s=ki

n∑

u=

∣
∣
∣
∣

∫

Au

Em(t, s) ds
∣
∣
∣
∣|au–s |

≤ Cu(q)
n∑

u=

∣
∣
∣
∣

∫

Au

Em(t, s) ds
∣
∣
∣
∣

( k–∑

i=

ki+p–∑

s=ki

|au–s |
)

≤ Cu(q). (.)

Hence, combining (.) with (.), we can see that

∣
∣s

n – 
∣
∣ ≤ ∣

∣E
(
S′

n
) – 

∣
∣ + |�n| ≤ C

{
ζ /

n + ζ /
n + ζ /

n + u(q)
}

. �

Lemma . Assume that (A)-(A) hold, and applying this in Lemma ., we can get

sup
u

∣
∣P(Tn/sn ≤ u) – �(u)

∣
∣ ≤ Cζ δ/

n .

Proof of Lemma . It follows from the Berry-Esseen inequality (Petrov []) that we have

sup
u

∣
∣P(Tn/sn ≤ u) – �(u)

∣
∣ ≤ C

∑k
w= E|ynv|r

sr
n

for r ≥ . (.)

From Definition ., hence
∑[log p]

j=kv
ρ/r(j) = o(log p). Further, exp(C

∑[log p]
j=kv

ρ/r(j)) =
o(pι) for any C >  and ι >  (for ι small enough). According to Lemma A.(i) and Lem-
ma A., we can get

k∑

v=

E|ynv|r =
k∑

v=

E

∣
∣
∣
∣
∣

kv+p–∑

j=kv

min{n,j+n}∑

i=max{,j–n}
σ –

n ai–j

∫

Ai

Em(t, s) dsej

∣
∣
∣
∣
∣

r

≤ C
k∑

v=

pr/ exp

(

C

[log p]∑

j=kv

ρ
(
j)

)

· max
≤j≤p

(

E

∣
∣
∣
∣
∣

min{n,j+n}∑

i=max{,j–n}
σ –

n ai–j

∫

Ai

Em(t, s) dsej

∣
∣
∣
∣
∣

)r/

+ C
k∑

v=

p exp

(

C

[log p]∑

j=kv

ρ/r(j)
)

· max
≤j≤p

E

∣
∣
∣
∣
∣

min{n,j+n}∑

i=max{,j–n}
σ –

n ai–j

∫

Ai

Em(t, s) dsej

∣
∣
∣
∣
∣

r

≤ Cσ –r
n

( ∞∑

j=–∞
|aj|

)r k∑

v=

(

pr/+ι

(
m

n

)r

+ p+ι

(
m

n

)r)

≤ Ckpr/+ι

(
m

n

)r/

≤ Cnpr/–
(

m

n

)r/

≤ Cn
(

p
m

n

)r/

= Cnζ r
n. (.)

Hence, by Lemma ., and combining (.) with (.), we can get the result. �
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Lemma . Assume that (A)-(A) hold, and applying this in Lemma ., we can get

sup
u

∣
∣P

(
S′

n ≤ u
)

– P(Tn ≤ u)
∣
∣ ≤ C

{
ζ δ/

n + ζ /
n

}
.

Proof of Lemma . Suppose that φ(t) and ψ(t) are the characteristic functions of S′
n

and Tn. Therefore, it follows from Lemmas ., ., A., and (A) that we can obtain

∣
∣φ(t) – ψ(t)

∣
∣ =

∣
∣
∣
∣
∣
E exp

(

it
k∑

v=

ynv

)

–
k∏

v=

E exp(itynv)

∣
∣
∣
∣
∣

≤ C|t|ρ/(q)
k∑

v=

‖ynv‖

≤ C|t|ρ/(q)
k∑

v=

{

E

(kv+p–∑

i=kv

σ –
n

min{n,i+n}∑

j=max{,i–n}
aj–i

∫

Aj

Em(t, s) ds|ei|
)}/

≤ C|t|ρ/(q)

( ∞∑

l=–∞
|al|

){

k
k∑

v=

kv+p–∑

i=kv

∣
∣
∣
∣

∫

Aj

Em(t, s) ds
∣
∣
∣
∣

}/

≤ C|t|(kρ(q)
)/ ≤ C|t|ζ /

n ,

which implies that

∫ T

–T

∣
∣
∣
∣
φ(t) – ψ(t)

t

∣
∣
∣
∣dt ≤ Cζ /

n T . (.)

Note that

P(Tn ≤ u) = P(Tn/sn ≤ u/sn).

Consequently, from Lemma ., it has been found

sup
u

∣
∣P(Tn ≤ u + y) – P(Tn ≤ u)

∣
∣

= sup
u

P
∣
∣(Tn/sn ≤ u + y/sn) – P(Tn/sn ≤ u/sn)

∣
∣

≤ sup
u

∣
∣P(Tn/sn ≤ u + y/sn) – �(u + y/sn)

∣
∣ + sup

u

∣
∣�(u + y/sn) – �(u/sn)

∣
∣

+ sup
u

∣
∣P(Tn/sn ≤ u/sn) – �(u/sn)

∣
∣

≤  sup
u

∣
∣P(Tn/sn ≤ u/sn) – �(u)

∣
∣ + sup

u

∣
∣�(u + y/sn) – �(u/sn)

∣
∣

≤ C
{
ζ δ/

n + |y|/sn
} ≤ C

{
ζ δ/

n + |y|}.

Therefore

T sup
u

∫

|y|≤c/T

∣
∣P(Tn ≤ u + y) – P(Tn ≤ u)

∣
∣dy ≤ C

{
ζ δ/

n + /T
}

. (.)
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Thus, combining (.) with (.) and taking T = ζ –/
n , it suffices to prove that

sup
u

∣
∣P

(
S′

n ≤ u
)

– P(Tn ≤ u)
∣
∣

≤
∫ T

–T

∣
∣
∣
∣
φ(t) – ψ(t)

t

∣
∣
∣
∣dt + T sup

u

∫

|y|≤c/T

∣
∣P(Tn ≤ u + y) – P(Tn ≤ u)

∣
∣dy

≤ C
{
ζ /

n T + ζ δ/
n + /T

}
= C

{
ζ δ/

n + ζ /
n

}
. �

4 Proofs of the main results
Proof of Theorem .

sup
u

∣
∣P

(
S′

n ≤ u
)

– �(u)
∣
∣

≤ sup
u

∣
∣P

(
S′

n ≤ u
)

– P(Tn ≤ u)
∣
∣ + sup

u

∣
∣P(Tn ≤ u) – �(u/sn)

∣
∣ + sup

u

∣
∣�(u/sn) – �(u)

∣
∣

:= Jn + Jn + Jn. (.)

According to Lemma ., Lemma ., and Lemma ., it follows that

Jn ≤ C
{
ζ δ/

n + ζ /
n

}
, (.)

Jn = sup
u

∣
∣P(Tn/sn ≤ u/sn) – �(u/sn)

∣
∣ = sup

u

∣
∣P(Tn/sn ≤ u) – �(u)

∣
∣ ≤ Cζ δ/

n , (.)

Jn ≤ C
∣
∣s

n – 
∣
∣ ≤ C

{
ζ /

n + ζ /
n + ζ /

n + u(q)
}

. (.)

Hence, by (.)-(.) and combining with (.), we have

sup
u

∣
∣P

(
S′

n ≤ u
)

– �(u)
∣
∣ ≤ C

{
ζ /

n + ζ /
n + ζ δ/

n + ζ /
n + ζ /

n + u(q)
}

. (.)

Thus, by Lemma A., Lemma .(), and (.), it suffices to prove that

sup
u

∣
∣P(Sn ≤ u) – �(u)

∣
∣

≤ C

{

sup
u

∣
∣P

(
S′

n ≤ u
)

– �(u)
∣
∣ +

∑

i=

ζ /
in + P

(∣
∣S′′

n
∣
∣ ≥ ζ /

n
)

+ P
(∣
∣S′′′

n
∣
∣ ≥ ζ /

n
)

+ P
(|Sn| ≥ ζ /

n
)
}

≤ C
{
ζ /

n + ζ /
n + ζ δ/

n + ζ /
n + ζ /

n + u(q)
}

. �

Proof of Corollary . By (A), since
∑∞

j= ρ(j) < ∞, we can easily see that u(q) → , there-
fore Corollary . holds. �

Proof of Corollary . Let p = [nτ ], q = [nτ–]. Taking τ = 
 + θ–

(λ+) , 
–λ

< θ ≤ , τ < θ .
Consequently,

ζ /
n = ζ /

n = O
(
n– θ–τ


)

= O
(
n– λ(θ–)+(θ–)

λ+
)
,
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ζ /
n = n– λ(θ–)+(θ–)

λ+ =
(

n
λθ+λ+θ+

(λ+)
∑

|j|>n

|aj|
)/

= O
(
n– λ(θ–)+(θ–)

λ+
)
,

ζ /
n = O

(
n– τ+λ(τ–)–


)

= O
(
n– λ(θ–)+(θ–)

λ+
)
,

u(q) = O

( ∞∑

i=q

i–λ

)

= O
(
p–λ+) = O

(
n–(τ–)(λ–)) = O

(
n– (θ–)(λ–)

λ+
)
.

Finally, taking 
–λ

< θ , hence (θ–)(λ–)
λ+ > λ(θ–)+(θ–)

λ+ , it has been found that u(q) =
O(n– λ(θ–)+(θ–)

λ+ ), therefore, the desired result is completed by Corollary . immediately.
�

Appendix
Lemma A. (Shao []) Let {Xi : i ≥ } be a ρ-mixing sequence, s, t > , and /s + /t = . If
X ∈ Ls(F k

 ), Y ∈ Lt(F∞
k+n), then

|EXY – EXEY | ≤ ρ( 
s ∧ 

t )(n)‖X‖s‖Y‖t .

Lemma A. (Shao []) Assume that EXi =  and ‖Xi‖q for some q ≥ . Then there exists a
positive constant K = K(q,ρ(·)) depending only on q and ρ(·) such that for any k ≥ , n ≥ ,

E max
≤i≤n

∣
∣Sk(i)

∣
∣q ≤ Knq/ exp

(

K
[log n]∑

i=

ρ
(
i)

)

max
k≤i≤k+n

‖Xi‖q


+ nK exp

(

K
[log n]∑

i=

ρ/q(i)
)

max
k≤i≤k+n

‖Xi‖q
q.

Lemma A. (Yang []) Let {Xi : i = , , . . .} be a ρ-mixing sequence, and there is a λ > ,
make ρ(n) = O(n–λ), with EXi = , E|Xi|r < ∞ (r > ), when any integer m ≥ , there exists
a positive constant C(m), then:

(i) for  < r ≤ , we have

E

∣
∣
∣
∣
∣

n∑

i=

Xi

∣
∣
∣
∣
∣

r

≤ C(m)nβ(m)
n∑

i=

E|Xi|r ,

(ii) for r > , we have

E

∣
∣
∣
∣
∣

n∑

i=

Xi

∣
∣
∣
∣
∣

r

≤ C(m)nβ(m)

{ n∑

i=

E|Xi|r +

( n∑

i=

EX
i

)r/}

.

In β(m) = (r – )ωm and  < ω < .

Lemma A. (Yang []) Suppose that {ζn : n ≥ }, {ηn : n ≥ }, and {ξn : n ≥ } are three
random variable sequences, {γn : n ≥ } is a positive constant sequence, and γn → . If
supu |Fγn (u) – �(u)| ≤ Cγn then for any ε > , and ε > , then

sup
u

∣
∣Fζn+ηn+γn (u) – �(u)

∣
∣ ≤ C

{
γn + ε + ε + P

(|ηn| ≥ ε
)

+ P
(|ξn| ≥ ε

)}
.
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Lemma A. (Li et al. []) Under assumptions (A)-(A), we have
(i) | ∫Ai

Em(t, s) ds| = O( m

n ), i = , , . . . , n;
(ii)

∑n
i=(

∫
Ai

Em(t, s) ds) = O( m

n );
(iii) supm

∫ 
 |Em(t, s) ds| ≤ C;

(iv)
∑n

i= | ∫Ai
Em(t, s) ds| ≤ C.
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