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Abstract
We investigate several sufficient conditions on a function to be convex in one
direction or starlike in one direction.
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1 Introduction
LetH denote the class of functions analytic in the unit diskD := {z ∈ C : |z| < }, and denote
by A the class of analytic functions in H that are normalized by f () =  = f ′() – . Also,
let S denote the subclass of A composed of functions that are univalent in D.

We say that a function f is starlike in one direction if f it maps |z| = r for every r near 
onto a contour C that is cut by a straight-line passing through the origin in two and no
more than two points. Robertson [] found the following sufficient condition for starlike-
ness in one direction.

Lemma  Let f (z) be analytic in |z| ≤ r, and f (z) �=  in  < |z| ≤ r. Further, let f () = .
Suppose that

∫ π



∣∣∣∣Rzf ′(z)
f (z)

∣∣∣∣dθ < π , z = ρeiθ , for every ρ ≤ r.

Then, for every ρ ≤ r, f (z) maps |z| = ρ onto a curve that is starlike in one direction.

A function is said to be convex in one direction in |z| < r (r > ) if the function maps
|z| = ρ < r for every ρ near r into a contour that may be cut by every straight-line parallel
to this direction in no more than two points. It is known (see []) that if f ∈A and zf ′(z) is
starlike in one direction, then f (z) is convex in one direction and belongs to S . Therefore,
we can obtain the following lemma (see also [–]).

Lemma  Let f (z) = z+
∑∞

n= anzn be analytic for |z| ≤  and f ′(z) �=  on |z| = r < . Suppose
that
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∫ π



∣∣∣∣ + R

{
zf ′′(z)
f ′(z)

}∣∣∣∣dθ < π , z = reiθ , for every r < .

Then f (z) is convex in one direction, and hence f (z) is univalent in |z| ≤ .

We may refer to [–] for more sufficient conditions on analytic functions to be convex
in one direction.

In the present paper, we investigate several sufficient conditions on functions in A to
be convex in one direction using various methods. Also, we find sufficient conditions for
starlikeness in one direction.

2 Main results
Theorem  Let f (z) ∈A and suppose that

∣∣∣∣ + R

{
zf ′′(z)
f ′(z)

}∣∣∣∣ < R
{

 + z
 – z

}
(z ∈D). ()

Then f (z) is convex in one direction, and hence f (z) is univalent in D.

Proof Let  ≤ r < . From hypothesis () we have

∫ π



∣∣∣∣ + R

{
zf ′′(z)
f ′(z)

}∣∣∣∣dθ

< 
∫

|z|=r

{
R

{
 + z
 – z

}}
dθ

= 
∫ π



 – r

 – r cos θ + r dθ

= π .

Therefore, by Lemma , f (z) is convex in one direction in D. �

Example  Consider the function f : D →C defined by f(z) = z/( – z). Then we have

 +
zf ′′

 (z)
f ′
 (z)

=
 + z
 – z

(z ∈D).

Moreocer, we can easily check that condition () holds for the function f. Therefore, by
Theorem  the function f is convex in one direction and univalent in D.

Theorem  Let f (z) ∈A and suppose that

∣∣∣∣ +
zf ′′(z)
f ′(z)

∣∣∣∣ ≤
∣∣∣∣  + z
 – z

∣∣∣∣ (z ∈D). ()

Then f (z) is convex in one direction in |z| < r = . · · · , where r is the root of the
equation

π

(
 + r
 – r

)
+  log

(
 + r
 – r

)
= π . ()
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Proof Let  ≤ r < . From inequality () we have

∫ π



∣∣∣∣ + R

{
zf ′′(z)
f ′(z)

}∣∣∣∣dθ

≤
∫ π



∣∣∣∣ +
zf ′′(z)
f ′(z)

∣∣∣∣dθ

≤
∫ π



∣∣∣∣  + z
 – z

∣∣∣∣dθ

≤
∫ π



(∣∣∣∣  – r

 – r cos θ + r

∣∣∣∣ +
∣∣∣∣ r sin θ

 – r cos θ + r

∣∣∣∣
)

dθ

≤ π

(
 + r
 – r

)
+  log

(
 + r
 – r

)
.

Define the function g : [, ) →R by

g(r) = π

(
 + r
 – r

)
+  log

(
 + r
 – r

)
.

Then g() = π and g(r) → ∞ as r → –. Also, we have that the function g is increasing
on [, ) since

g ′(r) =
π

( – r) +


 – r > 

for all r ∈ [, ). Therefore, there exists a unique root r in [, ) such that g(r) = π . Hence,
we have

∫ π



∣∣∣∣ + R

{
zf ′′(z)
f ′(z)

}∣∣∣∣dθ < π

for |z| < r. It follows from Lemma  that f (z) is convex in one direction in |z| < r. �

Theorem  Let f (z) ∈A and suppose that

∣∣∣∣R
{

 +
zf ′′(z)
f ′(z)

}
–




∣∣∣∣ < R

{
 + z
 – z

}
+




(z ∈D). ()

Then f (z) is convex in one direction, and hence f (z) is univalent in D.

Proof Let  ≤ r < . From hypothesis () we have

∫
|z|=r

{∣∣∣∣R
{

 +
zf ′′(z)
f ′(z)

}∣∣∣∣ –



}
dθ

≤
∫

|z|=r

∣∣∣∣R
{

 +
zf ′′(z)
f ′(z)

}
–




∣∣∣∣dθ

<
∫

|z|=r

{
R

{
 + z
 – z

}
+




}
dθ

= π .
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Therefore, we have
∫

|z|=r

∣∣∣∣R
{

 +
zf ′′(z)
f ′(z)

}∣∣∣∣dθ < π

for |z| = r < . This shows that f (z) is convex in one direction in D. �

Corollary  Let f (z) ∈A and suppose that

∣∣∣∣R
{

 +
zf ′′(z)
f ′(z)

}∣∣∣∣ < R

{
 + z
 – z

}
+  (z ∈ D).

Then f (z) is convex in one direction, and hence f (z) is univalent in D.

Theorem  Let f (z) ∈A and suppose that

∣∣∣∣ +
zf ′′(z)
f ′(z)

∣∣∣∣ <
√

 (z ∈D). ()

Then f (z) is convex in one direction, and hence f (z) is univalent in D.

Proof Let  ≤ r < . From () we have

∫
|z|=r

∣∣∣∣ +
zf ′′(z)
f ′(z)

∣∣∣∣


dθ < π . ()

Note that

∫
|z|=r

(
 +

zf ′′(z)
f ′(z)

)

dθ =
∫

|z|=r

{
 + 

zf ′′(z)
f ′(z)

+
(

zf ′′(z)
f ′(z)

)}
dθ = π ()

and

∫
|z|=r

(
 +

zf ′′(z)
f ′(z)

)

dθ = π . ()

Therefore, from (), (), and () we have

∫
|z|=r

(
 + R

zf ′′(z)
f ′(z)

)

dθ

=



∫
|z|=r

[(
 +

zf ′′(z)
f ′(z)

)

+ 
∣∣∣∣ +

zf ′′(z)
f ′(z)

∣∣∣∣


+
(

 +
zf ′′(z)
f ′(z)

)]
dθ

< π . ()

Hence, applying the Cauchy-Schwarz inequality and (), we get

∫
|z|=r

∣∣∣∣ + R
zf ′′(z)
f ′(z)

∣∣∣∣dθ ≤
√

π

∫
|z|=r

∣∣∣∣ + R
zf ′′(z)
f ′(z)

∣∣∣∣


dθ < π .

This completes the proof of Theorem . �
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Example  Consider the function f : D →C defined by

f(z) =
√




((
z +

√
√



)

– 
)

(z ∈D).

Then we have

∣∣∣∣ +
zf ′′

 (z)
f ′
(z)

∣∣∣∣ =
∣∣∣∣
√


√

z + √
 + z

∣∣∣∣ <
√

 (z ∈D).

Hence, it follows from Theorem  that the function f is convex in one direction. In fact,
the function f is convex in the direction of the positive real axis.

Applying the same method as that used in the proof of the aforementioned theorems and
Lemma , we have the following sufficient conditions on analytic functions to be starlike
in one direction.

Theorem  Let f (z) ∈A and suppose that

∣∣∣∣R
{

zf ′(z)
f (z)

}∣∣∣∣ < R
{

 + z
 – z

}
(z ∈D).

Then f (z) is starlike in one direction in D.

Theorem  Let f (z) ∈A and suppose that

∣∣∣∣zf ′(z)
f (z)

∣∣∣∣ ≤
∣∣∣∣  + z
 – z

∣∣∣∣ (z ∈D).

Then f (z) is starlike in one direction in |z| < r = . · · · , where r is the root of equa-
tion ().

Theorem  Let f (z) ∈A and suppose that

∣∣∣∣R
{

zf ′(z)
f (z)

}
–




∣∣∣∣ < R

{
 + z
 – z

}
+




(z ∈D).

Then f (z) is starlike in one direction in D.

Theorem  Let f (z) ∈A and suppose that

∣∣∣∣zf ′(z)
f (z)

∣∣∣∣ <
√

 (z ∈D).

Then f (z) is starlike in one direction in D.
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