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Abstract
Let G be a Lie group and H its subgroup, andMq, Nr two submanifolds of dimensions
q, r, respectively, in the Riemannian homogeneous space G/H. A kinematic integral
formula for the angle between the two intersected submanifolds is obtained.
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1 Introduction
Kinematic formulas in integral geometry are important and useful. At the beginning of [],
Chern said: ‘one of the basic problems in integral geometry is to find explicit formulas for
the integrals of geometric quantities over the kinematic density in terms of known inte-
gral invariants’. He proved the fundamental kinematic formula in n-dimensional Euclidean
space Rn in []. In [], he provided integral formulas for the quantities introduced by Weyl
for the volume of tubes. These formulas complement the fundamental kinematic formula,
which only deals with hypersurfaces. They can be found in [] and [].

Now we state the aim of kinematic formulas in general homogeneous spaces. Let G be a
unimodular Lie group with kinematic density dg and H a closed subgroup of G. Assume
that there exists an invariant Riemannian metric in the homogeneous space G/H . Let Mq,
Nr be two compact submanifolds of dimensions q, r in G/H , respectively, Mq fixed and
gNr the image of N under a motion g ∈ G. Let I(Mq ∩ gNr) denote a certain invariant
of Mq ∩ gNr , which may be a volume, a curvature integral, etc. Then the purpose of the
kinematic formula related to the invariant I(Mq ∩gNr) is to evaluate the following integral:

∫
{g∈G:Mq∩gNr �=∅}

I
(
Mq ∩ gNr)dg ()

by the well-known integral invariants of Mq and Nr .
The integral formulas have been studied by many geometers from various viewpoints.

For example, in the case that G is the group of motions in R
n, Mq, and Nr are submanifolds

of Rn and

I
(
Mq ∩ gNr) = vol

(
Mq ∩ gNr), ()
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the evaluation of () leads to the formulas due to Poincaré, Blaschke, Santaló, and others
(see [–] and the references therein). Let I(M ∩ gN) = χ (M ∩ gN) be the Euler charac-
teristic of M ∩ N of domains M and N in R

n, then
∫

G χ (M ∩ gN) dg can be expressed
explicitly by the integrals of elementary symmetric functions of principal curvatures over
the boundaries and the Euler characteristics of M, N . This well-known kinematic formula
in integral geometry is due to Chern [, ]. Next, assume that I(Mq ∩ gNr) = μ(Mq ∩ gNr)
is one of the integral invariants from the Weyl tube formula, then () leads to the Chern-
Federer kinematic formula for submanifolds of Rn []. Furthermore, Howard defined in-
tegral invariants induced from an invariant homogeneous polynomial of the second fun-
damental form of Mq ∩ gNr , and he achieved a general kinematic formula, where G is
unimodular and acts transitively on the sets of tangent spaces to each of Mq and Nr . Fi-
nally, he put the kinematic formulas listed above into a uniform shape. Most existed kine-
matic formulas are intrinsic, and only a few of them are extrinsic, for example, C-S Chen’s
formula. In [], Zhou presented an extrinsic type kinematic formula for mean curvature
powers which is a generalization of the formulas in [, ]. This is a typical work in which
the moving frame method is used effectively. By means of some kinematic formulas, suf-
ficient conditions for one domain to contain or to be contained in another domain can be
obtained. See [, –] for more kinematic formulas and their applications.

In addition, Zhou stated in [] that an important unsolved problem is whether an in-
variant I(Mq ∩ gNr) (either intrinsic or extrinsic) can be expressed by invariants of sub-
manifolds Mq and Nq. At least we are not aware of letting I(M ∩ gN) = diam(M ∩ gN), the
diameter of intersection I(M ∩ gN) of two domains M and N in R

n. Let I(Mq ∩ gNr) be the
angle between two intersected submanifolds (the angle between Mq and gNr is an integral
invariant []) and the explicit formula is still obscure to us. In this paper, we will discuss
the second problem and obtain an extrinsic kinematic formula.

Let G(n) be the group of rigid motions in R
n and O(n) the group of rotations in R

n.
Denote by dg the invariant measure of the group G(n) which is the product measure of the
Lebesgue measure of Rn and the invariant measure of SO(n), where the invariant measure
of SO(n) is normalized so that the total measure is On– · · ·O. Let Mq and Nr be two
submanifolds in R

n, Mq fixed, and gNr moving under the rigid motion g of Rn with the
kinematic density dg . Denote by dσ the volume element.

Theorem  Let Mq and Nr be two intersected submanifolds in R
n (n ≥ ). Denote by G(n)

the group of rigid motions inR
n and � the angle between Mq and gNr . Then, for any positive

integer k,
∫

G(n)

∫
Mq∩gNr

�k dσr+q–n dg = C(n)σq
(
Mq)σr

(
Nr), ()

where C(n) = Ok+n···Ok+q+Oq–···Or+q–nOr–···O
Ok+r ···Ok+r+q–n+O

.

2 Preliminaries
In this section, we review some basic facts about the angle between intersected submani-
folds in R

n and present an important density formula.

2.1 The angle between intersected submanifolds
We first introduce the angle between two vector subspaces below, which will be useful
for later purposes. Let V and W be vector subspaces of dimensions p and q, respectively.
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Let vp+, . . . , vn be an orthonormal basis of N(V ) and wq+, . . . , wn an orthonormal basis of
N(W ), that is,

N(V ) = span{vp+, . . . , vn};
N(W ) = span{wq+, . . . , wn},

the normal spaces to V , W , respectively. The angle between subspaces V and W is defined
by

�(V , W ) = ‖vp+ ∧ · · · ∧ vn ∧ wq+ ∧ · · · ∧ wn‖,

where

‖x ∧ · · · ∧ xk‖ =
∣∣det

(
(xi, xs)

)∣∣,  ≤ i, s ≤ k.

If V , W are both (n – )-dimensional then �(V , W ) = | cos θ |, where θ is the angle between
the normals of V and W . It is obvious that

 ≤ �(V , W ) ≤ ,

with

�(V , W ) =  if and only if V ∩ W �= {},
�(V , W ) =  if and only if V ⊥ W .

Similarly if g is an isometry of Rn, then �(gV , gW ) = �(V , W ).
Let Mq and Nr be two submanifolds of dimensions q, r in R

n, respectively. We assume
Mq fixed and Nr moving under the rigid motion g of Rn with the kinematic density dg .
dg is the invariant measure of G(n) and has the decomposition dg = dx dγ , where dx is
the Lebesgue measure of Rn and dγ is the invariant measure of SO(n). Consider generic
positions gNr so that the intersection Mq ∩ gNr is a (q + r – n)-dimensional manifold. We
make use of the following convention on the ranges of indices:

 ≤ A ≤ n;  ≤ α ≤ q + r – n; q + r – n +  ≤ a ≤ q;

q +  ≤ λ ≤ n; q + r – n +  ≤ h ≤ r; r +  ≤ ρ ≤ n.

Let {x; eA} be a local orthonormal frame at x ∈ Mq, and e, . . . , eq are tangent to Mq at x.
Similarly, let {x′; e′

A} be a local orthonormal frame at x′ ∈ gNr , and e′
, . . . , e′

r are tangent to
gNr at x′. Suppose that g is generic, so that Mq ∩ gNr is of dimension q + r – n. We restrict
the above families of frames by the condition

x = x′, eα = e′
α .

Geometrically the latter means that x ∈ Mq ∩ gNr and eα ’s are tangent to Mq ∩ gNr at x.
The two submanifolds Mq and Nr at x have a scalar invariant, the angle between Mq and
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Nr , i.e.,

� =
∣∣det

(
eλ, e′

ρ

)∣∣ =
∣∣det

(
ea, e′

h
)∣∣.

In the case that Mq and Nr are both hypersurfaces (q = r = n – ) it is the absolute value of
the cosine of the angle between their normal vectors.

2.2 Some relations between densities of linear subspaces
Let O be a fixed point (origin) and let Lq[O] be a fixed q-plane through O. Let Lr[O] be a
moving r-plane through O and assume that q + r > n, so that Lq[O] ∩ Lr[O] is, in general,
a (r + q – n)-plane through O, which we represent by Lr+q–n[O]. We can express dLr[O] as
a product of dLr[r+q–n] (density of Lr about Lr+q–n[O]) and dL(q)

r+q–n[O] (density of Lr+q–n[O] as
subspace of the fixed about Lq[O]). We consider the following two orthonormal moving
frames:

Moving frame :
• span{e, e, . . . , er+q–n} = Lq[O] ∩ Lr[O];
• er+q–n+, . . . , er lie on Lr[O];
• span{er+, . . . , en} are arbitrary unit vector that complete orthonormal frame .
Moving frame :
• span{e, e, . . . , er+q–n} = Lq[O] ∩ Lr[O];
• e′

r+q–n+, . . . , e′
r are constant unit vectors in the (n – q)-plane Ln–q[O] perpendicular to

Lq[O];
• e′

q+, . . . , e′
n are contained in Lq[O] such that they form an orthonormal frame in Lq[O]

together with e, e, . . . , er+q–n.
By these notations, we have

dLr[O] =
∧
α,i

(er+α , dei)
∧
α,h

(er+α , deh) ()

with the following ranges of indices, which will be used throughout the rest of this section:

α = , , . . . , n – q; i = , , . . . , r + q – n;

h = r + q – n + , . . . , q; k = r + , r + , . . . , n.

The total measure of the unoriented r-planes ofRn through a fixed point (i.e., the volume
of the Grassmann manifold Gr,n–r) is

m(Gr,n–r) = m(Gn–r,r) =
∫

Gr,n–r

dLr[O] =
On–On– · · ·On–r

Or–Or– · · ·OO
, ()

where Oi is the surface area of the i-dimensional unit sphere.
We also have the following density formulas:

dLr[r+q–n] =
∧
α,h

(er+α , deh),

dL(q)
r+q–n[O] =

∧
α,i

(
e′

r+α , dei
)
.
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Put

e′
r+α =

∑
h

ur+αe′
h +

∑
k

ur+α,ke′
k .

Since e′
h ’s are constant vectors, we have (e′

h, dei) = –(ei, de′
h) = , and thus

(er+α , dei) =
∑

k

ur+α,k
(
e′

k , dei
)
. ()

From () and () we have the following formula (see []):

dLr[O] = �r+q–n dLr[r+q–n] ∧ dL(q)
r+q–n[O], ()

where � = det(e′
r+α , e′

k).

2.3 An important differential formula
Let Mq be a fixed q-dimensional manifold and Nr a moving one of dimension r, both
assumed smooth of class C, having finite volumes σq(Mq) and σr(Nr), respectively. Let
q + r ≥ n and consider positions of Nr such that Mq ∩ Nr �= φ. Let x ∈ Mq ∩ Nr and choose
the orthonormal vectors e, e, . . . , en such that e, e, . . . , er+q–n are tangent to Mq ∩ Nr

and er+q–n+, . . . , er are tangent to Nr . Let e′
, . . . , e′

n–r be orthonormal vectors such that
e, e, . . . , er+q–n, e′

, . . . , e′
n–r span the tangent q-plane to Mq at x.

Since x ∈ Mq, we have

dx =
r+q–n∑

h=

αheh +
n–r∑
j=

βje′
j, ()

where αh and βj are -forms. Thus

ωr+h = dx · er+h =
n–r∑
j=

βj
(
e′

j, er+h
)
, h = , , . . . , n – r ()

and

n–r∧
h=

ωr+h = �

n–r∧
j=

βj, ()

where � is the (n – r) × (n – r) determinant

� =
∣∣(e′

j, er+h
)∣∣ (j, h = , , . . . , n – r). ()

The exterior product
∧

βj (j = , , . . . , n – r) is the (n – r)-dimensional volume element
on Mq in the direction of the tangent (n – r)-plane orthogonal to Mq ∩ Nr . Therefore,
denote by dσq+r–n(x) the volume element of Mq ∩ Nr at x, then

dσr+q–n(x)
n–r∧
j=

βj = dσq(x), ()

where dσq(x) is the q-dimensional volume element of Mq at x.
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On the other hand, the exterior product ω ∧ ω · · · ∧ ωr is equal to dσr(x) of Nr at x.
Thus, multiplying () by dσr+q–n(x) ∧ ω ∧ ω · · · ∧ ωr and taking () into account, we
obtain

dσr+q–n(x)
n∧

i=

ωi = �dσq(x) ∧ dσr(x). ()

Multiplying by dK[x] =
∧

ωjh (j < h; j, h = , , . . . , n), we have (see [])

dσr+q–n(x) ∧ dK = �dσq(x) ∧ dσr(x) ∧ dK[x], ()

where dσr+q–n(x) is the volume element of Mq ∩ Nr at x, dσr(x), dσq(x) express the volume
element of Mq, Nr at x, respectively. This density formula expresses the relation of the
volume element between Mq, Nr and Mq ∩ gNr .

3 Main theorem and proof
Lemma  Let Lq[x] be a fixed q-plane through a fixed point x and Lr[x] a moving r-plane
through x in R

n. Let � be the angle between the two linear subspaces. Let dL(n–r–q)
n–q[x] denote

the density of dLn–q[x] as a subspace of the fixed dLn–q–r[x]. Assume that r + q > n. Then, for
any positive integer k,

∫
Gn–q,n–r

�k dL(n–r–q)
n–q[x] =

Ok+n–q–r– · · ·Ok+n–r

Ok+n–q– · · ·Ok
, ()

where Oi is the surface area of the i-dimensional unit sphere.

Proof By using () we have

dLr[x] = �r+q–n dLr[r+q–n] ∧ dL(q)
r+q–n[x], ()

where dLr[r+q–n] is the density of Lr about Lr+q–n[x] and dL(q)
r+q–n[x] is the density of Lr+q–n[x]

as subspace of the fixed Lq[x]. Integrating () over all Lr[x], we obtain on the left-hand side
the volume of the Grassmann manifold Gr,n–r and on the right-hand side we can integrate
dL(q)

r+q–n, applying the same formula () for n → q, r → r + q – n, since � depends only on
Lr[r+q–n], so we obtain

∫
Gn–q ,n–r

�r+q–n dLr[r+q–n] =
On–On– · · ·Oq

Or–Or– · · ·Or+q–n
, ()

where the integral is extended over all Lr[r+q–n].
According to dLr[r+q–n] = dL(n–r–q)

n–q[x] , () can be reformulated as

∫
Gn–q ,n–r

�r+q–n dLn–r–q
n–q[x] =

On– · · ·Oq

Or– · · ·Or+q–n
. ()

Suppose a ∈ [n – r – q + , +∞] is an integer and make the change of notation n → n + a,
r → r + a, q → q + a. Since the increased dimension is the dimension of the intersected
part, the angle remains unchanged.
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Therefore () is rewritten as

∫
Gn–q,n–r

�r+q–n+a dL(n–r–q)
n–q[x] =

On+a– · · ·Oq+a

Or+a– · · ·Or+q–n+a
. ()

Let k = r + q – n + a in () be a positive integer, and by (), we arrive at

∫
Gn–q,n–r

�k dL(n–r–q)
n–q[x] =

Ok+n–r–q– · · ·Ok+n–r

Ok+n–q– · · ·Ok
. ()

�

Lemma  Let Lr[x] be the r-plane through x spanned by e, e, . . . , er in R
n, dgr

[x] denote
the kinematic density of the group of special rotations about x in Lr , and dgn–r

[x] denote the
kinematic density about x in the (n – r)-plane orthogonal to Lr[x], then

dg[x] = dgr
[x] ∧ dLr[x] ∧ dgn–r

[x] ,

where dg[x] is the kinematic density of the group of special rotations about x.

Proof By the density of linear space, we have

dLr[x] =
∧
α,β

ωαβ , α = , , . . . , r;β = r + , . . . , n. ()

Let dgn–r
[x] denote the kinematic density about x in (n – r)-plane orthogonal to Lr[x], then

dgn–r
[x] =

∧
λ<μ

ωλμ, λ,μ = r + , . . . , n ()

and

dgr
[x] =

∧
c<f

ωcf , c, f = , . . . , r. ()

The kinematic density of the group of special rotations about x, dg[x] can be expressed as

dg[x] =
∧
B<C

ωBC , B, C = , . . . , n. ()

From (), (), (), and () it follows that

dg[x] = dgr
[x] ∧ dLr[x] ∧ dgn–r

[x] . �

Proof of Theorem  By () and applying Lemma , we have

∫
G(n)

∫
Mq∩gNr

�k dσr+q–n(x) ∧ dg =
∫

G(n)

∫
Mq∩gNr

�k+ dσq(x) ∧ dσr(x) ∧ dg[x]

= C(n)σq
(
Mq)σr

(
Nr), ()



Zeng et al. Journal of Inequalities and Applications  (2016) 2016:83 Page 8 of 9

where C(n) is a constant (independent of x and the manifolds Mq, Nr) that depends on
the dimensions q, r and is given by the integral

C(n) =
∫

�k+ dg[x]

taken over all positions of Nr about x.
Next, we turn our attention to the computation of the coefficient C(n). Notice that

C(n) =
∫

�k+ dg[x] =
∫

�k+ dgr
[x] ∧ dLr[x] ∧ dgn–r

[x]

and
∫

dgr
[x] = Or– · · ·O,

∫
dgn–r

[x] = On–r– · · ·O,

where the integrals are taken over all positions of Nr about x, so

∫
�k+ dg[x] = Or– · · ·OOn–r– · · ·O

∫
�k+ dLr[x]. ()

By the density formula (), we have

∫
�k+ dLr[x] =

∫
�k+�r+q–n dLr[r+q–n] ∧ dL(q)

r+q–n[x]

=
Oq– · · ·On–r

Or+q–n– · · ·OO

∫
�k+r+q–n+ dL(n–r–q)

n–q[x] . ()

From Lemma , we have
∫

�k+r+q–n+ dL(n–r–q)
n–q[x] =

Ok+n · · ·Ok+q+

Ok+r · · ·Ok+r+q–n+
. ()

Combining (), (), and (), we obtain the constant in (),

C(n) =
Ok+n · · ·Ok+q+Oq– · · ·Or+q–nOr– · · ·O

Ok+r · · ·Ok+r+q–n+O
.

Then () is rewritten as
∫

G(n)

∫
Mq∩gNr

�k dσr+q–n ∧ dg

= σq
(
Mq)σr

(
Nr)Ok+n · · ·Ok+q+Oq– · · ·Or+q–nOr– · · ·O

Ok+r · · ·Ok+r+q–n+O
.

Thus we complete the proof of Theorem . �
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