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1 Introduction
The classical two-component Camassa-Holm system takes the form

{
( – ∂

x )ut + u( – ∂
x )ux + ux( – ∂

x )u + ρρx = , t > , x ∈R,
ρt + (uρ)x = , t > , x ∈ R,

()

where the variable u(t, x) represents the horizontal velocity of the fluid, and ρ(t, x) is re-
lated to the free surface elevation from equilibrium with the boundary assumptions u → 
and ρ →  as |x| → ∞. System () was found originally in [], but it was firstly derived
rigorously by Constantin and Ivanov []. The system has bi-Hamiltonian structure and
is completely integrable. Since the birth of the system, a large number of literature was
devoted to the study of the two-component Camassa-Holm system. Some mathematical
and physical properties of the system have been obtained. Chen et al. [] established a
reciprocal transformation between the two-component Camassa-Holm system and the
first negative flow of the AKNS hierarchy. Escher et al. [] used Kato’s theory to establish
local well-posedness for the two-component system and presented some precise blow-up
scenarios for strong solutions of the system. In [], Constantin and Ivanov described suf-
ficient conditions for wave-breaking and global solution to the system. Dynamics in the
periodic case for system () were considered in []. It is worth mentioning that the wave-
breaking criteria of strong solutions is determined in the lowest Soblev space Hs with s > 


by applying the localization analysis in the transport equation theory []. The other results
related to the system can be found in [–].
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Inspired by the works mentioned, in this article, we consider a modified periodic two-
component Camassa-Holm system on the circle S with S = R/Z (the circle of unit lengh):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

mt + umx + uxm + ρρx = , t > , x ∈R,
ρt + (uρ)x = , t > , x ∈R,
m(, x) = m(x), x ∈ R,
ρ(, x) = ρ(x), x ∈ R,
m(t, x + ) = m(t, x), t > , x ∈R,
ρ(t, x + ) = ρ(t, x), t > , x ∈ R,

()

where m = ( – ∂
x )u, and R is the real number set. In fact, system () is a two-component

generalization of the equation (if ρ =  in system ())

mt + umx + uxm = , m =
(
 – ∂

x
)u. ()

Equation () was first derived as the Euler-Poincaré differential equation on the Bott-
Virasoro group with respect to the H metric [], and it is known as a modified Camassa-
Holm equation and also viewed as a geodesic equation on some diffeomorphism group
[]. It is shown in [] that the well-posedness and dynamics of Eq. () on the unit circle
S are significantly different from that of the Camassa-Holm equation. For example, Eq. ()
does not conform with blow-up solution in finite time.

As we know, differently from the Camassa-Holm equation, Eq. () has not blow-up so-
lution. The motivation of the present paper is to find out whether or not system () has
some similar dynamics as the classical two-component Camassa-Holm equation and Eq.
() mathematically, for example, wave-breaking and global solution. One of the difficul-
ties is the acquisition of the a priori estimates of ‖uxx‖L∞ and ‖uxxx‖L∞ . This difficulty has
been overcome by Lemmas . and .. We mainly use the ideas of [] to derive a wave-
breaking criterion (see Theorem ) of strong solutions for system () in the low Sobolev
spaces Hs(S) × Hs–(S) with s > 

 , where a new conservation law is necessary. We need
to point out that in the Sobolev spaces Hs(R) × Hs–(R) with s > 

 , the wave-breaking
of the solution for system () only depends on the slope of the component u of the solu-
tion []. However, since the slope of the component u of the solution is bounded by the
Sobolev imbedding theorem H ↪→ L∞, the wave-breaking of the solution for system () is
determined only by the slope of the component ρ of solution definitely in the low Sobolev
spaces Hs(S) × Hs–(S) with s > 

 (see Theorem ). This implies that there exists some dif-
ference between system () and the two-component Camassa-Holm equation. Moreover,
this is quite different from Eq. () because Eq. () does not admit a blow-up solution in
infinite time.

2 The main results
We denote by ∗ the convolution. Note that if g(x) :=  + 

∑∞
n=


+n+n cos(nx), then ( –

∂
x )–f = g ∗ f for all f ∈ L(R), and g ∗ m = u. We let C denote all of different positive

constants that depend on initial data. To investigate dynamics of system (), we can rewrite
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system () in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + uux + ∂xg ∗ [u + u
x – 

 u
xx – uxuxxx + 

ρ], t > , x ∈R,
ρt + (uρ)x = , t > , x ∈R,
u(, x) = u(x), x ∈R,
ρ(, x) = ρ(x), x ∈ R,
u(t, x + ) = u(t, x), t > , x ∈R,
ρ(t, x + ) = ρ(t, x), t > , x ∈ R.

()

The main result of the present paper is as follows.

Theorem  Let z = (u,ρ) ∈ Hs(S)×Hs–(S), s > 
 , and T be the maximal existence time

of the solution z = (u,ρ) to system (). Assume that m ∈ L(S) and T < ∞. Then

∫ T



∥∥∂xρ(τ )
∥∥

L∞(S) dτ = ∞.

3 Preliminaries
In order to prove Theorem , we first give some lemmas.

Lemma . ([, ]) (-D Moser-type estimates) The following estimates hold:
(i) For s ≥ ,

‖fg‖Hs ≤ C
(‖f ‖Hs‖g‖L∞ + ‖f ‖L∞‖g‖Hs

)
. ()

(ii) For s > ,

‖f ∂xg‖Hs ≤ C
(‖f ‖Hs+‖g‖L∞ + ‖f ‖L∞‖∂xg‖Hs

)
. ()

(iii) For s ≤ 
 , s > 

 , and s + s > ,

‖f ∂xg‖Hs ≤ C‖f ‖Hs ‖g‖Hs , ()

where C is a constant independent of f and g .

Lemma . ([, ]) Suppose that s > – d
 . Let v be a vector field such that ∇v belongs to

L([, T]; Hs–) if s >  + d
 or to L([, T]; H d

 ∩ L∞) otherwise. Suppose also that f ∈ Hs,
F ∈ L([, T]; Hs), and that f ∈ L∞([, T]; Hs)∩C([, T]; S′) solves the d-dimensional linear
transport equation

{
ft + v · ∇f = F ,
f |t= = f.

()

Then f ∈ C([, T]; Hs). More precisely, there exists a constant C depending only s, p, and d,
and such that the following statements hold:

() If s �=  + d
 , then

‖f ‖Hs ≤ ‖f‖Hs + C
∫ t



∥∥F(τ )
∥∥

Hs dτ + C
∫ t


V ′(τ )

∥∥f (τ )
∥∥

Hs dτ , ()
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or

‖f ‖Hs ≤ eCV (t)
(

‖f‖Hs +
∫ t


e–CV (t)∥∥F(τ )

∥∥
Hs dτ

)
()

with V (t) =
∫ t

 ‖∇v(τ )‖
H

d
 ∩L∞ dτ if s <  + d

 and V (t) =
∫ t

 ‖∇v(τ )‖Hs– dτ else.

() If f = v, then for all s > , estimates () and () hold with V (t) =
∫ t

 ‖∂xu(τ )‖L∞ dτ .

Lemma . ([]) Let  < σ < . Suppose that f ∈ Hσ , g ∈ L([, T]; Hσ ), ν, ∂xν ∈ L([, T];
L∞), and f ∈ L∞([, T]; Hσ ) ∩ C([, T]; S′) solves the -dimensional linear transport equa-
tion

{
ft + ν∂xf = g,
f |t= = f.

()

Then f ∈ C([, T]; Hσ ). More precisely, there exists a constant C depending only σ and such
that the following statement holds:

‖f ‖Hσ ≤ ‖f‖Hσ + C
∫ t



∥∥g(τ )
∥∥

Hσ dτ + C
∫ t


V ′(τ )

∥∥f (τ )
∥∥

Hσ dτ , ()

or

‖f ‖Hσ ≤ eCV (t)
(

‖f‖Hσ +
∫ t


C

∥∥g(τ )
∥∥

Hσ dτ

)
()

with V (t) =
∫ t

 (‖ν(τ )‖L∞ + ‖∂xν(τ )‖L∞ ) dτ .

Lemma . For all x ∈R, the following statements hold:

(i)
∥∥∂

x g
∥∥

L∞(R) ≤  +
π


()

and

(ii)
∥∥∂

x g
∥∥

L∞(R) ≤  + ln  + π . ()

Proof Let g(x) be the Green function for the operator ( – ∂
x ). Then from

(
 – ∂

x + ∂
x
)
g(x) = δ(x) =

∞∑
n=–∞

einx

we get

g(x) =
∞∑

n=–∞


 + n + n einx =  + 

∞∑
n=


 + n + n cos(nx).

Hence,

gxx(x) = –
∞∑

n=

n

 + n + n cos(nx),
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which results in

∣∣gxx(x)
∣∣ ≤ 

∞∑
n=

n

 + n + n

∣∣cos(nx)
∣∣ ≤ 

∞∑
n=

n

 + n + n .

From Cauchy integral test we have

∞∑
n=

n

 + n + n ≤ lim
n→∞

∫ n



x

( + x) dx =



+
π


.

It follows that

|gxx| ≤ 
∞∑

n=

n

 + n + n ≤  +
π


.

Now, we prove (ii). From the Fourier series we have

h(x) =
∞∑

n=

sin(nx)
n

=
π



(
 –

x
π

)
for  < x < π ,

from which we get

∣∣h(x) – gxxx
∣∣ =

∣∣∣∣∣
∞∑

n=

(

n

–
n

 + n + n

)
sin(nx)

∣∣∣∣∣
≤ 

∞∑
n=

(

n

–
n

 + n + n

)

= 
∞∑

n=

(


n( + n)
+

n
( + n)

)
.

On the other hand,

∞∑
n=

(


n( + n)
+

n
( + n)

)
≤ lim

n→∞

∫ n



(

x

–
x

 + x +
x

( + x)

)
dx

=



ln  +



.

Hence, we have

∥∥∂
x g

∥∥
L∞ ≤  + ln  + π . �

Lemma . Let z = (u,ρ) ∈ Hs(S) × Hs–(S) with s > 
 . Suppose that T is the maximal

existence time of solution z = (u,ρ) of system () with the initial data z. Then, for all t ∈
[, T), the following conservation law holds:

H =
∫
S

(
u + u

x + u
xx + ρ)dx =

∫
S

(
u

 + u
x + u

xx + ρ

)

dx. ()
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Moreover, assume that m ∈ L. Then

‖uxx‖L∞(S) ≤
(

 +
π



)(
‖m‖

L + ‖z‖H×L

∫ t


‖ρx‖L∞ dτ

) 


× exp

[


‖z‖H×L

∫ t



(
 + ‖ρx‖L∞

)
dτ

]

� L(t) ()

and

‖uxxx‖L∞(S) ≤ ( + ln  + π )
(

‖m‖
L + ‖z‖H×L

∫ t


‖ρx‖L∞ dτ

) 


× exp

[


‖z‖H×L

∫ t



(
 + ‖ρx‖L∞

)
dτ

]

� M(t). ()

Proof Multiplying the first equation of system () by u and integrating by parts, we get




d
dt

∫
S

(
u + u

x + u
xx

)
dx +

∫
S

uρρx dx = . ()

Multiplying the second equation of system () by ρ and integrating by parts, we get




d
dt

∫
S

ρ dx –
∫
S

uρρx dx = , ()

which, together with (), yields




d
dt

∫
S

(
u + u

x + u
xx + ρ)dx = , ()

which implies ().
Next, we prove (). Multiplying the first equation of system () by m and integrating by

parts, we have




d
dt

∫
S

m dx = –
∫
S

ummx dx – 
∫
S

uxm dx –
∫

S
mρρx dx, ()

which results in

d
dt

∫
S

m dx = –
∫
S

uxm dx – 
∫
S

mρρx dx. ()

By the Hölder inequality we get from () that

d
dt

‖m‖
L(S) ≤ ‖ux‖L∞‖m‖

L + ‖m‖L‖ρ‖L‖ρx‖L∞

≤ ‖ux‖L∞‖m‖
L +

(
 + ‖m‖

L
)‖ρ‖L‖ρx‖L∞

≤ ‖m‖
L

(
‖ux‖L∞ + ‖ρ‖L‖ρx‖L∞

)
+ ‖ρ‖L‖ρx‖L∞ .
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Applying Gronwall’s inequality, we obtain

‖m‖
L ≤

(
‖m‖

L +
∫ t


‖ρ‖L‖ρx‖L∞ dτ

)
exp

[∫ t



(
‖ux‖L∞ + ‖ρ‖L‖ρx‖L∞

)
dτ

]
,

which, together with (), yields

‖m‖
L ≤

(
‖m‖

L + ‖z‖H×L

∫ t


‖ρx‖L∞ dτ

)

× exp

[
‖z‖H×L

∫ t



(
 + ‖ρx‖L∞

)
dτ

]
. ()

On the other hand, from Lemma . we deduce

‖uxx‖L∞ = ‖gxx ∗ m‖L∞ ≤ ‖gxx‖L∞‖m‖L ≤
(

 +
π



)
‖m‖L . ()

It follows from () that

‖uxx‖L∞ ≤
(

 +
π



)(
‖m‖

L + ‖z‖H×L

∫ t


‖ρx‖L∞ dτ

) 


× exp

[


‖z‖H×L

∫ t



(
 + ‖ρx‖L∞

)
dτ

]
. ()

Similarly, we can obtain ().
This completes the proof of Lemma .. �

4 Proof of main theorem

Proof of Theorem  Using the maximal principle to the transport equation about ρ ,

ρt + uρx = –uxρ,

we have

∥∥ρ(t)
∥∥

L∞(S) ≤ ‖ρ‖L∞(S) + C
∫ t



∥∥∂xu(τ )
∥∥

L∞
∥∥ρ(τ )

∥∥
L∞ dτ .

Applying Gronwall’s inequality yields

∥∥ρ(t)
∥∥

L∞(S) ≤ ‖ρ‖L∞ exp

[
C

∫ t



∥∥∂xu(τ )
∥∥

L∞ dτ

]
.

Using the Sobolev embedding theorem Hs ↪→ L∞ (s > 
 ), we get from Lemma . that

‖ux‖L∞(S) ≤ C
(‖u‖H + ‖ρ‖L

)
.

Therefore, we have

∥∥ρ(t)
∥∥

L∞(S) ≤ ‖ρ‖L∞eCt(‖u‖H +‖ρ‖L ) = ‖ρ‖L∞eCT‖z‖H×L . ()

Next, we split the remaining proof of Theorem  into five steps.
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Step . For s ∈ ( 
 , ), applying Lemma . to the second equation, we have

‖ρ‖Hs–(S) ≤ ‖ρ‖Hs– + C
∫ t


‖uxρ‖Hs– dτ

+ C
∫ t


‖ρ‖Hs–

(‖u‖L∞ + ‖∂xu‖L∞
)

dτ .

From Lemma . () we get

‖ρux‖Hs–(S) ≤ C
(‖ux‖Hs–‖ρ‖L∞ + ‖ρ‖Hs–‖ux‖L∞

)
. ()

From () we obtain

‖ρ‖Hs–(S) ≤ ‖ρ‖Hs– + C
∫ t


‖u‖Hs‖ρ‖L∞ dτ

+ C
∫ t


‖ρ‖Hs–

(‖u‖L∞ + ‖∂xu‖L∞
)

dτ . ()

On the other hand, using Lemma ., we get from the first equation of system () that

∥∥u(t)
∥∥

Hs(S) ≤ C
∫ t



∥∥∥∥∂xg ∗
[

u + u
x –




u
xx – uxuxxx +



ρ

]∥∥∥∥
Hs

dτ

+ ‖u‖Hs + C
∫ t



∥∥u(t)
∥∥

Hs

∥∥∂xu(τ )
∥∥

L∞ dτ .

From Lemma .(b) of [], we have
∥∥∥∥∂xg ∗

[
u + u

x –



u
xx – uxuxxx +



ρ

]∥∥∥∥
Hs

≤ C
∥∥∥∥u + u

x –



u
xx – uxuxxx +



ρ

∥∥∥∥
Hs–

≤ C
(‖u‖Hs–‖u‖L∞ + ‖ux‖Hs–‖ux‖L∞ + ‖uxx‖Hs–‖uxx‖L∞

+ ‖uxxx‖Hs–‖ux‖L∞ + ‖ρ‖Hs–‖ρ‖L∞
)
.

Hence, we get

∥∥u(t)
∥∥

Hs(S) ≤ ‖u‖Hs(S) + C
∫ t



∥∥ρ(τ )
∥∥

Hs–

∥∥ρ(τ )
∥∥

L∞ dτ

+ C
∫ t


‖u‖Hs

(‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞
)

dτ , ()

which, together with (), ensures that

∥∥u(t)
∥∥

Hs(S) +
∥∥ρ(t)

∥∥
Hs–(S)

≤ ‖u‖Hs(S) + ‖ρ‖Hs–(S) + C
∫ t



(‖u‖Hs +
∥∥ρ(t)

∥∥
Hs–

)
× (‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞ + ‖ρ‖L∞

)
dτ . ()
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Using Gronwall’s inequality, we have

∥∥u(t)
∥∥

Hs(S) +
∥∥ρ(t)

∥∥
Hs–(S)

≤ (‖u‖Hs(S) + ‖ρ‖Hs–(S)
)

× exp

[
C

∫ t



(‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞ + ‖ρ‖L∞
)

dτ

]
. ()

From () and Lemma . we get

∥∥u(t)
∥∥

Hs(S) +
∥∥ρ(t)

∥∥
Hs–(S)

≤ (‖u‖Hs(S) + ‖ρ‖Hs–(S)
)

× exp

(
C

∫ t



(
L(t) + ‖z‖H×L + ‖ρ‖L∞eCT‖z‖H×L

)
dτ

)
. ()

Therefore, if the maximal existence time T < ∞ satisfies
∫ t

 ‖ρx‖L∞ dτ < ∞, then we get
from () that

lim sup
t→T

(∥∥u(t)
∥∥

Hs(S) +
∥∥ρ(t)

∥∥
Hs–(S)

)
< ∞, ()

which completes the proof of Theorem  for s ∈ ( 
 , ).

Step . For s ∈ [, 
 ), applying Lemma . to the second equation of system (), we get

‖ρ‖Hs–(S) ≤ ‖ρ‖Hs– + C
∫ t


‖uxρ‖Hs– dτ

+ C
∫ t


‖ρ‖Hs–‖∂xu‖

L∞∩H



dτ .

Using () results in

‖ρ‖Hs–(S) ≤ ‖ρ‖Hs– + C
∫ t


‖ux‖Hs–‖ρ‖L∞ dτ + C

∫ t


‖ρ‖Hs–‖∂xu‖

L∞∩H



dτ ,

which, together with (), yields

∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs–

≤ ‖u‖Hs + ‖ρ‖Hs– + C
∫ t



(‖u‖Hs +
∥∥ρ(t)

∥∥
Hs–

)
× (‖u‖L∞ + ‖u‖

H

 +ε + ‖uxx‖L∞ + ‖ρ‖L∞ ) dτ , ()

where ε ∈ (, 
 ), and we used the fact that H 

 +ε ↪→ L∞ ∩ H 
 .

Using Gronwall’s inequality, we have

∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs–

≤ (‖u‖Hs + ‖ρ‖Hs–
)

exp

[
C

∫ t



(‖u‖L∞ + ‖u‖
H


 +ε + ‖uxx‖L∞ + ‖ρ‖L∞

)
dτ

]
. ()
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From () and Lemma . we get

∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs–

≤ (‖u‖Hs + ‖ρ‖Hs–
)

× exp

(
C

∫ t



(
L(t) + ‖z‖H×L + ‖ρ‖L∞eCT‖z‖H×L

)
dτ

)
. ()

Applying the argument as in step , we complete the proof of Theorem  for s ∈ [, 
 ).

Step . For s ∈ (, ), differentiating once the second equation of system () with respect
to x, we have

∂tρx + u∂xρx + uxρx + uxxρ = . ()

Using Lemma ., we get

‖ρx‖Hs–(S) ≤ ‖ρx‖Hs– + C
∫ t


‖u‖Hs‖ρ‖L∞ dτ

+ C
∫ t


‖ρ‖Hs–

(‖u‖L∞ + ‖∂xu‖L∞
)

dτ , ()

where we used the estimates

‖uxρx‖Hs– ≤ C
(‖ux‖Hs–‖ρ‖L∞ + ‖ρx‖Hs–‖ux‖L∞

)
and

‖ρuxx‖Hs– ≤ C
(‖ρ‖Hs–‖ux‖L∞ + ‖uxx‖Hs–‖ρ‖L∞

)
,

where Lemma . () was used.
Using (), (), and () (where s –  is replaced by s – ) yields

∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs– ≤ ‖u‖Hs + ‖ρ‖Hs– + C

∫ t



(‖u‖Hs +
∥∥ρ(t)

∥∥
Hs–

)
× (‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞ + ‖ρ‖L∞

)
dτ . ()

Applying Gronwall’s inequality, we have

∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs–

≤ (‖u‖Hs + ‖ρ‖Hs–
)

exp

[
C

∫ t



(‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞ + ‖ρ‖L∞
)

dτ

]
. ()

From () and Lemma . we get

∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs–

≤ (‖u‖Hs + ‖ρ‖Hs–
)

× exp

(
C

∫ t



(
L(t) + ‖z‖H×L + ‖ρ‖L∞eCT‖z‖H×L

)
dτ

)
. ()
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Using the argument as in step , we complete the proof of Theorem  for s ∈ (, ).
Step . For s = k ∈ N, k ≥ , differentiating k –  times the second equation of system ()

with respect to x, we obtain

(∂t + u∂x)∂k–
x ρ +

∑
l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ + ρ∂x
(
∂k–

x u
)

= . ()

Using Lemma ., we get from () that

∥∥∂k–
x ρ

∥∥
H ≤ ∥∥∂k–

x ρ
∥∥

H + C
∫ t



∥∥∂k–
x ρ

∥∥
H‖∂xu‖

H

 ∩L∞ dτ

+ C
∫ t



∥∥∥∥ ∑
l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ + ρ∂k–
x u

∥∥∥∥
H

dτ . ()

Since H is an algebra, we have

∥∥ρ∂k–
x u

∥∥
H ≤ C‖ρ‖H

∥∥∂k–
x u

∥∥
H ≤ C‖ρ‖H‖u‖Hs

and
∥∥∥∥ ∑

l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ

∥∥∥∥
H

≤ C‖ρ‖Hs–‖u‖Hs– .

It follows that

∥∥∂k–
x ρ

∥∥
H ≤ ∥∥∂k–

x ρ
∥∥

H + C
∫ t



(‖u‖Hs + ‖ρ‖Hs–
)

× (‖u‖Hs– + ‖ρ‖H
)

dτ . ()

From the Gagliardo-Nirenberg inequality we have that, for σ ∈ (, ),

‖ρ‖Hs– ≤ C
(‖ρ‖Hσ +

∥∥∂k–
x ρ

∥∥
H

)
. ()

On the other hand, for σ ∈ (, ), rewrite () as

‖ρ‖Hσ (S) ≤ ‖ρ‖Hσ + C
∫ t


‖u‖Hσ+‖ρ‖L∞ dτ

+ C
∫ t


‖ρ‖Hσ

(‖u‖L∞ + ‖∂xu‖L∞
)

dτ , ()

which, together with (), yields

‖ρ‖Hs– ≤ C‖ρ‖Hs– + C
∫ t



(‖u‖Hs + ‖ρ‖Hs–
)

× (‖u‖Hs– + ‖ρ‖H
)

dτ , ()

where () was used.
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Using Lemma . (), we get

∥∥u(t)
∥∥

Hs(S) ≤ ‖u‖Hs + C
∫ t


‖u‖Hs

(‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞

+ ‖uxxx‖L∞
)

dτ + C
∫ t



∥∥ρ(τ )
∥∥

Hs–

∥∥ρ(τ )
∥∥

L∞ dτ , ()

which, together with (), results in

∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs–

≤ C
(‖u‖Hs + ‖ρ‖Hs–

)
+ C

∫ t



(‖u‖Hs +
∥∥ρ(t)

∥∥
Hs–

)
× (‖u‖Hs– + ‖ρ‖H + ‖uxx‖L∞ + ‖uxxx‖L∞

)
dτ . ()

Using Gronwall’s inequality, we get

∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs–

≤ C
(‖u‖Hs + ‖ρ‖Hs–

)
× exp

[
C

∫ t



(‖u‖Hs– + ‖ρ‖H + ‖uxx‖L∞ + ‖uxxx‖L∞
)

dτ

]
. ()

If T < ∞ satisfies
∫ T

 ‖ρx‖L∞ dτ < ∞, applying step  and the induction assumption, we
obtain from Lemma . that ‖u‖Hs– + ‖ρ‖H + ‖uxx‖L∞ + ‖uxxx‖L∞ is uniformly bounded.
From () we get

lim sup
t→T

(∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs–

)
< ∞,

which contradicts the assumption that T < ∞ is the maximal existence time. This com-
pletes the proof of Theorem  for s = k ∈ N and k ≥ .

Step . For s ∈ (k, k + ), k ∈ N , and k ≥ , differentiating k –  times the second equation
of system () with respect to x, we obtain

(∂t + u∂x)∂k–
x ρ +

∑
l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ + ρ∂x
(
∂k–

x u
)

= . ()

Using Lemma . with s – k ∈ (, ), we get from () that

∥∥∂k–
x ρ

∥∥
Hs–k ≤ ∥∥∂k–

x ρ
∥∥

Hs–k + C
∫ t



∥∥∂k–
x ρ

∥∥
Hs–k

(‖u‖L∞ + ‖∂xu‖L∞
)

dτ

+ C
∫ t



∥∥∥∥ ∑
l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ + ρ∂k
x u

∥∥∥∥
Hs–k

dτ . ()

For each ε ∈ (, 
 ), using Lemma . () and the fact that H 

 +ε ↪→ L∞, we have

∥∥ρ∂k
x u

∥∥
Hs–k ≤ C

(‖ρ‖Hs–k+
∥∥∂k–

x u
∥∥

L∞ +
∥∥∂k

x u
∥∥

Hs–k ‖ρ‖L∞
)

≤ C
(‖ρ‖Hs–k+‖u‖

Hk– 
 +ε + ‖u‖Hs–‖ρ‖L∞

)
()
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and

∥∥∥∥ ∑
l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ

∥∥∥∥
Hs–k

≤ C
∑

l+l=k–,l,l≥

Cl,l
(∥∥∂ l+

x u
∥∥

Hs–k+

∥∥∂ l
x ρ

∥∥
L∞

+
∥∥∂ l+

x u
∥∥

L∞
∥∥∂ l+

x ρ
∥∥

Hs–k
)

≤ C
(‖u‖Hs‖ρ‖

Hk– 
 +ε + ‖u‖

Hk– 
 +ε‖ρ‖Hs–

)
. ()

Therefore, from (), (), and () we get

∥∥∂k–
x ρ

∥∥
Hs–k ≤ ∥∥∂k–

x ρ
∥∥

Hs–k + C
∫ t



(‖u‖Hs + ‖ρ‖Hs–
)

× (‖u‖
Hk– 

 +ε + ‖ρ‖
Hk– 

 +ε

)
dτ . ()

Applying Lemma . to the first equation of system () for s ∈ (k, k + ) with k ≥ , we
obtain

∥∥u(t)
∥∥

Hs(S) ≤ ‖u‖Hs + C
∫ t



∥∥ρ(τ )
∥∥

Hs–

∥∥ρ(τ )
∥∥

L∞ dτ

+ C
∫ t


‖u‖Hs

(‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞
)

dτ , ()

which, together with () and () (where s –  is replaced by s – k), gives

∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs–

≤ C
(‖u‖Hs + ‖ρ‖Hs–

)
+ C

∫ t



(‖u‖Hs +
∥∥ρ(t)

∥∥
Hs–

)
× (‖u‖

Hk– 
 +ε + ‖ρ‖

Hk– 
 +ε

)
dτ . ()

Using Gronwall’s inequality, we get

∥∥u(t)
∥∥

Hs +
∥∥ρ(t)

∥∥
Hs–

≤ C
(‖u‖Hs + ‖ρ‖Hs–

)
exp

[
C

∫ t



(‖u‖
Hk– 

 +ε + ‖ρ‖
Hk– 

 +ε

)
dτ

]
. ()

Noting that k – 
 + ε < k, k – 

 + ε < k – , and k ≥  and applying step , we obtain
that ‖u‖

Hk– 
 +ε + ‖ρ‖

Hk– 
 +ε is uniformly bounded. Therefore, we complete the proof of

Theorem  for s ∈ (k, k + ), k ∈ N , and k ≥ .
So, the proof of Theorem  is completed. �
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