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Abstract
In this paper, we show that if λ1, λ2, λ3, λ4, λ5 are nonzero real numbers not all of the
same sign, η is real, 0 < σ < 1

720 , and at least one of the ratios λi/λj (1≤ i < j ≤ 5) is

irrational, then the inequality |λ1p1 + λ2p22 + λ3p33 + λ4p44 + λ5p55 + η| < (max1≤j≤5 p
j
j)
–σ

has infinite solutions with primes p1, p2, p3, p4, p5.

MSC: 11D75; 11P55
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1 Introduction
Diophantine inequalities with integer or prime variables have been considered by many
scholars. Recently, Yang and Li in [] proved that the inequality
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has infinite solutions with natural numbers x, x, x, x and prime p. Using the Davenport-
Heilbronn method, we establish our result as follows.

Theorem . Let λ, λ, λ, λ, λ be nonzero real numbers not all of the same sign, η is
real,  < σ < 

 , and at least one of the ratios λi/λj ( ≤ i < j ≤ ) is irrational, then the
inequality

∣
∣λp + λp

 + λp
 + λp

 + λp
 + η

∣
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(

max
≤j≤

pj
j

)–σ

has infinite solutions with primes p, p, p, p, p.

2 Notation and outline of the proof
Throughout, we use p to denote a prime number. We denote by δ a sufficiently small posi-
tive number and by ε an arbitrarily small positive number, not necessarily the same at dif-
ferent occurrences. Constants, both explicit and implicit, in Landau or Vinogradov sym-
bols may depend on λ, λ, λ, λ, λ, and η. We write e(x) = eπ ix. We take X to be the
basic parameter, a large real integer. Since at least one of the ratios λi/λj ( ≤ i < j ≤ ) is
irrational, without loss of generality we may assume that λ/λ is irrational. For the other
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cases, the only difference is in the following intermediate region, and we may deal with
the same method in Section .

Since λ/λ is irrational, there are infinitely many pairs of integers q, a with |λ/λ –
a/q| ≤ q–, (a, q) = , q > , and a �= . We choose q to be large in terms of λ, λ, λ, λ, λ,
η and make the following definitions:

N = q, L = log N ,  < σ <
θ


<




,ν = N–σ , τ = N–+θ , (.)

P = Nθ L–, Q =
(|λ|– + |λ|–)N –θ , T = T

 = T
 = T

 = T
 = N


 . (.)

Let u be a positive real number, we define

Ku(α) =
(

sinπuα

πα

)

(α �= ), Ku() = u, (.)

Fk(α) =
∑

(δN)/k≤p≤N/k

e
(

λkpkα
)

log p, k = , , , , , (.)

Ik(α) =
∫ N/k

(δN)/k
e
(

λkykα
)

dy, k = , , , , , (.)

Jk(α) =
∑

|γ |≤Tk
β≥ 



∑

δN<n≤N

n–+ρ/ke(λkαn), k = , , , , , (.)

where ρ = β + iγ (β ,γ real) is a typical non-trivial zero of the Riemann Zeta function.
It follows from (.) that

Ku(α) � min
(

u, |α|–),
∫ +∞

–∞
e(αy)Ku(α) dα = max

(

, u – |y|). (.)

From (.) it is clear that

J :=
∫ +∞

–∞


∏

j=

Fj(α)e(αη)Kν(α) dα

≤ (log N)
∑

|λp+λp
+λp

+λp
+λp

+η|<ν

(δN)/k≤pk≤N/k ,k=,,,,



=: (log N)N (N).

Thus we have

N (N) ≥ (log N)–J .

To estimate J , we split the range of infinite integration into three sections, traditional
named the neighborhood of the origin C = {α ∈ R : |α| ≤ τ }, the intermediate region D =
{α ∈R : τ ≤ |α| ≤ P}, the trivial region c = {α ∈R : |α| > P}.

To prove Theorem ., we shall establish that

J(C) � νN

 , J(D) = o

(

νN



)

, J(c) = o
(

νN



)
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in Sections , , and , respectively. Thus

N (N) � ν(log N)–N

 ,

and Theorem . can be established.

3 The neighborhood of the origin
We let

Bk(α) = Fk(α) – Ik(α) + Jk(α), k = , , , , . (.)

We use C to denote a positive absolute constant, not necessarily the same one on each
occurrence.

Lemma . We have

Bk(α) � N


k LC(

 + |α|N)

, k = , , , , . (.)

This is Lemma  of Vaughan [].

Lemma . For k = , , , , , we have
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k min
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∫ 
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)

, (.)
∫ τ

–τ

∣
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∣
∣
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k –. (.)

Proof The inequality (.) follows from (.) and Lemma .. The others are similar to
Lemma  of Vaughan []. �

Lemma . We have

∫
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Proof Note that
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The other cases are similar, and the proof of Lemma . is completed. �

Lemma . We have

∫
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It follows from (.) and (.).

Lemma . We have
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Proof To prove (.), we write the left side as
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which, by (.), is
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We let zk = yk
k , k = , , , , , then the integral (.) can be written as
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Since λ, λ, λ, λ, and λ are not all of the same sign, we may assume without loss of
generality that λ < , λ > . Consider the region

B =
{

(z, z, z, z) : δ

 N ≤ z ≤ δ


 N , δN ≤ zj ≤ δN (j = , , )

}

.

Then, for δ sufficiently small and large N , whenever (z, z, z, z) ∈ B one has

δN < –(λz + λz + λz + λz)λ–
 <




N

and so every z with |λz + · · ·+λz +η| ≤ 
ν satisfies δN < z < N . Therefore the integral

(.) is greater than




ν
∫
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 z– 


 dz dz dz dz � νN


 .

This completes the proof of Lemma .. �

Together with Lemmas ., ., ., we have

J(C) =
∫

C


∏

j=

Fj(α)e(αη)Kν(α) dα � νN

 . (.)

4 The intermediate region
Lemma . We have
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Since N is large, |λ(p
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)| < ν if and only if p
 + p
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. Thus, by Hua’s
inequality,
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The proofs of the cases j = , ,  and (.) are similar. �
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Lemma . We have
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where R(N) is the number of the solutions of the equation
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where d(n) is the divisor function. Now (.) follows from [], (.). �

Lemma . ([]) Suppose that (a, q) = , |α – a/q| ≤ q–, then

∑

≤p≤X

(log p)e(pα) � (log X)(X/q/ + X/ + Xq–/).

Lemma . ([]) Suppose that (a, q) = , |α – a/q| ≤ q–, φ(x) = αxk + αxk– + · · · + αk–x +
αk (k ≥ ), then

∑

≤p≤X

(log p)e
(

φ(p)
) � X+ε

(

q– + X–/ + qX–k)–k
.

Lemma . For τ < |α| ≤ P, we have

V (α) := min
(

F(α), F(α)) � N – θ
 +ε .

Proof Let τ < |α| ≤ P, we choose aj, qj (j = , ) so that |λjα –aj/qj| ≤ Q–q–
j with (aj, qj) = 

and  ≤ qj ≤ Q. By the method of Davenport and Heilbronn (see Lemma  of []), we have
max(q, q) ≥ P. Then Lemma . follows from Lemmas . and .. �
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Lemma . We have
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5 The trivial region
Lemma . Let G(α) =

∑
e(αf (x, . . . , xm)), where f is any real function and the summation

is over any finite set of values of x, . . . , xm. Then, for any A > , we have
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Lemma . We have
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Proof By Lemmas ., ., ., and Hölder’s inequality, we have
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