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1 Introduction
Somos [] defined the sequence gn = ng

n–, with g =  in . Finch [] proved the asymp-
totic formula in  as follows:

gn = σ n
(

n +  –

n

+

n –


n +


n –

,
n + · · ·

)–

(n → ∞),

where the constant σ = . . . . is now known as the Somos quadratic recurrence
constant. This constant appears in important problems by pure representations,

σ =

√

√


√

 . . . =
∞∏

k=

k/k
= exp

{ ∞∑
k=

ln k
k

}
,

or integral representations,

σ = exp

{
–

∫ 



 – x
( – x) ln x

dx
}

= exp

{
–

∫ 



∫ 



x
( – xy) ln(xy)

dx dy
}

;

see [–].
The generalized-Euler-constant function

γ (z) =
∞∑

k=

zk–
(


k

– ln
k + 

k

) (|z| ≤ 
)

(.)
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was introduced by Sondow and Hadjicostas [] and Pilehrood and Pilehrood [], where
γ () = . . . . is the classical Euler constant.

Sondow and Hadjicostas [] also defined the generalized Somos quadratic recurrence
constant, by

σt =
(

t
t – 

)/(t–)

exp

{
–


t(t – )

γ

(

t

)}
. (.)

Since when we set t =  in (.),

γ

(



)
=  ln


σ

or σ =  exp

{
–



γ

(



)}
, (.)

these functions are closely related to the Somos quadratic recurrence constant σ . Here we
denote

γn(z) =
n∑

k=

zk–
(


k

– ln
k + 

k

) (|z| ≤ 
)
. (.)

Recently, many inspiring results of establishing more precise inequalities and more accu-
rate approximations for the Somos quadratic recurrence constant and generalized-Euler-
constant function were given. Mortici [] provided a double inequality of the error esti-
mate by the polynomial approximation. Lu and Song [] gave sharper bounds.

Motivated by this important work, in this paper we will continue our previous work
[–] and apply a multiple-correction method to construct some new sharper double
inequality of the error estimate for the Somos quadratic recurrence constant. Moreover,
we establish sharp bounds for the corresponding error terms.

Notation Throughout the paper, the notation �(k; x) means a polynomial of degree k in
x with all of its non-zero coefficients positive, which may be different at each occurrence.

2 Estimating γ (1/2)
In order to deduce some estimates for the σ constant, we evaluate the series

γ

(



)
=

∞∑
k=


k–

(

k

– ln
k + 

k

)
. (.)

First we need the following intermediary result.

Lemma  For every integer positive k, we define

α(x) =

x

(
 +

b

x + cx
x+ cx

x+ cx
x+c

)
, α(x) =


x

(
 +

b

x + cx
x+ cx

x+ cx
x+ cx

x+c

)
,

where b = – 
 , c = 

 , c = ,
, , c = ,,

, , c = ,,,
,,, , c = ,,,,,

,,,, . Then
for every integer k, we have

a(k) –



a(k + ) <

k

– ln
k + 

k
< a(k) –




a(k + ). (.)
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Proof Based on our previous work we will apply multiple-correction method and study the
double inequality of the error estimate as follows.

(Step ) The initial correction. Because ( 
x – ln x+

x )′ = – 
x(x+) , we choose α(x) = 

x ( +
b

x+c
). Then letting the coefficient of x, x of the molecule in the following fractions equal

zero, we have b = – 
 , c = 

 , and

f ′
(x) =

(
a(x) –




a(x + ) –
(


x

– ln
x + 

x

))′

=
–,, – ,,x – ,,x – ,,x – ,,x

x( + x)( + x)( + x) < .

As the molecule in the above fractions has all coefficients negative, we see as a result that
f(x) is strictly decreasing.

(Step ) The first correction. We let α(x) = 
x ( + b

x+ cx
x+c

). Then letting the coefficient of

x of the molecule in the following fractions equal zero, we have c = ,
, and

f ′
 (x) =

(
a(x) –




a(x + ) –
(


x

– ln
x + 

x

))′

=
�(; x)

x( + x)( + x)( + x) > .

As

�(; x) = ,,, + ,,,,x + ,,,,x

+ ,,,,x + ,,,x + ,,,x

has all coefficients positive, we see as a result that f(x) is strictly increasing. But f(∞) = ,
so f(x) <  on [,∞).

(Step ) The second correction. Similarly, we let α(x) = 
x ( + b

x+ cx
x+ cx

x+c

). Then letting the

coefficient of x of the molecule in the following fractions equal zero, we have c = ,,
,

and

f ′
(x) =

(
a(x) –




a(x + ) –
(


x

– ln
x + 

x

))′

=
–�(; x)

x( + x)(, + ,x + ,x)(, + ,x + ,x)

< .

As

�(; x) = ,,,,,,, + ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x + ,,,,,,,x

+ ,,,,,,x + ,,,,,,x
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has all coefficients positive, we see as a result that f(x) is strictly decreasing. But f(∞) = ,
so f(x) >  on [,∞).

(Step ) The third correction. Similarly, we let α(x) = 
x ( + b

x+ cx
x+ cx

x+ cx
x+c

). Then letting

the coefficient of x of the molecule in the following fractions equal zero, we have c =
,,,
,,, and

f ′
(x) =

(
a(x) –




a(x + ) –
(


x

– ln
x + 

x

))′

= �(; x)
x( + x)(,, + ,,x + ,x)(,, + ,,x + ,x)

> ,

we see as a result that f(x) is strictly increasing. But f(∞) = , so f(x) <  on [,∞). This
finishes the proof of the left-hand inequality in (.).

(Step ) The fourth correction. Similarly, we let α(x) = 
x ( + b

x+ cx
x+ cx

x+ cx
x+ cx

x+c

). Then letting

the coefficient of x of the molecule in the following fractions equal zero, we have c =
,,,,,
,,,, and

f ′
(x) =

(
a(x) –




a(x + ) –
(


x

– ln
x + 

x

))′

=
–�(; x)

x( + x)�
 (; x)�

 (; x)
< ,

we see as a result that f(x) is strictly decreasing. But f(∞) = , so f(x) >  on [,∞). This
finishes the proof of the right-hand inequality in (.).

This is the end of Lemma . �

Remark  It is worth to point out that Lemma  provides some continued fraction in-
equalities by the multiple-correction method. Similarly, repeating the above approach step
by step, we can get more sharp inequalities. But this maybe brings about some computa-
tion increase, the details omitted here.

By adding inequalities of the form

a(k)
k– –

a(k + )
k <


k–

(

k

– ln
k + 

k

)
<

a(k)
k– –

a(k + )
k

from k = n +  to k = ∞, we get

a(n + )
n <

∞∑
k=n+


k–

(

k

– ln
k + 

k

)
<

a(n + )
n . (.)

These double inequalities give the error estimate when γ ( 
 ) is approximated by

γn

(



)
=

n∑
k=

(

k

– ln
k + 

k

)
.

So we have the following theorem.
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Theorem  For every positive integer n,

γn

(



)
+

,, + ,,n + ,,n + ,,n

n( + n)(,, + ,,n + ,n)

< γ

(



)

< γn

(



)

+ ,,,, + ,,,,n + ,,,,n + ,,,n

( + n)(,,,, + ,,,n + ,,,n + ,,,n)
.

(.)

Proof The double inequality (.) can be equivalently written as

a(n + )
n < γ

(



)
– γn

(



)
<

a(n + )
n

and the conclusion follows if we take into account that

a(n + )
n =

,, + ,,n + ,,n + ,,n

n( + n)(,, + ,,n + ,n)

and

a(n + )
n

= ,,,, + ,,,,n + ,,,,n + ,,,n

( + n)(,,,, + ,,,n + ,,,n + ,,,n)
.

This is the end of Theorem . �

Remark  In fact, the upper and lower bounds in (.) are sharper than the ones in (.)
of Mortici [] and (.) of Lu and Song [] for every positive integer n.

From (.) we can provide the following result which has a simpler form than (.),
although it is weaker than (.).

Corollary  For every positive integer n ≥ , we have

γn

(



)
+


n(n + 

 )
< γ

(



)
< γn

(



)
+


n(n + 

 )
. (.)

Proof We take into account that

a(n + ) –


(n + 
 )

= ,,, + ,,,n + ,,,n + ,,,n + ,,n

( + n)( + n)(,, + ,,n + ,n)

> 
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for n ≥ , and


(n + 

 )
– a(n + )

=
(
,,,, + ,,,,n + ,,,,n

+ ,,,,n + ,,,n)
/
(
( + n)( + n)(,,,, + ,,,n

+ ,,,n + ,,,n))
> 

for n ≥ . Combining with Theorem , the conclusion follows.
This is the end of Corollary . �

Combining (.) and Corollary , we obtain the following estimates for the Somos
quadratic recurrence constant.

Corollary  For every positive integer n ≥ , we have

 exp

{
–



γn

(



)
–


n+(n + 

 )

}
< σ <  exp

{
–



γn

(



)
–


n+(n + 

 )

}
. (.)

3 Estimating γ (1/3)
Mortici [] and Lu and Song [] have provided a double inequality for the error estimate
of γ (/). In order to give the new error estimate for γ (/), we need the following inter-
mediary result.

Lemma  For every integer positive k, we define

b(k) = –


x

(
 +

d

x + kx
x+ kx

x+ kx
x+k

)
,

b(k) = –


x

(
 +

d

x + kx
x+ kx

x+ kx

x+ kx
x+k

)
,

where d = – 
 , k = 

 , k = 
 , k = ,,

, , k = ,,
,, , k = ,,,,

,,,, . Then,
for every integer k, we have

b(k) –



b(k + ) <

k

– ln
k + 

k
–


k < b(k) –




b(k + ). (.)

Proof Based on our previous work we will apply multiple-correction method to study the
double inequality of the error estimate as follows.

(Step ) The initial correction. Because ( 
x – ln x+

x – 
x )′ = 

x(x+) , we choose b(x) =
– 

x ( + d
x+k

). Then letting the coefficient of x, x of the molecule in the following frac-
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tions equal zero, we have d = – 
 , k = 

 , and

g ′
(x) =

(
b(x) –




b(x + ) –
(


x

– ln
x + 

x
–


x

))′

=
, + ,,x + ,,x + ,,x + ,x + ,x

x( + x)( + x)( + x)

> ,

we see as a result that g(x) is strictly increasing.
(Step ) The first correction. We let b(x) = – 

x ( + d
x+ kx

x+k

). Then letting the coefficient

of x of the molecule in the following fractions equal to zero, we have k = 
 and

g ′
(x) =

(
b(x) –




b(x + ) –
(


x

– ln
x + 

x
–


x

))′

=
–�(; x)

x( + x)( + x)( + x) .

As �(; x) has all coefficients positive, we see as a result that g(x) is strictly decreasing.
(Step ) The second correction. Similarly, we let b(x) = – 

x (+ d
x+ kx

x+ kx
x+k

). Then we let the

coefficient of x of the molecule in the following fractions equal zero, we have k = ,,
,

and

g ′
(x) =

(
b(x) –




b(x + ) –
(


x

– ln
x + 

x
–


x

))′

=
�(; x)

x( + x)(, + ,x + ,x)(,, + ,x + ,x)

> ,

we see as a result that g(x) is strictly increasing.
(Step ) The third correction. We let b(x) = – 

x ( + d
x+ kx

x+ kx

x+ kx
x+k

). Then letting the coef-

ficient of x of the molecule in the following fractions equal zero, we have k = ,,
,,

and

g ′
(x) =

(
b(x) –




b(x + ) –
(


x

– ln
x + 

x
–


x

))′

= –�(; x)/
(
x( + x)(,, + ,,x + ,,x)

× (
,, + ,,x + ,,x)).

As �(; x) has all coefficients positive, we see as a result that g(x) is strictly decreasing.
But g(∞) = , so g(x) >  on [,∞). This finishes the proof of the right-hand inequality
in (.).
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(Step ) The fourth correction. Similarly, we let b(x) = – 
x ( + d

x+ kx

x+ kx

x+ kx

x+ kx
x+k

). Then let-

ting the coefficient of x of the molecule in the following fractions equal zero, we have
k = ,,,,

,,,, and

g ′
(x) =

(
b(x) –




b(x + ) –
(


x

– ln
x + 

x
–


x

))′

=
�(; x)

x( + x)�
 (; x)�

 (; x)
> ,

we see as a result that g(x) is strictly increasing. But g(∞) = , so g(x) <  on [,∞). This
finishes the proof of the left-hand inequality in (.).

This is the end of Lemma . �

By adding inequalities of the form

b(k)
k– –

b(k + )
k <


k–

(

k

– ln
k + 

k

)
–


(k–)k <

b(k)
k– –

b(k + )
k

from k = n +  to k = ∞, we get

b(n + )
n <

∞∑
k=n+


k–

(

k

– ln
k + 

k

)
–

∞∑
k=n+


(k–)k <

b(n + )
n . (.)

Combining equations (.) and (.), we have

γ

(



)
– γn

(



)
=

∞∑
k=n+


k–

(

k

– ln
k + 

k

)
. (.)

Using inequality (.) and equality (.), we have the following theorem.

Theorem  For every positive integer n,

γn

(



)
–

�(; n)
n( + n)�(; n)

+



∞∑
k=n+


kk

< γ

(



)

< γn

(



)
–

,, + ,,n + ,,n + ,,n

n( + n)(,, + ,,n + ,,n)

+



∞∑
k=n+


kk , (.)

where

�(; n) = ,,,, + ,,,,n

+ ,,,,n + ,,,n,
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�(; n) = ,,,, + ,,,n

+ ,,,n + ,,,n.

Proof If we take into account that b(n+)
n and b(n+)

n , combining equations (.) and (.),
the conclusion follows.

This is the end of Theorem . �

From (.) we can provide another result, which has a simpler form than (.), although
it is weaker than (.).

Corollary  For every positive integer n ≥ , we have

γn

(



)
–


n(n + ) +


n–(n + )(n + )

< γ

(



)
. (.)

Proof We use the bounds

b(n + ) +


(n + ) =
�(; x)

(( + n))�(; x)
> 

for n ≥ , where

�(; x) = ,,,, + ,,,,n

+ ,,,,n + ,,,n,

�(; x) = ,,,, + ,,,n

+ ,,,n + ,,,n,

and the telescoping inequalities


n–(n + n)

–


n((n + )) + n + 

<


nn <


n–(n + n)
–


n((n + )) + n + 

.

Combining Theorem , the conclusion follows.
This is the end of Corollary . �

Remark  It is worth to point out that the multiple-correction method provides a general
way to find some continued fraction approximation of σt for t > . Similarly, repeating the
above approach step by step, we can get more sharp inequalities. But this maybe brings
about some computation increase, the details omitted here.
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