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Abstract
It is well known that the Riemann zeta-function ζ (s) plays a very important role in the
study of analytic number theory. In this paper, we use the elementary method and
some new inequalities to study the computational problem of one kind of reciprocal
sums related to the Riemann zeta-function at the integer point s ≥ 2, and for the
special values s = 2, 3, we give two exact identities for the integer part of the
reciprocal sums of the Riemann zeta-function. For general integer s ≥ 4, we also
propose an interesting open problem.
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1 Introduction
Let complex number s = σ + it, if σ > , then the famous Riemann zeta-function ζ (s) is
defined by the Dirichlet series

ζ (s) =
∞∑

n=


ns ,

and it is analytic everywhere except for a simple pole at s =  with residue .
As regards the various properties of ζ (s), many mathematicians have studied them

and obtained abundant research results. Some related work can be found in [–], and
[]. However, many research results as regards the Riemann zeta-function basically can
be summarized in three aspects: (A) the estimation of the order for the Riemann zeta-
function; (B) the mean value theorem for the Riemann zeta-function; (C) the zeros density
estimation for the Riemann zeta-function. Particularly with regard to a most important
problem related to the zeros density estimation of the Riemann zeta-function one has the
most famous Riemann hypothesis.

This paper is inspired by [, ], and [], we will study the properties of the Riemann
zeta-function from another angle.

For convenience, we first introduce the concept of the Fibonacci sequence {Fn}: For all
integers n ≥ , the famous Fibonacci sequence Fn is defined by

Fn =
√


[(
 +

√




)n

–
(

 –
√




)n]
.
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It is clear that Fn is a second-order linear recurrence sequence. That is, Fn+ = Fn + Fn–

with F =  and F = . This sequence has many important positions in the research of pure
mathematics and applied mathematics, and it has attracted of many scholars attention
and interest. For example, Ohtsuka and Nakamura [] first studied the properties of the
reciprocal sums of Fn, and they proved two identities:

[( ∞∑

k=n


Fk

)–]
=

{
Fn–, if n ≥  is even;
Fn– – , if n ≥  is odd,

[( ∞∑

k=n


F

k

)–]
=

{
Fn–Fn – , if n ≥  is even;
FnFn–, if n ≥  is odd,

where the function [x] denotes the greatest integer ≤ x.
Xu and Wang [] studied a similar problem. They considered the infinite sum of the

cubes of the reciprocal Fn and obtained a complex computational formula:

[( ∞∑

k=n


F

k

)–]
.

Zhang and Wang [] considered the computational problem of Pell numbers and proved
the identity

[( ∞∑

k=n


Pk

)–]
=

{
Pn– + Pn–, if n ≥  is an even number;
Pn– + Pn– – , if n ≥  is an odd number,

where the Pell numbers Pn are defined by P = , P = , and Pn+ = Pn +Pn– for all integers
n ≥ .

Some other results related to recursive sequence, recursive polynomial and their pro-
motion forms can also be found in [–], here no longer list them one by one.

Inspired by the above, we may naturally ask: for the part sums of reciprocal Riemann
zeta-function, does there exist a beautiful computational formula? That is to say, for any
integers s ≥  and n > , does there exist an interesting computational formula for

[( ∞∑

k=n


ks

)–]
. ()

About this problem, as far as we know, it seems that none had studied it yet, we also have
not seen any related result before. But we think this problem is very interesting and im-
portant, because it depicts other important properties of the Riemann zeta-function, es-
pecially the asymptotic properties of its part sums.

The main purpose of this paper is to study this problem, and use the elementary method
and some new inequalities to give two interesting identities for () with s =  and . That
is, we shall prove the following two conclusions.

Theorem  For any n ≥ , we have the identity

[( ∞∑

k=n


k

)–]
= n – .
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Theorem  For any positive integer n, we have

[( ∞∑

k=n


k

)–]
= n(n – ).

For s = , through inspection of the data, we found a very strange problem: there is no
such an integral coefficient polynomial f (x) with degree  that the following identity holds:

[( ∞∑

k=n


k

)–]
= f (n).

Therefore, how to give a precise calculation formula for () with s =  is a very compli-
cated problem. So we propose the following.

Open problem For integer s = , does there exist an exact computational formula for ()?

We hope people who are interested in this problem can study it together with us, and
solve this problem finally.

2 Several lemmas
In this section, we shall give some simple lemmas, which are necessary in the proofs of
our theorems. First we have the following inequality.

Lemma  For any integer n > , we have the inequality

∞∑

k=n


k <


n(n – )

.

Proof In fact, for any integer n ≥ , note that we have the decomposition


(n – )(n + )

=



(


n – 
–


n + 

)
and


(n – )n

=


n – 
–


n

and we have

∞∑

k=n


k <

∞∑

k=n


k(k – )

=
∞∑

k=n


k(k – )(k + )

=
∞∑

k=n


k

(


k – 
–


k + 

)

=



∞∑

k=n

(


k(k – )
–


k(k + )

)
=




∞∑

k=n


k(k – )

–



∞∑

k=n


k(k + )

=



∞∑

k=n

(


k – 
–


k

)
–




∞∑

k=n

(

k

–


k + 

)
=




(


n – 
–


n

)
=


n(n – )

.

This proves Lemma . �

Lemma  For any integer n ≥ , we also have the inequality


(n – )(n – ) + 

–


(n)(n + ) + 
<


(n – ) +


(n) .
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Proof It is clear that for all integers n ≥ , the inequality in Lemma  is equivalent to the
following inequality:




· (n)(n + ) – (n – )(n – )
((n – )(n – ) + 

 ) · ((n)(n + ) + 
 )

<
n – n + n – 

n(n – )

or

n – 
(n – n + 

 ) · (n + n + 
 )

<
n – n + n – 

n(n – n + n – )
, ()

but the inequality () is equivalent to


(
n – n)(n – n + n – 

)

<
(
n – n + n – 

)(
n – n + n +




)

or

n – n + n – n + n

< n – n + n – n + n – n +



n –



. ()

It is clear that () is obvious, if n ≥ . So inequality () is also correct. This proves
Lemma . �

Lemma  For any integer n ≥ , we have the inequality


(n)(n – ) + 

–


(n + )(n + ) + 
<


(n) +


(n + ) .

Proof It is clear that, to prove Lemma , we only need to prove the inequality

n + 
(n + n + 

 ) · (n – n + 
 )

<
n + n + n + 

n(n + n + n + )
. ()

The inequality () is equivalent to the inequality


(
n + n)(n + n + n + 

)

<
(
n + n + n + 

)(
n + n – n +




)

or

n + n + n + n + n

< n + n + n + n + n + n +

n

+



. ()

It is clear that () holds, so inequality () is correct. That means that Lemma  is correct.
�



Xin Journal of Inequalities and Applications  (2016) 2016:32 Page 5 of 6

3 Proof of the theorems
In this section, we shall complete the proofs of our theorems. First for any integer n ≥ ,
note that we have the inequalities


n

=
∞∑

k=n

(

k

–


k + 

)
=

∞∑

k=n


k(k + )

<
∞∑

k=n


k

and

∞∑

k=n


k <

∞∑

k=n


k(k – )

=
∞∑

k=n

(


k – 
–


k

)
=


n – 

.

So we have the inequality

n –  <

( ∞∑

k=n


k

)–

< n.

It is clear that this inequality also holds if n = . So for all integers n ≥ , we have the identity

[( ∞∑

k=n


k

)–]
= n – .

This proves Theorem .
Now we prove Theorem . First we prove the inequality


n(n – ) + 

<
∞∑

k=n


k . ()

In fact if n = m –  >  is an odd number, then from Lemma  we have

∞∑

k=m–


k =

∞∑

k=m


(k – ) +

∞∑

k=m


(k) =

∞∑

k=m

(


(k – ) +


(k)

)

>



∞∑

k=m

(


(k – )(k – ) + 


–


(k)(k + ) + 


)

=


(m – )(m + ) + 
. ()

Similarly, if n = m is an even number, then from Lemma  we have

∞∑

k≥m


k =

∞∑

k=m


(k) +

∞∑

k=m


(k + ) =

∞∑

k=m

(


(k) +


(k + )

)

>



∞∑

k=m

(


(k)(k – ) + 


–


(k + )(k + ) + 


)

=


(m – )(m) + 
. ()
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Combining inequalities (), (), and Lemma  we may deduce the inequality


n(n – ) + 

<
∞∑

k=n


k <


n(n – )

,

which implies

n(n – ) <

( ∞∑

k=n


k

)–

< n(n – ) + . ()

For any integer n ≥ , from the definition of the function [x] and () we may immediately
deduce the identity

[( ∞∑

k=n


k

)–]
= n(n – ). ()

If n = , then
∑∞

k=


k > , so

 <

( ∞∑

k=


k

)–

<  or

[( ∞∑

k=


k

)–]
= .

This completes the proof of Theorem .
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