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1 Introduction

The classical two-component Camassa-Holm system takes the form

(1 - 02)uue + u(l — 02)uy + 2u,(1 - 02)u + ppx =0, £>0,x€R, O
pe+ Wp)y=0, t>0,x€eR,

where the variable u(t,x) represents the horizontal velocity of the fluid, and p(Z, ) is re-
lated to the free surface elevation from equilibrium with the boundary assumptions # — 0
and p — 1 as |x| — oo. System (1) was found originally in [1], but it was firstly derived
rigorously by Constantin and Ivanov [2]. The system has bi-Hamiltonian structure and
is completely integrable. Since the birth of the system, a large number of literature was
devoted to the study of the two-component Camassa-Holm system. Some mathematical
and physical properties of the system have been obtained. Chen et al. [3] established a
reciprocal transformation between the two-component Camassa-Holm system and the
first negative flow of the AKNS hierarchy. Escher et al. [4] used Kato’s theory to establish
local well-posedness for the two-component system and presented some precise blow-up
scenarios for strong solutions of the system. In [2], Constantin and Ivanov described suf-
ficient conditions for wave-breaking and global solution to the system. Dynamics in the
periodic case for system (1) were considered in [5]. It is worth mentioning that the wave-
breaking criteria of strong solutions is determined in the lowest Soblev space H* with s > %
by applying the localization analysis in the transport equation theory [6]. The other results
related to the system can be found in [7-15].
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Inspired by the works mentioned, in this article, we consider a modified periodic two-

component Camassa-Holm system on the circle S with S = R/Z (the circle of unit lengh):

my+ um, +2u,m+ pp, =0, t>0,xeR,

or+(up)y =0, t>0,xeR,

m(0,x) = mo(x), x€R, 2
p(0,%) = po(x), x€R,

m(t,x+1)=m(t,x), t>0,xeR,

pot,x+1)=p(t,x), t>0,xeR,

where m = (1 - 02)?u, and R is the real number set. In fact, system (2) is a two-component

generalization of the equation (if p = 0 in system (2))
my + umy, + 2u,m =0, m= (1 - Bi)zu. (3)

Equation (3) was first derived as the Euler-Poincaré differential equation on the Bott-
Virasoro group with respect to the H? metric [16], and it is known as a modified Camassa-
Holm equation and also viewed as a geodesic equation on some diffeomorphism group
[16]. It is shown in [16] that the well-posedness and dynamics of Eq. (3) on the unit circle
S are significantly different from that of the Camassa-Holm equation. For example, Eq. (3)
does not conform with blow-up solution in finite time.

As we know, differently from the Camassa-Holm equation, Eq. (3) has not blow-up so-
lution. The motivation of the present paper is to find out whether or not system (2) has
some similar dynamics as the classical two-component Camassa-Holm equation and Eq.
(3) mathematically, for example, wave-breaking and global solution. One of the difficul-
ties is the acquisition of the a priori estimates of ||y || 10 and ||#yxy || Loo. This difficulty has
been overcome by Lemmas 3.4 and 3.5. We mainly use the ideas of [6] to derive a wave-
breaking criterion (see Theorem 1) of strong solutions for system (2) in the low Sobolev
spaces H*(S) x H*\(S) with s > %, where a new conservation law is necessary. We need
to point out that in the Sobolev spaces H*(R) x H*'(R) with s > %, the wave-breaking
of the solution for system (1) only depends on the slope of the component u of the solu-
tion [6]. However, since the slope of the component « of the solution is bounded by the
Sobolevimbedding theorem H! < L*, the wave-breaking of the solution for system (2) is
determined only by the slope of the component p of solution definitely in the low Sobolev
spaces H*(S) x H*X(S) with s > % (see Theorem 1). This implies that there exists some dif-
ference between system (2) and the two-component Camassa-Holm equation. Moreover,
this is quite different from Eq. (3) because Eq. (3) does not admit a blow-up solution in

infinite time.

2 The main results
We denote by  the convolution. Note that if g(x) :=1+2) -, m cos(nx), then (1 —
32)72f =g« f for all f € L*(R), and g x m = u. We let C denote all of different positive

constants that depend on initial data. To investigate dynamics of system (2), we can rewrite
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system (2) in the form

2_7,0 _

1
x — 2 %xx Sty lhry + _,02], t>0,xeR,

Us + Ully + O0xg % (U +u :

or+Wwp)e=0, t>0,x€R,
u(0,x) = up(x), xeR,

p(0,x) = po(x), x€R,

u(t,x +1) = u(t,x), t>0,xeR,
ot,x+1)=p(t,x), t>0,xeR.

(4)

The main result of the present paper is as follows.

Theorem 1 Let zy = (19, po) € H*(S) x H*X(S), s > %, and T be the maximal existence time
of the solution z = (u, p) to system (4). Assume that my € L*(S) and T < oo. Then

T
| 120y = o

3 Preliminaries

In order to prove Theorem 1, we first give some lemmas.

Lemma 3.1 ([6, 17]) (1-D Moser-type estimates) The following estimates hold:
(i) Fors=>0,

gl < C(IF Mrss gllzee + I1f llzoe llg s ). (5)

(ii) Fors> 0,

W duglls < C(If s liglizoe + 1 lzoe l10xg]lrss)- (6)

(iii) For sy < %, Sp > %, and s+ 53 >0,

If gl < Cllf llrss gl Ers25 7)

where C is a constant independent of f and g.

Lemma 3.2 ([17, 18]) Suppose that s > —%’. Let v be a vector field such that Vv belongs to
LY[0, T H Y if s> 1 + % or to L([0, T];H% N L) otherwise. Suppose also that f, € H?,
F e LN[0, T); H®), and that f € L®([0, T); H*) N C([0, T1; S') solves the d-dimensional linear
transport equation

ift+v~Vf:F, ®)
fli=o =fo.

Then f € C([0, T]; H®). More precisely, there exists a constant C depending only s, p, and d,
and such that the following statements hold:
D Ifs#1+ %, then

Wl < Wfollss + C fo |E@)], . dr +C fo V@], dr, )



Wang Journal of Inequalities and Applications (2016) 2016:85 Page 4 of 14

or

t
Wl < ecv“)(lvonm + / e VO |F@)]
0

s dr) (10)

with V(t) = fot ||V1/(17)||H%zmoo drifs<1+ %l and V(t) = fot (| V(T) || g1 dT else.
(2) Iff = v, then for all s > 0, estimates (9) and (10) hold with V (t) = fot [10x2(T) || oo dT.

Lemma 3.3 ([6]) Let 0 <o <1. Suppose that fy € H°, g € L}([0, T]; H%), v, 8,v € LY([0, T;
L), and f € L*°([0, T]; H°) N C([0, T; S') solves the 1-dimensional linear transport equa-
tion

fr+vof =g a1
fle=0 = fo.

Then f € C([0, T1; H?). More precisely, there exists a constant C depending only o and such
that the following statement holds:

W lae < follue + C/O le()| 0 dr + c/o V@O|f ()|, dr, (12)

or

fllo < eC””(ufonHa + /0 Cle@)| ;0 dr) (13)

with V(£) = [5(Iv(@)llze + 18,0(7) 1) .
Lemma 3.4 Forall x € R, the following statements hold:

. 2 T

M | axgHLOO(]R) =1+ 4 (14)
and

(i) [07g] oo =2+ 2+7. (15)

Proof Let g(x) be the Green function for the operator (1 — 32). Then from

(1-207 + 0})g(x) =8(x) = Y €™

n=-00

we get
it 1 > 1
= — =142 ——COS .
g Z 1+212 + n4e Z 1+2n? +n* (1)
n=—00 n=1
Hence,

o 2
n
gxx(x) =-2 Z 71 YT cos(nx),
n=1
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which results in

% "2 ad n?
|gex ()| < 2; m|60s(nx)| < 2; T e

From Cauchy integral test we have

S 1’12 ) n 2 1 T
Zﬁfhm Troan®=itg
= 1+2n% +nt T nooo )y 1 +x2) 4 8

It follows that

- n? T
Gl <20 S
n=1

Now, we prove (ii). From the Fourier series we have

) = Z s1nfqnx) _ %(1 - f) for 0 <x < 27,

n=1 T

from which we get

o0
1 n’
|2h(x) —gxxx| = 22(— - ﬁ> sin(nx)
~\n 1+2n* +nm
o0
1 n’
<2 S —
- ;(;q 1+2n2+n4>
o0
1 n
= 2 .
;(n(1+n2) " (1+n2)2)
On the other hand,

oo

Z 1 + " < * dx
~ nl+n2) (Q+n2)2)~ rHoo 1+ x2 1+ x2)2

1

4’

In2 +
Hence, we have

||8§gHLDC§2+ln2+n. |

Lemma 3.5 Let zy = (ug, po) € H*(S) x H*X(S) with s > % Suppose that T is the maximal
existence time of solution z = (u, p) of system (4) with the initial data zo. Then, for all t €
[0, T'), the following conservation law holds:

H-= /(u2 +2U% + UL, + p°) dx = /(u(z) + 22U, + Ugy, + Pg) di. (16)
] s
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Moreover, assume that mo € L*. Then

t
T 2
|2tz ll 2oo(s) < (1 + Z) (umoniz + |zl 2 12 f [l ol oo dr)
0

1 t
X exp|:§||zo||H2><L2/ (3+ ||px||L°°)dTi|
0

2 1) 17)

and
t 2
ltxxxllzoos) < (2 +1n2 + ﬂ)(llVﬂoIIfz + ”ZOHHZXLZ/ | oxll oe df)
0

1 t
Xexpl:E”ZOHHzxsz (3+ IIpxIILoo)dr]
0

2 M(r). (18)

Proof Multiplying the first equation of system (2) by u and integrating by parts, we get

1d

- — (u2 + 2"‘;% + uix) dx + / upp,dx = 0. (19)
2.dt Js

S
Multiplying the second equation of system (2) by p and integrating by parts, we get

1d [,
- = dx — dx =0, 20
sar P /Supp x (20)

which, together with (19), yields

1d
2 /S(u2 +2U2 + UL, + p°) dx =0, (21)
which implies (16).

Next, we prove (17). Multiplying the first equation of system (2) by m and integrating by
parts, we have

1d
——/m2 dx = —fummxdx—2fuxm2 dx—/mp,oxdx, (22)
2dt Js s s s

which results in
d
—/mz dx = —3/uxm2 dx—Z/m,opx dx. (23)
dt Js s s

By the Holder inequality we get from (23) that

2 2
E”m”LRS) < Blluxliree lmllyy + 2lmll 21l oMl 22 | pxll Lo
2 2
= x 1l L0 2 12 L2 1 Px1lL>®
< Blluxllzee llmllfs + (L+ lmll72) ol 2 [l oxl

2
< Imliz Blluxle + Lol lpxllzee) + o1z [l oxllzee.
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Applying Gronwall’s inequality, we obtain

t t
lml7, < (IImOlliz +/ o122l oxll e df) SXP[/ (Bllesallzoe + ||p||L2||px||Loc)dt],
0 0

which, together with (16), yields
t
lml?, < (IImOlliz + ||ZO||H2><L2/ | ox |l oo dT)
0
t
X exp|:”20”H2><L2/ (3+ ||px||L°°)dTi|- (24)
0
On the other hand, from Lemma 3.4 we deduce
T
lttexllzoe = l|ux * Mllzoe < llguxllzoellmlln < | 1+ 1 | L2. (25)

It follows from (24) that

¢ 2
T 2
lttixll oo < (1 + Z) (IImOlle + ||ZO||H2><L2/ Il ozl 2o dr)
0

1 t
X exp|:5”ZO||H2><L2/ 3+ ||Px||L°O)dT]~ (26)
0

Similarly, we can obtain (18).
This completes the proof of Lemma 3.5. O

4 Proof of main theorem

Proof of Theorem 1 Using the maximal principle to the transport equation about p,
e+ Upsx = —Up,

we have

t
||p(t)||Loc(§) = ”pO ||L°°(S) + C/ || axu(f)”Loo ||10(T)||Loo dr.
0

Applying Gronwall’s inequality yields
t
lo®l ey = ol x| € [ [auto)] e |

Using the Sobolev embedding theorem H* < L* (s > %), we get from Lemma 3.5 that

lltaxllzoos) < C(llutoll2 + llpoll 2)-
Therefore, we have

CT
] P T T ) (27)

Next, we split the remaining proof of Theorem 1 into five steps.
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Step 1. For s € (%, 2), applying Lemma 3.3 to the second equation, we have

t
611 = ool + C [ aseplzr do
0
t
+ C/ ol s (lleellzoe + |8l o< ) .
0
From Lemma 3.1 (5) we get
louallps1s) < Cllsell s llpllzoe + 110 pgs gl o). (28)
From (28) we obtain
t
ol 1) < lpoll st + C/ llll sl pllzoe d
0
t
+ C/ [0l (llaell oo + [|9xall o0 ) . (29)
0
On the other hand, using Lemma 3.2, we get from the first equation of system (4) that

dr

XX
2 HS

7 1
g * [uz U — U = BUglhyy + 5,02]

[0l = €

s Bxu(t)”Loo dr.

t
e+ [ )]
0
From Lemma 3.4(b) of [19], we have

7 1
0xg * |:u2 +ul - Eufm — Bl lhyx + 5,02]

HS

<C 2

7 1
2, .2 2
U+ ug — EM"" — BUylyyy + Ep

Hs-3

< Cllaelprs-s lletllzoe + Nl prs-s Netllzoe + Nthallprs-s lthe | oe

+ Nl 53 Nttxll oo + ol s 1l ol e )-

Hence, we get

@]

t
H5(S) E ||M()||HS(S) + C/(; ||,0(T)‘ Hs-1 ||p(r)HLoc dT
t
+ C/ el s (Nellzoe + ot lloe + okl 20 ) T, (30)
0

which, together with (29), ensures that

””(t) HHS(S) + H'O(t)”HS*l(S)

t
< lluollzse) + ool ps1(s) + C/O (llels + | p@®) | st

X (laellzoe + Netxllzoe + llttaallzoe + llpllzoe) d. (31
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Using Gronwall’s inequality, we have

() HHS(S) + Hp(t)”m—l(S)

< (luollmses) + loolls-1(s))

t
X eXP[C/ (||M||Loc + [l Lo + [[#hax |l oo + ||,0||L°°)dfi|« (32)
0
From (27) and Lemma 3.5 we get

Juto)

) T “ p(£) | H-L(S)

< (luollses) + llooll s-1(s))

t
x exp(C/ (L() + 20 5212 + Il po | oo eCT10I1212) df) (33)
0

Therefore, if the maximal existence time T < oo satisfies fot | pxllLoe dT < 00, then we get
from (33) that

< 00, (34)

tim sup(14() ) + 20| i)

which completes the proof of Theorem 1 for s € (%, 2).
Step 2. For s € [2, %), applying Lemma 3.2 to the second equation of system (4), we get

t
lollsey < l1pollss +C f it s e
0
t
+C /0 ol el 1 dr.
Using (28) results in
¢ t
lolls-1s) < llpollps1 + C/ ol -1l ol oo dT + C/ 1ol gs—1 | Oel 1 dr,
0 0 LX®NH?2
which, together with (30), yields

Juto)

HS + ||p(t)’Hs—l

t
< lluollrs + llpollps—1 + C/O (It + | 0@ o)

X (utllpee + llall, 3.0 + Nttellzoe + lpllee) d, (35)

where ¢ € (0, %), and we used the fact that H2*¢ <s [®° N H3.
Using Gronwall’s inequality, we have

@]

HS + ||p(t)’Hs—l

t
< (luollss + ||p0||H51)eXp|:C/ (leelloe + loell | 31e + Motanllzoo + IIPIILoo)dT} (36)
0
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From (27) and Lemma 3.5 we get

@]

< (luollzs + lpollpzs1)

HS + Hp(t)’HS—l

t
x exp(C/ (L() + 20 5212 + Il po | oo eCTI01212) df>' (37)
0

Applying the argument as in step 1, we complete the proof of Theorem 1 for s € [2, %).
Step 3. For s € (2,3), differentiating once the second equation of system (4) with respect
to x, we have

0 P + Uy Py + 2Uhy Py + Uz = 0. (38)

Using Lemma 3.3, we get

t
loxll s-2(s) < | ool ps—2 + C/ lull s Nl ol oo dT
0
t
+ C/ ol pzs-1 (leell oo + (| O]l o) dT, (39)
0
where we used the estimates
2t x| prs-2 < C(llstcll -1 I pllzoo + 11 ol g2 sl 220
and
lothurll ps—2 < C(||,0||Hs—1||Mx||L°o + ||uxx||H5—2||p||L°°)x

where Lemma 3.1 (6) was used.
Using (39), (30), and (29) (where s — 1 is replaced by s — 2) yields

[

s+ 1@ |1 < Ntolless + 1ol gt + C/Ot(llulle + [ p® ] 1)
X (el + Notallzoo + llttaellzoe + |01l ) d. (40)
Applying Gronwall’s inequality, we have
|#®] 5 + [ 2@ s

t
< (lluollss + ||po||Hs1)€XP[C/O (

|ull oo + [|ttxllzoe + [|the |l + ||p||L°°)dTi|' (41)

From (27) and Lemma 3.5 we get

u@]

< (lutollzs + Nl pollprs-1)

HS + ||p(t)‘ Hs-1

t
x exp(C/ (L) + 205212 + Il po oo eCTI0I2512) df>' (42)
0
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Using the argument as in step 1, we complete the proof of Theorem 1 for s € (2, 3).
Step 4. For s = k € N, k > 3, differentiating k — 2 times the second equation of system (4)
with respect to x, we obtain

@ +ud)f 20+ > Crpdi T ud o + po, (95 2u) = 0. (43)
l1+lp=k=3,01,1>0

Using Lemma 3.2, we get from (43) that

t
(670 < [0 2ol + € [ 020l i,

t
+C / D Cupdud o+ poful| dr. (44)
0 Ny ty=k=3,1,13>0 H!
Since H! is an algebra, we have
| P35 ul| 0 < Cllplizn 05 u]| o < Cllo Nl el
and
L+1 Ih+1
Yo Candtudp| < Cllplger e
l+ly=k=311,1,>0 H!
It follows that
t
642l = 108200l 10+ [ (il + Dol
0
X (lleellpgsr + ol ) d. (45)
From the Gagliardo-Nirenberg inequality we have that, for o € (0,1),
ol < C(lollue + 95720 1) (46)
On the other hand, for o € (0,1), rewrite (29) as
t
lollaes) < llpollne + C/ lullgollpllze dT
0
t
+C [ 1l (el + 10 d, @7)
0
which, together with (45), yields
t
611 = Cllpoligs + € [ (ke + 1)
0
X (sl s + I pllpr) d, (48)

where (46) was used.
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Using Lemma 3.1 (5), we get

Juto)

t
sy < ol + C /0 Nealles (laelzoo + el + lateellzoe

t
¢ lttgssllzoe) d + C / lo(@)]
0

Hs-1 ||/0(T)||Loc dT! (49)
which, together with (48), results in

Juto)

w5+ PO
< C(lluolls + llpollgs1) + C /0 t(nunﬁs + o0 1y51)
X (lullpgsr + 101 + Nbaellzoe + [ thaellios ) dT. (50)
Using Gronwall’s inequality, we get
| ()]

< C(lluollrs + llpollys)

HS + ||l0(t)|Hs—1

t
X eXP[C/ (Netll st + Nl + Notacll oo + ||Mxxx||L°°)dTi|- (51)
0

If T < oo satisfies fOT | oxll o dT < 00, applying step 2 and the induction assumption, we
obtain from Lemma 3.5 that ||u||gs—1 + || o]l g1 + [#xx (|20 + ||#xxx |l is uniformly bounded.
From (51) we get

timsup(|u(@®)] 5 + | 2®)] 5) < 00,

t—
which contradicts the assumption that 7' < co is the maximal existence time. This com-
pletes the proof of Theorem 1 for s = k € N and k > 3.

Step 5.Fors € (k,k+1), k € N,and k > 3, differentiating k — 1 times the second equation

of system (4) with respect to x, we obtain

(8 + udy)0*1p + > Cundi T ud o+ po. (95 u) = 0. (52)
W+ly=k-2,01,1>0

Using Lemma 3.3 with s — k € (0,1), we get from (52) that

t
s+ C [ 1080
0

h+1,,qly+1 k
E Cip 02 102" p + po u
h+ly=k=2,l1,1p>0

|90

P kY (letllzoe + I suall <) dw

t
/
0

For each ¢ € (0, %), using Lemma 3.1 (6) and the fact that H* s L*, we have

Hs—k

dt. (53)

Hs—k

| p05u] ek < CNOMpgseion |85 18] oo + [ 0528] sl 01120)

=< C(IIpIIHs—mIIuIIHk,%M + sl sl pllz) (54)

Page 12 of 14
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and

h+1 Ih+1
2 : Cll,lzax uax o
lh+lp=k=2,01,[>0

Hs—k

=C 3 Gl uleea 02 0]
h+ly=k=2,l1,1p>0
o u o 027 0 i)
< C(||“||HS||,0||H/(,%+£ ol et 01751)- (55)

Therefore, from (53), (54), and (55) we get

t
it C f (el + 1o l1)
0

X (Il goc + 101 i y..) . (56)

|90

ek = 97 00l

Applying Lemma 3.2 to the first equation of system (4) for s € (k,k + 1) with k > 3, we

obtain
t
i)y = Vol + € [ (@) 1|
0
t
+ C/ el brs (N2l oo + ol zoe + llotaellzoo ) d, (57)
0
which, together with (56) and (29) (where s — 1 is replaced by s — k), gives

Juto)

HS + ||10(t)|Hs—1
t
< C(lluollss + lollpst) + C / (el + | 2(0)] o)
0

x (el oy + 00,y dr (58)

Using Gronwall’s inequality, we get

@]

HS + ||p(t)’Hs—l

t
= C(luollss + ||po||Hs1)exp[c f (el ey + ||p||Hk_g+g)dr]. (59)
0

Noting that k — % +e<k k- % + & <k -1, and k > 3 and applying step 4, we obtain
that ||u||Hk_ Lot ||p||Hk_% .. is uniformly bounded. Therefore, we complete the proof of
Theorem 1 for s € (k,k + 1), k € N, and k > 3.

So, the proof of Theorem 1 is completed. d
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