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Abstract
By using the improved Hübner inequalities, in this paper we obtain an asymptotically
sharp lower bound estimate for the coefficients of harmonic K-quasiconformal
self-mappings of the unit disk D which keep the origin fixed. The result partly
improves the former results given by (Partyka and Sakan in Ann. Acad. Sci. Fenn.,
Math. 30:167-182, 2005) and (Zhu and Zeng in J. Comput. Anal. Appl. 13:1081-1087,
2011). Furthermore, using some estimate for the derivative of the boundary function
of a harmonic K-quasiconformal self-mapping w of D which keeps the origin fixed,
we obtain an upper bound estimate for the coefficients of w.
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1 Introduction
Let D = {z : |z| < } denote the unit disk, w(z) be a harmonic mapping defined in D. Then
w(z) can be presented as w(z) = h(z) + g(z), where

h(z) =
∞∑

n=

anzn and g(z) =
∞∑

n=

bnzn ()

are both analytic in D. By Lewy’s theorem [], we know that w(z) is locally univalent and
sense-preserving in D if and only if its Jacobian satisfies the following inequality:

Jf (z) =
∣∣wz(z)

∣∣ –
∣∣wz̄(z)

∣∣ =
∣∣h′(z)

∣∣ –
∣∣g ′(z)

∣∣ > 

for all z ∈ D. One of the basic properties for harmonic self-mappings of D is the Heinz
inequality [].

Lemma A Let w map the unit disk harmonically onto itself with w() = . Then

∣∣wz()
∣∣ +

∣∣wz̄()
∣∣ ≥ c ()

for some absolute constant c > .
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Subsequently, in , Hall [] obtained the sharp lower bound of c.

Theorem B Let w(z) = h(z) + g(z) =
∑∞

n= anzn +
∑∞

n= bnzn be a univalent harmonic map-
ping of the unit disk onto itself, then its coefficients satisfy the inequality

|a| + |b| ≥ 
π . ()

The lower bound 
π is the best possible.

Let

p(r, x – ϕ) =
 – r

π ( – r cos(x – ϕ) + r)

denote the Poisson kernel, then every bounded harmonic mapping w defined in D has the
following representation:

w(z) = P[f ](z) =
∫ π


p(r, x – ϕ)f

(
eix)dx, ()

where z = reiϕ ∈ D and f is a bounded integrable function defined on the unit circle T :=
∂D.

Suppose that w(z) is a sense-preserving univalent harmonic mapping ofD onto a domain
� ⊆C. Then w(z) is a harmonic K-quasiconformal mapping if and only if

K(w) := sup
z∈D

|wz(z)| + |wz̄(z)|
|wz(z)| – |wz̄(z)| ≤ K .

Under the additional assumption that w(z) is a K-quasiconformal mapping, in 
Partyka and Sakan [] obtained an asymptotically sharp variant of Heinz’s inequality as
follows (see also []).

Theorem C Let w(z) be a harmonic K-quasiconformal mapping of D onto itself satisfying
w() = . Then the inequality

∣∣∂zw(z)
∣∣ +

∣∣∂z̄w(z)
∣∣ ≥ 



(
 +


K

)

max

{

π , L

K

}
()

holds for every z ∈D, where

LK :=

π

∫ √




d(�/K (s))
s
√

 – s
()

is a strictly decreasing function of K . For L > , �L(s) is the Hersch-Pfluger distortion func-
tion defined by the equalities �L(s) := μ–(μ(s)/L),  < s < ; �L() := , �L() := , where
μ(s) stands for the module of Grötzsch’s extremal domain D\[, s].

In , Qiu and Ren [] improved the Hübner inequalities as follows.
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Theorem D For all s ∈ (, ) and K ∈ (,∞), we have

–K sK ≤ �/K (s) < D(s)(–K )sK ()

and

s/K ≤ �K (s) < (–s)

 (–/K )s/K , ()

where D(s) = ( – s)( + s)/ ln .

A sense-preserving harmonic mapping of D onto itself can be represented as the
Poisson extension of the boundary function f (eit) = eiγ (t), where γ (t) is a continuous non-
decreasing function with γ (π ) – γ () = π and γ (t + π ) = γ (t) + π (cf. [, ]). The
coefficients an and bn have an alternative interpretation as Fourier coefficients of the pe-
riodic function eiγ (t), and so Heinz’s lemma can be viewed as a statement about Fourier
series.

In this paper, assuming that w(z) is a harmonic K-quasiconformal mapping of D onto
itself satisfying w() = , by using Theorem D we obtain a sharp lower bound for its coef-
ficients as follows:

|a| + |b| ≥ B(K) :=  – (–/K )(+/) K�( 
K )

(K + )�( 
K )

()

which satisfies limK→+ B(K) = , where � is the gamma function.
For n ≥  we have

|an| + |bn| ≥ Bn(K), ()

where

Bn(K) := χ (K) +
(–/K )(+/)�( + 

K )(n –  – 
K )!

�( 
K )(n + 

K ) 
K (n –  + 

K )!
, ()

(
n –  –


K

)
! :=

(
n –  –


K

)(
n –  –


K

)
· · ·

(
 –


K

)
,

(
n –  +


K

)
! :=

(
n –  +


K

)(
n –  +


K

)
· · ·

(
 +


K

)
,

and

χ (K) :=  –
(–/K )(+/)�( + 

K )
�( + 

K )
()

is a decreasing function of K with χ () = .
Assume that w(z) = P[f ](z) is a harmonic K-quasiconformal mapping of D onto itself

with the boundary function f (eit) = eiγ (t), satisfying w() = . In Theorem . of [], Par-
tyka and Sakan proved that the following inequalities:

(–K)/

(K + K – )K ≤ ∣∣f ′(z)
∣∣ ≤ KK (K– 

K )/ ()
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hold for a.e. z = eit ∈ T. Applying the above inequalities we obtain an upper bound for the
coefficients of a harmonic K-quasiconformal self-mapping w(z) of D satisfying w() = 
as follows:

|an| + |bn| ≤ An(K) :=


nπ KK (K–/K ). ()

Furthermore we show that () and () are sharp as K → .

2 Auxiliary results
Lemma  Let K >  be a constant. Then the equality

∫ π


sin


K (t) cos(nt) dt =

π



K

(–)n�( + 
K )

�( + 
K – n)�( + 

K + n)
()

holds for all nonnegative integer numbers n = , , , . . . .

Lemma  Let ϕ(t) := | cos t
 | 

 + | sin t
 | 

 , for any t ∈ [, π ]. Then

max
≤t≤π

ϕ(t) = ϕ

(
π



)
= √. ()

Lemma  Let w = P[f ](z) be a harmonic K-quasiconformal self-mapping of D with the
boundary function f (eit) = eiγ (t). For every z = ei(s+t), z = ei(s–t) ∈ T, let θ = γ (s+ t)–γ (s– t).
Then f (z) = eiθ f (z) and the inequalities

–K sinK (t) ≤ sin
(

θ



)
≤ (–/K )(+/) sin/K (t) ()

hold for every  ≤ s < π ,  ≤ t ≤ π .

Proof According to the quasi-invariance of the harmonic measure (see (.) in []), we
have

�/K

(
cos

t


)
≤ cos

θ


≤ �K

(
cos

t


)
()

for every  ≤ s < π ,  ≤ t ≤ π , and θ = γ (s + t) – γ (s – t). Since �
K (x) + �

/K (
√

 – x) = 
holds for every  ≤ x ≤ , this shows that

�/K

(
sin

t


)
≤ sin

θ


≤ �K

(
sin

t


)
. ()

Using the Hübner inequalities, () and (), we see that –K sK ≤ �/K (s) < D(s)(–K )sK and

s/K ≤ �K (s) < (–s)

 (–/K )s/K . Applying (), (), and the above two inequalities, we

have

sin
(

θ



)
≥ �

/K

(
sin

t


)
�

/K

(
cos

t


)
≥ (–K ) sinK t
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and

sin
(

θ



)
≤ �

K

(
sin

t


)
�

K

(
cos

t


)
≤ (–/K ){[| cos( t

 )| 
 +| sin( t

 )| 
 ]+} sin


K (t).

By using Lemma  we see that

∣∣∣∣cos
t


∣∣∣∣




+
∣∣∣∣sin

t


∣∣∣∣


 ≤ √.

This implies that

–K sinK (t) ≤ sin
(

θ



)
≤ (–/K )(+/) sin/K (t)

hold for every  ≤ s < π ,  ≤ t ≤ π , and θ = γ (s + t) – γ (s – t).
This completes the proof. �

3 Main results
Theorem  Given K > , let w(z) = P[f ](z) = h(z) + g(z) be a harmonic K-quasiconformal
self-mapping of D satisfying w() =  with the boundary function f (eit) = eiγ (t), where

h(z) =
∞∑

n=

anzn and g(z) =
∞∑

n=

bnzn ()

are both analytic in D. Then

|a| + |b| ≥ B(K),

where B(K) is given by () and satisfies limK→+ B(K) = . For n ≥ ,

|an| + |bn| ≥ Bn(K),

where Bn(K) is given by () and satisfies limn→∞ limK→+ Bn(K) = .

Proof Since w(z) = P[f ](z) =
∑∞

n= anzn +
∑∞

n= bnzn, using Parseval’s relation (cf. []) we
have


π

∫ π


ei[γ (s+t)–γ (s–t)] ds =

∞∑

n=

(|an|eint + |bn|e–int)

for arbitrary t ∈ R. Taking real parts, we arrive at the formula

 – J(t) =
∞∑

n=

(|an| + |bn|
)

cos(nt), ()

where

J(t) =


π

∫ π


sin

(
γ (s + t) – γ (s – t)



)
ds.
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Since w(z) is a harmonic K-quasiconformal mapping, by Lemma  we have

–K sinK (t) ≤ J(t) ≤ (–/K )(+/) sin/K (t). ()

Hence (|an| + |bn|)
∫ π

 cos(nt)( + cos(nt)) dt =
∫ π

 ( – J(t))( + cos(nt)) dt. Using ()
we also obtain

|an| + |bn| =

π

(
π – 

∫ π


J(t)

(
 + cos(nt)

)
dt

)

≥ 
π

(
π –  · (–/K )(+/)

∫ π


sin


K (t)

(
 + cos(nt)

)
dt

)

=  – (–/K )(+/) �( + 
K )

�( + 
K )

–
(–/K )(+/)(–)n�( + 

K )
�( + 

K – n)�( + 
K + n)

:= χ (K) +
(–/K )(+/)(–)n+�( + 

K )
�( + 

K – n)�( + 
K + n)

.

For n = , using the formula �(z + ) = z�(z) and simplifying the above result we obtain
the following inequality:

|a| + |b| ≥ B(K) :=  – (–/K )(+/) K�( 
K )

(K + )�( 
K )

.

By computation we know that B(K) is a decreasing function of K and satisfies

lim
K→+

B(K) = .

The above estimate is sharp. Consider the conformal mapping w(z) = eixz, where x ∈ R is
a real number. Then we have |a| + |b| = .

For n ≥ , we have

�

(
 +


K

– n
)

=
�( 

K )
( + 

K – n)( + 
K – n) · · · ( 

K – )
=

(–)n–�( 
K )

(n –  – 
K )!

,

�

(
 +


K

+ n
)

=
(

n +

K

)(
n +


K

– 
)

· · ·
(


K

)
�

(

K

)
=


K

�

(

K

)(
n +


K

)
!,

then

|an| + |bn| ≥ χ (K) +
(–/K )(+/)�( + 

K )(n –  – 
K )!

�( 
K )(n + 

K ) 
K (n –  + 

K )!
:= Bn(K).

By calculating we see that χ (K) is a decreasing function of K with χ () = . The func-
tion Bn(K) is a continuous function of K with limK→+ Bn(K) = 

(n+)n(n–) . This implies that
Bn(K) >  holds for all n ≥  and some K > .

The proof is completed. �

Remark  By computation we obtain

B(K) >


π
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for all  ≤ K ≤ .. This shows that under the additional assumption that w is a
K-quasiconformal mapping, the lower bound of the inequality () can be improved.

By the definition of the Gamma function we see that �(–n) = ∞ holds for all nonnega-
tive integer numbers n. According to the proof of Theorem  we know that for all n ≥ ,
limK→+ �( + 

K – n) = ∞. Therefore

lim
K→+

Bn(K) = 

holds for all n ≥ .
Let t =  in equation (). Then we have

∑∞
n=(|an| + |bn|) = . The sharp coefficient

estimate of a and b shows that if K → + then |a| + |b| ≥ B(K) → . This shows that
under the assumptions of Theorem  if additionally w(z) is a conformal self-mapping of
D satisfying w() = , then all the coefficients bn for n ≥  and an for n ≥  are zeros and
|a| = , that is, w(z) = eiθ z for some θ ∈R.

Remark  In [] the authors showed that an asymptotically sharp inequality holds for all
z in D. Our Theorem , however, gives an estimate at z =  only. In this sense, Theorem 
partly improves the former results.

Theorem  shows that n(|an| + |bn|) is less than or equal to a positive number deter-
mined by K .

Theorem  Under the assumption of Theorem , the coefficients of w(z) satisfy the follow-
ing inequality:

|an| + |bn| ≤ 
nπ KK (K–/K ), n = , , . . . .

Proof For every z = reiθ ∈D,

w
(
reiθ ) =

∞∑

n=

anrneinθ +
∞∑

n=

b̄nrne–inθ ,

hence

anrn =


π

∫ π


w

(
reiθ )e–inθ dθ , n = , , . . . ,

b̄nrn =


π

∫ π


w

(
reiθ )einθ dθ , n = , , . . . .

For every n we set an = |an|eiαn , bn = |bn|eiβn , and θn = αn+βn
n . Then

(|an| + |bn|
)
rn =

∣∣∣∣


π

∫ π


w

(
reiθ )[e–iαn e–inθ + eiβn einθ

]
dθ

∣∣∣∣

=
∣∣∣∣


π

∫ π


w

(
reiθ )[e–in(θ+θn) + ein(θ+θn)]dθ

∣∣∣∣

=
∣∣∣∣


π

∫ π


w

(
reiθ ) cos n(θ + θn) dθ

∣∣∣∣.
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Integrating by parts we have

(|an| + |bn|
)
rn =

∣∣∣∣


nπ

∫ π


wθ

(
reiθ ) sin n(θ + θn) dθ

∣∣∣∣. ()

In Theorem . of [], Kalaj proved that the radial limits of wθ and wr exist almost every-
where and

lim
r→–

∂θ w
(
reiθ ) =

df (eiθ )
dθ

for almost every z = eiθ ∈ T. Here f is the boundary function of w. Hence, letting r → –

and using (), () we see that

|an| + |bn| ≤ 
nπ

∫ π



∣∣f ′(eiθ )∣∣∣∣sin n(θ + θn)
∣∣dθ =

KK (K–/K )/

nπ
.

It shows that |an| + |bn| ≤ (|an| + |bn|) ≤ KK (K–/K )

nπ := An(K).
The proof is completed. �
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