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Abstract
The purpose of this work is to obtain several Lyapunov inequalities for the nonlinear
dynamic systems

{
x�(t) = –A(t)x(σ (t)) – B(t)y(t)|√B(t)y(t)|p–2,
y�(t) = C(t)x(σ (t))|x(σ (t))|q–2 + AT (t)y(t),

on a given time scale interval [a,b]T (a,b ∈ T with σ (a) < b), where p,q ∈ (1, +∞)
satisfy 1/p + 1/q = 1, A(t) is a real n× nmatrix-valued function on [a,b]T such that
I +μ(t)A(t) is invertible, B(t) and C(t) are two real n× n symmetric matrix-valued
functions on [a,b]T, B(t) is positive definite, and x(t), y(t) are two real n-dimensional
vector-valued functions on [a,b]T .

MSC: 34K11; 39A10; 39A99
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1 Introduction
The theory of dynamic equations on time scales, which follows Hilger’s landmark paper
[], is a new study area of mathematics that has received a lot of attention. For example, we
refer the reader to monographs [, ] and the references therein. During the last few years,
some Lyapunov inequalities for dynamic equations on time scales have been obtained by
many authors [–].

In , Bohner et al. [] investigated the second-order Sturm-Liouville dynamic equa-
tion

x�
(t) + q(t)xσ (t) =  (.)

on time scale T under the conditions x(a) = x(b) =  (a, b ∈ T with a < b) and q ∈
Crd(T, (,∞)) and showed that if x(t) is a solution of (.) with maxt∈[a,b]T |x(t)| > , then

∫ b

a
q(t)�t ≥ b – a

C
,

where [a, b]T ≡ {t ∈ T : a ≤ t ≤ b} and C = max{(t – a)(b – t) : t ∈ [a, b]T}.
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When T = R, (.) reduces to the Hills equation

x′′(t) + u(t)x(t) = . (.)

In , Lyapunov [] showed that if u ∈ C([a, b],R) and x(t) is a solution of (.) satisfying
x(a) = x(b) =  and maxt∈[a,b] |x(t)| > , then the following classical Lyapunov inequality
holds:

∫ b

a

∣∣u(t)
∣∣dt >


b – a

.

This was later strengthened with |u(t)| replaced by u+(t) = max{u(t), } by Wintner []
and thereafter by some other authors:

∫ b

a
u+(t) dt >


b – a

.

Moreover, the last inequality is optimal.
When T is the set Z of the integers, (.) reduces to the linear difference equation

�x(n) + u(n)x(n + ) = . (.)

In , Cheng [] showed that if a, b ∈ Z with  < a < b and x(n) is a solution of (.)
satisfying x(a) = x(b) =  and maxn∈{a,a+,...,b} |x(n)| > , then

b–∑
n=a

∣∣u(n)
∣∣ ≥

{
(b–a)

(b–a)– if b – a –  is even,


b–a if b – a –  is odd.

The purpose of this paper is to establish several Lyapunov inequalities for the nonlinear
dynamic system

{
x�(t) = –A(t)x(σ (t)) – B(t)y(t)|√B(t)y(t)|p–,
y�(t) = C(t)x(σ (t))|x(σ (t))|q– + AT (t)y(t),

(.)

on a given time scale interval [a, b]T (a, b ∈ T with σ (a) < b), where p, q ∈ (, +∞) satisfy
/p + /q = , A(t) is a real n × n matrix-valued function on [a, b]T such that I + μ(t)A(t)
is invertible, B(t) and C(t) are two real n × n symmetric matrix-valued functions on
[a, b]T, B(t) being positive definite, AT (t) is the transpose of A(t), and x(t), y(t) are two
real n-dimensional vector-valued functions on [a, b]T.

When n =  and p = q = , (.) reduces to

{
x�(t) = u(t)x(σ (t)) + v(t)y(t),
y�(t) = –w(t)x(σ (t)) – u(t)y(t),

(.)

where u(t), v(t), and w(t) are real-valued rd-continuous functions on T satisfying v(t) ≥ 
for any t ∈ T.

In , He et al. [] obtained the following result.
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Theorem . ([]) Let  – μ(t)u(t) >  for any t ∈ T and a, b ∈ T
k with σ (a) ≤ b. If (.)

has a real solution (x(t), y(t)) such that

x(a) =  or x(a)x
(
σ (a)

)
< ;

x(b) =  or x(b)x
(
σ (b)

)
< ; max

t∈[a,b]T

∣∣x(t)
∣∣ > ,

then we have the following inequality:

∫ b

a

∣∣u(t)
∣∣�(t) +

[∫ σ (b)

a
v(t)�(t)

∫ b

a
w+(t)�(t)

]/

≥ ,

where w+(t) = max{w(t), }.

In , Liu et al. [] obtained the following theorem.

Theorem . Let p = q =  and a, b ∈ T with σ (a) < b. If (.) has a solution (x(t), y(t))
such that

x(a) = x(b) =  and max
t∈[a,b]T

xT (t)x(t) > , (.)

then for any n × n symmetric matrix-valued function C(t) with C(t) – C(t) ≥ , we have
the following inequalities:

()

∫ b

a

[
∫ σ (t)

a |B(s)||e�A(σ (t), s)|�s][
∫ b
σ (t) |B(s)||e�A(σ (t), s)|�s]∫ b

a |B(s)||e�A(σ (t), s)|�s

∣∣C(t)
∣∣�t ≥ ,

()

∫ b

a

∣∣C(t)
∣∣{∫ b

a

∣∣B(s)
∣∣∣∣e�A

(
σ (t), s

)∣∣
�s

}
�t ≥ ,

()

∫ b

a

∣∣A(t)
∣∣�t +

(∫ b

a

∣∣√B(t)
∣∣

�t
)/(∫ b

a

∣∣C(t)
∣∣�t

)/

≥ .

For some other related results on Lyapunov-type inequalities, see, for example, [–].

2 Preliminaries and some lemmas
Throughout this paper, we adopt basic definitions and notation of monograph []. A time
scale T is a nonempty closed subset of the real numbers R. On a time scale T, the forward
jump operator, the backward jump operator, and the graininess function are defined as

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, and μ(t) = σ (t) – t,

respectively.
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The point t ∈ T is said to be left-dense (resp. left-scattered) if ρ(t) = t (resp. ρ(t) < t).
The point t ∈ T is said to be right-dense (resp. right-scattered) if σ (t) = t (resp. σ (t) > t). If
T has a left-scattered maximum M, then we define T

k = T – {M}, otherwise T
k = T.

A function f : T →R is said to be rd-continuous if f is continuous at right-dense points
and has finite left-sided limits at left-dense points in T. The set of all rd-continuous func-
tions from T to R is denoted by Crd(T,R). For a function f : T→R, the notation f σ means
the composition f ◦ σ .

For a function f : T →R, the (delta) derivative f �(t) at t ∈ T is defined as the number (if
it exists) such that for given any ε > , there is a neighborhood U of t with

∣∣f (σ (t)
)

– f (s) – f �(t)
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣

for all s ∈ U . If the (delta) derivative f �(t) exists for every t ∈ T
k , then we say that f is

�-differentiable on T.
Let F , f ∈ Crd(T,R) satisfy F�(t) = f (t) for all t ∈ T

k . Then, for any c, d ∈ T, the Cauchy
integral of f is defined as

∫ d

c
f (t)�t = F(d) – F(c).

For any z ∈R
n and any S ∈R

n×n (the space of real n × n matrices), write

|z| =
√

zT z and |S| = max
z∈Rn ,z �=

|Sz|
|z| ,

which are called the Euclidean norm of z and the matrix norm of S, respectively. It is
obvious that, for any z ∈R

n and U , V ∈ R
n×n,

|Uz| ≤ |U||z| and |UV | ≤ |U||V |.

Let Rn×n
s be the set of all symmetric real n × n matrices. We can show that, for any U ∈

R
n×n
s ,

|U| = max
|λI–U|=

|λ| and |U| = |U|.

A matrix S ∈ R
n×n
s is said to be positive definite (resp. semipositive definite), written as

S >  (resp. S ≥ ), if yT Sy >  (resp. yT Sy ≥ ) for any y ∈ R
n with y �= . If S is positive

definite (resp. semipositive definite), then there exists a unique positive definite matrix
(resp. semipositive definite matrix), written as

√
S, satisfying [

√
S] = S.

In this paper, we establish Lyapunov inequalities for (.) that has a solution (x(t), y(t))
satisfying

x(a) = x(b) =  and max
t∈[a,b]T

xT (t)x(t) > . (.)

We first introduce the following lemmas.
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Lemma . ([]) Let /p + /q =  (p, q ∈ (, +∞)) and a, b ∈ T (a < b). Then, for any f , g ∈
Crd([a, b]T,R),

∫ b

a

∣∣f (t)g(t)
∣∣�t ≤

(∫ b

a

∣∣f (t)
∣∣p

�t
) 

p
(∫ b

a

∣∣g(t)
∣∣q

�t
) 

q
.

Lemma . Let a, b ∈ T with a < b. Suppose that α,β ,γ , δ ∈ R and p, q ∈ (, +∞) with
α/p + β/q = γ /p + δ/q = /p + /q = . Then, for any f , g ∈ Crd([a, b]T, (–∞, ) ∪ (,∞)),

∫ b

a

∣∣f (t)g(t)
∣∣�t ≤

(∫ b

a

∣∣f (t)
∣∣α∣∣g(t)

∣∣γ �t
) 

p
(∫ b

a

∣∣f (t)
∣∣β ∣∣g(t)

∣∣δ�t
) 

q
.

Proof Let M(t) = (|f (t)|α|g(t)|γ )

p and N(t) = (|f (t)|β |g(t)|δ)


q . Then by Lemma . we have

∫ b

a

∣∣f (t)g(t)
∣∣�t =

∫ b

a
M(t)N(t)�t

≤
(∫ b

a
Mp(t)�t

) 
p
(∫ b

a
Nq(t)�t

) 
q

=
(∫ b

a

∣∣f (t)
∣∣α∣∣g(t)

∣∣γ �t
) 

p
(∫ b

a

∣∣f (t)
∣∣β ∣∣g(t)

∣∣δ�t
) 

q
.

This completes the proof of Lemma .. �

Remark . Let γ =  in Lemma .. Then we obtain that, for any f , g ∈ Crd([a, b]T, (–∞,
) ∪ (,∞)),

∫ b

a

∣∣f (t)g(t)
∣∣�t ≤

{
max

t∈[a,b]T

∣∣f (t)
∣∣β} 

q
(∫ b

a

∣∣f (t)
∣∣α�t

) 
p
(∫ b

a

∣∣g(t)
∣∣q

�t
) 

q
.

Lemma . ([]) If A ∈ Crd(T,Rn×n) with invertible I + μ(t)A(t), f ∈ Crd(T,Rn), t ∈ T,
and a ∈R

n, then

x(t) = e�A(t, t)a +
∫ t

t

e�A(t, τ )f (τ )�τ

is the unique solution of the initial value problem
{

x�(t) = –A(t)x(σ (t)) + f (t),
x(t) = a,

where (�A)(t) = –[I + μ(t)A(t)]–A(t) for any t ∈ T
k , and e�A(t, t) is the unique matrix-

valued solution of the initial value problem
{

Y �(t) = (�A)(t)Y (t),
Y (t) = I.

Lemma . ([]) Let A, B ∈ Crd(T,Rn×n) be �-differentiable. Then

(
A(t)B(t)

)� = Aσ (t)B�(t) + A�(t)B(t) = A�(t)Bσ (t) + A(t)B�(t).
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Lemma . ([]) If f(t), f(t), . . . , fn(t) are �-integrable on [a, b]T and x(t) = (f(t), f(t),
. . . , fn(t)), then

∣∣∣∣
∫ b

a
x(t)�t

∣∣∣∣ =

{ n∑
i=

(∫ b

a
fi(t)�t

)
} 



≤
∫ b

a

{ n∑
i=

f 
i (t)

} 


�t =
∫ b

a

∣∣x(t)
∣∣�t.

Lemma . ([]) If A, A ∈R
n×n
s and A – A ≥ , then, for any x ∈R

n,

(
xσ

)T Axσ ≤ |A|
∣∣xσ

∣∣.

3 Main results and proofs
In this section, we assume that α,β ∈ R and p, q ∈ (, +∞) satisfy

α/p + β/q = /p + /q = .

For any t, τ ∈ [a, b]T, write

F(t, τ ) =
∣∣e�A

(
σ (t), τ

)∣∣∣∣√B(τ )
∣∣,

G(t) =
∣∣√B(t)y(t)

∣∣p–yT (t)B(t)y(t) =
∣∣√B(t)y(t)

∣∣p,


(
σ (t)

)
=

(∫ σ (t)

a
Fα(t, s)�s

) q
p

,

�
(
σ (t)

)
=

(∫ b

σ (t)
Fα(t, s)�s

) q
p

,

P(t) = 
(
σ (t)

)
�

(
σ (t)

)
max

a≤τ≤σ (t)
Fβ (t, τ ) max

σ (t)≤τ≤b
Fβ (t, τ ),

Q(t) = 
(
σ (t)

)
max

a≤τ≤σ (t)
Fβ (t, τ ) + �

(
σ (t)

)
max

σ (t)≤τ≤b
Fβ (t, τ ).

Theorem . Let a, b ∈ T with σ (a) < b and C ∈R
n×n
s with C(t) – C(t) ≥ . If (.) has a

solution (x(t), y(t)) with x(t), y(t) ∈ Crd(T,Rn) satisfying (.) on the interval [a, b]T, then

∫ b

a

P(t)
Q(t)

∣∣C(t)
∣∣�t ≥ . (.)

Proof Since (x(t), y(t)) is a solution of (.), we have

(
yT (t)x(t)

)� =
(
xσ (t)

)T C(t)xσ (t)
∣∣xσ (t)

∣∣q– – G(t). (.)

Integrating (.) from a to b and noting that x(a) = x(b) = , we obtain

∫ b

a
G(t)�t =

∫ b

a

∣∣xσ (t)
∣∣q–(xσ (t)

)T C(t)xσ (t)�t.

Noting that B(t) > , we know that yT (t)B(t)y(t) ≥ , t ∈ [a, b]T.
We claim that yT (t)B(t)y(t) �≡  (t ∈ [a, b]T). Indeed, if yT (t)B(t)y(t) ≡  (t ∈ [a, b]T), then

∣∣√B(t)y(t)
∣∣ = yT (t)B(t)y(t) ≡ ,
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which implies B(t)y(t) ≡  (t ∈ [a, b]T). Thus, the first equation of (.) reduces to

x�(t) = –A(t)x
(
σ (t)

)
, x(a) = .

By Lemma . it follows

x(t) = e�A(t, a) ·  = ,

which is a contradiction to (.). Hence, we obtain that

∫ b

a

∣∣xσ (t)
∣∣q–(xσ (t)

)T C(t)xσ (t)�t =
∫ b

a
G(t)�t > , (.)

and it follows from Lemma . that, for t ∈ [a, b]T,

x(t) = –
∫ t

a
e�A(t, τ )B(τ )y(τ )

∣∣√B(τ )y(τ )
∣∣p–

�τ

= –
∫ t

b
e�A(t, τ )B(τ )y(τ )

∣∣√B(τ )y(τ )
∣∣p–

�τ ,

which implies that, for t ∈ [a, b)T,

xσ (t) = –
∫ σ (t)

a
e�A

(
σ (t), τ

)
B(τ )y(τ )

∣∣√B(τ )y(τ )
∣∣p–

�τ

= +
∫ b

σ (t)
e�A

(
σ (t), τ

)
B(τ )y(τ )

∣∣√B(τ )y(τ )
∣∣p–

�τ .

Note that, for a ≤ σ (t) ≤ b,

∣∣e�A
(
σ (t), τ

)
B(τ )y(τ )

∣∣√B(τ )y(τ )
∣∣p–∣∣

≤ ∣∣e�A
(
σ (t), τ

)∣∣∣∣B(τ )y(τ )
∣∣∣∣√B(τ )y(τ )

∣∣p–

≤ F(t, τ )
∣∣√B(τ )y(τ )

∣∣∣∣√B(τ )y(τ )
∣∣p–

= F(t, τ )G

q (τ ).

Then by Remark . and Lemma . we obtain

∣∣xσ (t)
∣∣q =

∣∣∣∣
∫ σ (t)

a
e�A

(
σ (t), τ

)
B(τ )y(τ )

∣∣√B(τ )y(τ )
∣∣p–

�τ

∣∣∣∣
q

≤
[∫ σ (t)

a

∣∣e�A
(
σ (t), τ

)
B(τ )y(τ )

∣∣√B(τ )y(τ )
∣∣p–∣∣�τ

]q

≤
[∫ σ (t)

a
F(t, τ )G


q (τ )�τ

]q

≤
(∫ σ (t)

a
Fα(t, τ )�τ

) q
p
∫ σ (t)

a
Fβ (t, τ )G(τ )�τ

≤ max
a≤τ≤σ (t)

Fβ (t, τ )
(∫ σ (t)

a
Fα(t, τ )�τ

) q
p
∫ σ (t)

a
G(τ )�τ ,
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that is,

∣∣xσ (t)
∣∣q ≤ max

a≤τ≤σ (t)
Fβ (t, τ )

(
σ (t)

)∫ σ (t)

a
G(τ )�τ . (.)

Similarly, for a ≤ σ (t) ≤ b, we have

∣∣xσ (t)
∣∣q ≤ max

σ (t)≤τ≤b
Fβ (t, τ )�

(
σ (t)

)∫ b

σ (t)
G(τ )�τ . (.)

It follows from (.) and (.) that

∣∣xσ (t)
∣∣q ≤ P(t)

Q(t)

∫ b

a
G(τ )�τ .

Then by (.) and Lemma . we have

∫ b

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t

≤
∫ b

a

∣∣C(t)
∣∣ P(t)
Q(t)

�t
∫ b

a
G(t)�t

=
∫ b

a

∣∣C(t)
∣∣ P(t)
Q(t)

�t
∫ b

a

∣∣xσ (t)
∣∣q–(xσ (t)

)T C(t)xσ (t)�t

≤
∫ b

a

∣∣C(t)
∣∣ P(t)
Q(t)

�t
∫ b

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t.

Since
∫ b

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t ≥

∫ b

a

∣∣xσ (t)
∣∣q–(xσ (t)

)T C(t)xσ (t)�t =
∫ b

a
G(t)�t > ,

we get

∫ b

a

P(t)
Q(t)

∣∣C(t)
∣∣�t ≥ .

This completes the proof of Theorem .. �

Corollary . Let a, b ∈ T with σ (a) < b and C ∈ R
n×n
s with C(t) – C(t) ≥ . If (.) has

a solution (x(t), y(t)) with x(t), y(t) ∈ Crd(T,Rn) satisfying (.) on the interval [a, b]T, then

∫ b

a
Q(t)

∣∣C(t)
∣∣�t ≥ . (.)

Proof Note that

P(t)
Q(t)

≤ Q(t)


.

It follows from (.) that

∫ b

a

Q(t)


∣∣C(t)
∣∣�t ≥ ,
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that is,

∫ b

a
Q(t)

∣∣C(t)
∣∣�t ≥ .

This completes the proof of Corollary .. �

Corollary . Let a, b ∈ T with σ (a) < b and C ∈ R
n×n
s with C(t) – C(t) ≥ . If (.) has

a solution (x(t), y(t)) with x(t), y(t) ∈ Crd(T,Rn) satisfying (.) on the interval [a, b]T, then

∫ b

a

√
P(t)

∣∣C(t)
∣∣�t ≥ . (.)

Proof Note that

Q(t) ≥ 
√

P(t).

It follows from (.) that

∫ b

a

√
P(t)

∣∣C(t)
∣∣�t ≥

∫ b

a


P(t)
Q(t)

∣∣C(t)
∣∣�t ≥ .

This completes the proof of Corollary .. �

Theorem . Let a, b ∈ T with σ (a) < b and C ∈ R
n×n
s with C(t) – C(t) ≥ . If (.) has

a solution (x(t), y(t)) with x(t), y(t) ∈ Crd(T,Rn) satisfying (.) on the interval [a, b]T, then
there exists c ∈ (a, b) such that

{∫ σ (c)
a (σ (t)) maxa≤τ≤σ (t) Fβ (t, τ )|C(t)|�t ≥ ,∫ b

c �(σ (t)) maxσ (t)≤τ≤b Fβ (t, τ )|C(t)|�t ≥ .
(.)

Proof Set U(t) = (σ (t)) maxa≤τ≤σ (t) Fβ (t, τ ) and V (t) = �(σ (t)) maxσ (t)≤τ≤b Fβ (t, τ ). Let

f (t) =
∫ t

a
U(s)

∣∣C(s)
∣∣�s –

∫ b

t
V (s)

∣∣C(s)
∣∣�s.

Then we have f (a) <  and f (b) > . Hence, we can choose c ∈ (a, b) such that f (c) ≤  and
f (σ (c)) ≥ , that is,

∫ c

a
U(s)

∣∣C(s)
∣∣�s ≤

∫ b

c
V (s)

∣∣C(s)
∣∣�s (.)

and

∫ σ (c)

a
U(s)

∣∣C(s)
∣∣�s ≥

∫ b

σ (c)
V (s)

∣∣C(s)
∣∣�s. (.)

By (.) we have that

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q ≤ U(t)
∣∣C(t)

∣∣ ∫ σ (t)

a
G(τ )�τ . (.)
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Integrating (.) from a to σ (c), we obtain

∫ σ (c)

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t ≤

∫ σ (c)

a
U(t)

∣∣C(t)
∣∣(∫ σ (t)

a
G(τ )�τ

)
�t

≤
∫ c

a
U(t)

∣∣C(t)
∣∣�t

∫ σ (c)

a
G(τ )�τ

+ U(c)
∣∣C(c)

∣∣(σ (c) – c
)∫ σ (c)

a
G(τ )�τ

=
∫ σ (c)

a
U(t)

∣∣C(t)
∣∣�t

∫ σ (c)

a
G(τ )�τ .

Similarly, we obtain from (.) and (.) that

∫ b

σ (c)

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t ≤

∫ b

σ (c)
V (t)

∣∣C(t)
∣∣�t

∫ b

σ (c)
G(τ )�τ

≤
∫ σ (c)

a
U(t)

∣∣C(t)
∣∣�t

∫ b

σ (c)
G(τ )�τ .

This yields

∫ b

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t ≤

∫ σ (c)

a
U(t)

∣∣C(t)
∣∣�t

∫ b

a
G(t)�t

=
∫ σ (c)

a
U(t)

∣∣C(t)
∣∣�t

∫ b

a

∣∣xσ (t)
∣∣q–(xσ (t)

)T C(t)xσ (t)�t

≤
∫ σ (c)

a
U(t)

∣∣C(t)
∣∣�t

∫ b

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t.

Since

∫ b

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t ≥

∫ b

a

∣∣xσ (t)
∣∣q–(xσ (t)

)T C(t)xσ (t)�t

=
∫ b

a
G(t)�t > ,

we have
∫ σ (c)

a U(t)|C(t)|�t ≥ .
Next, we obtain from (.) that

∣∣xσ (t)
∣∣q∣∣C(t)

∣∣ ≤ V (t)
∣∣C(t)

∣∣ ∫ b

σ (t)
G(τ )�τ . (.)

Integrating (.) from c to b, we have

∫ b

c

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t ≤

∫ b

c
V (t)

∣∣C(t)
∣∣(∫ b

σ (t)
G(τ )�τ

)
�t

≤
∫ b

c
V (t)

∣∣C(t)
∣∣�t

∫ b

σ (c)
G(τ )�τ .
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Similarly, we obtain

∫ c

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t ≤

∫ c

a
U(t)

∣∣C(t)
∣∣�t

∫ σ (c)

a
G(τ )�τ

≤
∫ b

c
V (t)

∣∣C(t)
∣∣�t

∫ σ (c)

a
G(τ )�τ .

This yields

∫ b

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t ≤

∫ b

c
V (t)

∣∣C(t)
∣∣�t

∫ b

a
G(t)�t

=
∫ b

c
V (t)

∣∣C(t)
∣∣�t

∫ b

a

∣∣xσ (t)
∣∣q–(xσ (t)

)T C(t)xσ (t)�t

≤
∫ b

c
V (t)

∣∣C(t)
∣∣�t

∫ b

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t.

Thus, we have
∫ b

c V (t)|C(t)|�t ≥ . This completes the proof of Theorem .. �

Theorem . Let a, b ∈ T with σ (a) < b and C ∈R
n×n
s with C(t) – C(t) ≥ . If (.) has a

solution (x(t), y(t)) with x(t), y(t) ∈ Crd(T,Rn) satisfying (.) on the interval [a, b]T, then

∫ b

a

∣∣A(t)
∣∣�t +

{
max
a≤t≤b

∣∣√B(t)
∣∣β} 

q
(∫ b

a

∣∣√B(t)
∣∣α�t

) 
p
(∫ b

a

∣∣C(t)
∣∣�t

) 
q

≥ .

Proof Since x(a) = x(b) = , we have

∫ b

a
G(t)�t =

∫ b

a

∣∣xσ (t)
∣∣q–(xσ (t)

)T C(t)xσ (t)�t.

It follows from the first equation of (.) that, for all a ≤ t ≤ b,

x(t) =
∫ t

a

(
–A(τ )xσ (τ ) – B(τ )

∣∣√B(τ )y(τ )
∣∣p–y(τ )

)
�τ

=
∫ b

t

(
A(τ )xσ (τ ) + B(τ )

∣∣√B(τ )y(τ )
∣∣p–y(τ )

)
�τ .

Thus, we have

∣∣x(t)
∣∣ =

∣∣∣∣
∫ t

a

(
–A(τ )xσ (τ ) – B(τ )y(τ )

)∣∣√B(τ )y(τ )
∣∣p–

�τ

∣∣∣∣
≤

∫ t

a

∣∣A(τ )xσ (τ ) + B(τ )y(τ )
∣∣√B(τ )y(τ )

∣∣p–∣∣�τ

≤
∫ t

a

∣∣A(τ )xσ (τ )
∣∣�τ +

∫ t

a

∣∣B(τ )y(τ )
∣∣∣∣√B(τ )y(τ )

∣∣p–
�τ

≤
∫ t

a

∣∣A(τ )
∣∣∣∣xσ (τ )

∣∣�τ +
∫ t

a

∣∣√B(τ )
∣∣G 

q (τ )�τ .
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Similarly, we have

∣∣x(t)
∣∣ ≤

∫ b

t

∣∣A(τ )
∣∣∣∣xσ (τ )

∣∣�τ +
∫ b

t

∣∣√B(τ )
∣∣G 

q (τ )�τ .

Then we obtain

∣∣x(t)
∣∣ ≤ 



[∫ b

a

∣∣A(t)
∣∣∣∣xσ (t)

∣∣�t +
∫ b

a

∣∣√B(t)
∣∣G 

q (t)�t
]

≤ 


[∫ b

a

∣∣A(t)
∣∣∣∣xσ (t)

∣∣�t +
{

max
a≤t≤b

∣∣√B(t)
∣∣β} 

q

×
(∫ b

a

∣∣√B(t)
∣∣α�t

) 
p
(∫ b

a
G(t)�t

) 
q
]

=



[∫ b

a

∣∣A(t)
∣∣∣∣xσ (t)

∣∣�t +
{

max
a≤t≤b

∣∣√B(t)
∣∣β} 

q
(∫ b

a

∣∣√B(t)
∣∣α�t

) 
p

×
(∫ b

a

∣∣xσ (t)
∣∣q–(xσ (t)

)T C(t)xσ (t)�t
) 

q
]

≤ 


[∫ b

a

∣∣A(t)
∣∣∣∣xσ (t)

∣∣�t +
{

max
a≤t≤b

∣∣√B(t)
∣∣β} 

q

×
(∫ b

a

∣∣√B(t)
∣∣α�t

) 
p
(∫ b

a

∣∣C(t)
∣∣∣∣xσ (t)

∣∣q
�t

) 
q
]

.

Denote M = maxa≤t≤b |x(t)| > . Then

M ≤ 


[∫ b

a

∣∣A(t)
∣∣M�t +

{
max
a≤t≤b

∣∣√B(t)
∣∣β} 

q
(∫ b

a

∣∣√B(t)
∣∣α�t

) 
p
(∫ b

a

∣∣C(t)
∣∣Mq�t

) 
q
]

.

Thus,

∫ b

a

∣∣A(t)
∣∣�t +

{
max
a≤t≤b

∣∣√B(t)
∣∣β} 

q
(∫ b

a

∣∣√B(t)
∣∣α�t

) 
p
(∫ b

a

∣∣C(t)
∣∣�t

) 
q

≥ .

This completes the proof of Theorem .. �
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