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Abstract
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1 Introduction
This work is devoted to studying the relationships among strong metric subregularity,
the quadratic growth condition, strong metric regularity, and the positive-definiteness
property of the second-order subdifferential/generalized Hessian in finite and infinite-
dimensional settings.

It is well known in nonlinear optimization that the quadratic growth conditions of
extended-valued functions play a central role (see, e.g., [–]). In a nonsmooth setting, var-
ious metric regularity properties of the subdifferential of a lower semicontinuous convex
function acting in a Hilbert space were established by Aragón Artacho and Geoffroy [] in
terms of the quadratic growth condition. Later, motivated by some results in [], Aragón
Artacho and Geoffroy [] extended their characterizations from [] to convex functions
defined on arbitrary Banach spaces and pointed out that if the subgradient mapping ∂f of a
proper l.s.c. convex function f defined on a Banach space is strongly metrically subregular
at (x̄, x̄∗) with modulus κ > , then the following quadratic growth condition holds:

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+

c

‖x – x̄‖ for all x ∈ U , ()

where c ∈ (, 
κ

) and U is a neighborhood of x̄. They raised the question whether the
bound of the constant in the quadratic growth condition () may be improved (see [], Re-
mark .). Drusvyatskiy et al. [] extended the characterizations from [] to proper lower
semicontinuous functions defined on Asplund spaces and gave an affirmative answer to
the above question via showing that the constant c in () can be chosen arbitrarily in (, 

κ
).

© 2016 Wang and Song. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-0977-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-0977-4&domain=pdf
mailto:wsong@hrbnu.edu.cn


Wang and Song Journal of Inequalities and Applications  (2016) 2016:29 Page 2 of 15

In other lines of development, in [], the second-order subdifferential/generalized Hes-
sian is used to characterize the tilt-stable local minimizers introduced by Poliquin and
Rockafellar [] for prox-regular and subdifferentially continuous functions on R

n. Later,
Mordukhovich and Nghia [] extended this characterization to the settings of Hilbert
spaces by using a new notion of the combined second-order subdifferential. Quite recently,
Drusvyatskiy et al. [] extended the known equivalences between metric regularity and
the strong metric regularity properties of the gradient mappings for C-smooth func-
tions, characterized via the classical Hessian, to the general class of prox-regular and
subdifferentially continuous functions on R

n in terms of the second-order subdifferen-
tial/generalized Hessian.

The current work aims to achieve new results in the aforementioned directions by im-
proving the known characterizations. After recording in Section  the necessary defini-
tions and facts that will be needed throughout the manuscript, we devote Section  to
characterizations of the second-order growth condition of a proper lower semicontinuous
function. Theorem . provides a sufficient condition which allows strong metric subreg-
ularity with modulus κ to imply the second-order growth condition with the constant
c = /κ . Theorem . gives a sufficient condition for metric subregularity in a noncon-
vex setting. In Section , in finite-dimensional setting, we establish an equivalence among
strong metric subregularity, quadratic growth, the positive-definiteness property of the
second-order subdifferential/generalized Hessian, the strong metric regularity and tilt sta-
bility, and we show that the constant c in the quadratic growth condition can attain /κ
(Theorem .).

2 Preliminaries
In this section, we summarize some of the fundamental tools used in variational analysis
and nonsmooth optimization. Readers can refer [–] for more details. Throughout this
paper, unless otherwise stated, X and Y are Banach spaces. The symbol → always denotes
the convergence relative to the norm while the symbol w∗→ signifies the weak∗ convergence
in the dual space X∗. The closed ball centered at x ∈ X of radius r is denoted by Br(x). We
denote by R–– the set {x ∈ R | x < }. The distance function associated with a nonempty
set � ∈ X is defined by

d(x;�) := inf
y∈�

‖x – y‖, x ∈ X.

Let F : X ⇒ Y be a set-valued mapping between Banach spaces X and Y . The domain
and graph are defined by

dom F :=
{

x ∈ X | F(x) �= ∅}

and

gph F :=
{

(x, y) ∈ X × Y | y ∈ F(x)
}

,

respectively. For a mapping F : X ⇒ X∗ between a Banach space X and its dual X∗ we
define the sequential Painlevé-Kuratowski outer limit by

Lim sup
x→x̄

F(x) :=
{

x∗ ∈ X∗ | ∃xk → x̄ and x∗
k

w∗→ x∗ with x∗
k ∈ F(xk) ∀k

}
. ()
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Our study is focused on two key notions: metric subregularity and strong metric subreg-
ularity. They plays an important role in stability analysis. For more details, one can refer
to the references [–]. They are defined as follows.

Definition . A mapping F : X ⇒ Y is said to be metrically subregular at x̄ for ȳ if ȳ ∈ F(x̄)
and there is a positive constant κ along with a neighborhood U of x̄ such that

d
(
x; F–(ȳ)

) ≤ κd
(
ȳ; F(x)

)
for all x ∈ U . ()

Definition . A mapping F : X ⇒ Y is said to be strongly (metrically) subregular at x̄ for
ȳ if ȳ ∈ F(x̄) and there is a positive constant κ along with a neighborhood U of x̄ such that

‖x – x̄‖ ≤ κd
(
ȳ; F(x)

)
for all x ∈ U . ()

We notice that the strong metric subregularity of F at x̄ for ȳ is equivalent to the metric
subregularity if x̄ is an isolated point of F–(ȳ).

For an extended-real-valued function f : X → R̄ := (–∞; +∞], we define the domain of
f to be

dom f :=
{

x ∈ X | f (x) < +∞}
.

In this paper, unless otherwise stated, we assume that all the extended-real-valued func-
tions are proper, i.e., not identically equal to +∞, and lower semicontinuous (l.s.c.) on X.

The fundamental tools for studying general nonsmooth functions are subdifferentials.
The following two subdifferential notions are used in this paper.

Definition . (Subdifferentials of functions) Let f : X → R̄ and x̄ ∈ dom f .
• The regular/Fréchet subdifferential of f at x̄ is

∂̂f (x̄) :=
{

x∗ ∈ X∗
∣∣∣ lim inf

x→x̄

f (x) – f (x̄) – 〈x∗, x – x̄〉
‖x – x̄‖ ≥ 

}
. ()

• The (basic, limiting, Mordukhovich) subdifferential of f at x̄ is defined via () by

∂f (x̄) := Lim sup

x
f→x̄

∂̂f (x), ()

where the symbol x
f→ x̄ means that x → x̄ with f (x) → f (x̄).

When f is convex, ∂f (x) is the usual subgradient set of convex analysis. When f is
smooth, ∂f (x) is the singleton ∇f (x).

Definition . Given a subset K ⊂ X and a point x ∈ K . The contingent cone of K at x is
defined by

TK (x) := lim sup
τ↓

K – x
τ

=
{

v ∈ X
∣∣∣ ∃τk → ,∃K � xk → x, s.t.

xk – x
τk

→ v
}

.



Wang and Song Journal of Inequalities and Applications  (2016) 2016:29 Page 4 of 15

Definition . (Normal cone) Let there be given a subset K ⊂ X and a point x̄ ∈ K .
• The regular/Fréchet normal cone of K at x̄ is defined by

N̂K (x̄) :=
{

x∗ ∈ X∗
∣∣∣ lim sup

x K→x̄

〈x∗, x – x̄〉
‖x – x̄‖ ≤ 

}
, ()

where x K→ x̄ signifies the convergence x → x̄ with x ∈ K .
• The limiting normal cone of f at x̄ is defined via () by

NK (x̄) := Lim sup
x K→x̄

N̂K (x). ()

When K is convex, NK (x̄) = N̂K (x̄). Let C ⊂ X be a cone, we denote by

C– :=
{

x∗ ∈ X∗ | 〈x∗, x
〉 ≤  for all x ∈ C

}

its polar cone. Bonnans and Shapiro [] pointed out that N̂K (x̄) = [TK (x̄)]– if X is a finite-
dimensional space. Applying the last two notions to the subdifferential mapping ∂f : X ⇒
X∗ for an extended-real-valued function f yields the combined second-order subdifferen-
tial of f at (x̄, x̄∗) introduced in [] by

∂̆f
(
x̄, x̄∗)(u) :=

{
u∗ ∈ X∗ | (u∗, –u

) ∈ N̂gph∂f
(
x̄, x̄∗)} for all u ∈ X∗∗ ()

and the second-order subdifferential (or generalized Hessian) of f at (x̄, x̄∗) introduced in
[] by

∂f
(
x̄, x̄∗)(u) :=

{
u∗ ∈ X∗ | (u∗, –u

) ∈ Ngph∂f
(
x̄, x̄∗)} for all u ∈ X∗∗. ()

Note that

∂f
(
x̄, x̄∗)(u) =

{∇f (x̄)∗u
}

for all u ∈ X∗∗ ()

if f ∈ C, where ∇f (x̄)∗ = ∇f (x̄) in the case of Hilbert spaces X.
In order to characterize the relationships between the quadratic growth conditions and

metric subregularity of the subdifferentials in nonsmooth and nonconvex settings, we
need the following two notions, which were introduced in [] and were further studied
in [] and [].

Definition . Let f : X → R̄ and x̄ ∈ dom f . We say that f is prox-regular at x̄ for v̄ ∈ ∂f (x̄)
if there exist ε >  and r ≥  such that

f
(
x′) ≥ f (x) +

〈
v, x′ – x

〉
–

r

∥∥x′ – x

∥∥ for all x′ ∈ Bε(x̄), ()

whenever x ∈ Bε(x̄), |f (x) – f (x̄)| < ε, and v ∈ ∂f (x) with ‖v – v̄‖ < ε. If this holds for every
v̄ ∈ ∂f (x̄), we say that f is prox-regular at x̄.



Wang and Song Journal of Inequalities and Applications  (2016) 2016:29 Page 5 of 15

Definition . A function f : X → R̄ is subdifferentially continuous at x̄ ∈ dom f for v̄ ∈
∂f (x̄) if for every ε >  there exists δ >  such that |f (x) – f (x̄)| < ε whenever x ∈ Bδ(x̄) and
‖v – v̄‖ < δ with v ∈ ∂f (x). If this occurs for all v̄ ∈ ∂f (x̄), we say that f is subdifferentially
continuous at x̄.

3 Characterizing quadratic growth properties
The main focus of this section is relating the quadratic growth properties of a function f
to the subregularity of the subdifferential ∂f .

In the convex case, Aragón Artacho and Geoffroy [] gave a condition

f
(
λx + ( – λ)x̄

) ≤ λf (x) + ( – λ)f (x̄) –
c

λ( – λ)‖x – x̄‖, ∀x ∈ U , ()

where U is a neighborhood of point x̄ ∈ X, c > , and λ ∈ (, ), which allows the convex
subdifferential to be strongly metrically subregular at any (x̄, x̄∗) ∈ gph ∂f .

It will be showed in the next theorem that a condition similar to () guarantees that the
upper bound 

κ
in () can be attained.

Theorem . Let there be given f : X → R̄ and (x̄, x̄∗) ∈ gph ∂f . If the subdifferential ∂f is
strongly metrically subregular at (x̄, x̄∗) with modulus κ > , then the following two asser-
tions are equivalent:

(i) there are real numbers r ∈ (,κ–) and δ >  such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
–

r

‖x – x̄‖ for all x ∈ Bδ(x̄), ()

(ii) for any real number α ∈ (,κ–), there is a real number η >  such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+

α


‖x – x̄‖ for all x ∈ Bη(x̄). ()

Furthermore, if there is a neighborhood U of x̄ such that for all x ∈ U , λ ∈ (, ),

f
(
λx + ( – λ)x̄

) ≤ λf (x) + ( – λ)f (x̄) –


κ
λ( – λ)‖x – x̄‖, ()

then (i) or (ii) can imply the following:
(iii) there is a real number θ >  such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+


κ

‖x – x̄‖ for all x ∈ Bθ (x̄). ()

Proof The proof of the equivalence (i) ⇔ (ii) appears implicitly in [], Corollary .. Now,
we show the implication (ii) ⇒ (iii). Suppose that assertion (iii) is not true, then for any
positive integer k such that B 

k
(x̄) ⊂ U , there is an xk ∈ B 

k
(x̄) such that

f (xk) < f (x̄) +
〈
x̄∗, xk – x̄

〉
+


κ

‖xk – x̄‖. ()

One can pick a positive number εk such that

f (xk) < f (x̄) +
〈
x̄∗, xk – x̄

〉
+

κ– – εk


‖xk – x̄‖. ()
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Since (ii) holds, for some real number κ– – εk < αk < κ–, there is a real number ηk > 
such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+

αk


‖x – x̄‖ for all x ∈ Bηk (x̄). ()

Next, we show that

f (x) < f (x̄) +
〈
x̄∗, x – x̄

〉
+

κ– – εk


‖x – x̄‖ ()

for all x = λxk + ( – λ)x̄ with λ ∈ (, ). Define

gk(x) := f (x) –
〈
x̄∗, x – x̄

〉
–

κ– – εk


‖x – x̄‖.

It follows from () and () that, for all λ ∈ (, ),

gk
(
λxk + ( – λ)x̄

)
= f

(
λxk + ( – λ)x̄

)
– λ

〈
x̄∗, xk – x̄

〉
–

κ– – εk


λ‖xk – x̄‖

≤ λf (xk) + ( – λ)f (x̄) –


κ
λ( – λ)‖xk – x̄‖

– λ
〈
x̄∗, xk – x̄

〉
–

κ– – εk


λ‖xk – x̄‖

< λf (x̄) + λ
〈
x̄∗, xk – x̄

〉
+

κ– – εk


λ‖xk – x̄‖ + ( – λ)f (x̄)

–


κ
λ( – λ)‖xk – x̄‖ – λ

〈
x̄∗, xk – x̄

〉
–

κ– – εk


λ‖xk – x̄‖

= f (x̄) +
κ– – εk


λ( – λ)‖xk – x̄‖ –


κ

λ( – λ)‖xk – x̄‖

= f (x̄) –
εk


λ( – λ)‖xk – x̄‖

< f (x̄), ()

hence, inequality () holds for all x = λxk + ( – λ)x̄ with λ ∈ (, ), which contradicts the
inequality () and thus completes the proof of the theorem. �

Remark .
(i) The condition () is a sufficient condition for (). For example, for

x = (x, x) ∈R
, consider the function

f (x) :=

⎧
⎨

⎩
+∞, x = x �= ,

‖x‖, otherwise.

Obviously, f is not convex, and the subdifferential ∂f is strongly metrically
subregular at (x̄, x̄∗) = (, ) ∈ gph ∂f with modulus κ = . Furthermore, we observe
that, for any neighborhood U of x̄ = (, ) and λ ∈ (, ), the condition () holds.
On the other hand, we see that () holds at (x̄, x̄∗) = (, ).
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(ii) The condition () is only a sufficient condition for (). Consider the real function
f (x) = |x|. We observe that the subgradient mapping ∂f is a strongly metrically
subregular at x̄ =  for x̄∗ =  with any κ > , and inequality () is satisfied at (, ).
However, the inequality () does not hold.

(iii) We observe that the bound α = κ– in () is the sharpest possible bound. To
illustrate this, consider the real function f (x) = 

 x. We observe that the
subgradient mapping ∂f is strongly metrically subregular at x̄ =  for x̄∗ =  with
modulus κ = , and inequality () is satisfied at (, ) for α = κ–. However,
inequality () is false at (, ) for any α > κ–.

(iv) Notice that condition () is weaker than the strong convexity of f in U , because
the strong convexity entails the condition that there exists a constant c such that,
for all x, x ∈ U and λ ∈ (, ),

f
(
λx + ( – λ)x

) ≤ λf (x) + ( – λ)f (x) – cλ( – λ)‖x – x‖. ()

In a nonconvex setting, Drusvyatskiy et al. [] showed that the quadratic growth prop-
erty () holds if the subdifferential ∂f is metrically subregular at (x̄, x̄∗) with κ– >  and
the inequality () holds. Furthermore, we have an additional uniformity condition: there
exists β ∈ [,α) such that

f (x̄) ≥ f (x) +
〈
x∗, x̄ – x

〉
–

β


‖x – x̄‖, ∀(

x, x∗) ∈ gph ∂f ∩Bη

(
x̄, x̄∗), ()

which together with () implies that the subdifferential ∂f is strongly metrically subregu-
lar. We notice that the quadratic growth property of a proper lower semicontinuous func-
tion f can also hold if we substitute the strong metric subregularity of ∂f with a condition
similar to (). More precisely, we have the following theorems.

Theorem . Let there be given f : X → R̄, (x̄, x̄∗) ∈ gph ∂f , and κ > . If there are real
numbers r ∈ (,κ–) and θ >  such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
–

r


d(x; (∂f )–(x̄∗)) for all x ∈ Bθ (x̄), ()

and for any real number α ∈ (,κ–), there is a positive real number μ such that, for all
x ∈ Bμ(x̄) and λ ∈ (, ),

f
(
( – λ)x + λx̄

) ≤ ( – λ)f (x) + λf (x̄) –
α


λ( – λ)d(x; (∂f )–(x̄∗)), ()

then there is a real number η >  such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+

α


d(x; (∂f )–(x̄∗)) for all x ∈ Bη(x̄). ()

Furthermore, if there are a real number β ∈ (,α) and a positive real number δ such that

f (u) ≥ f (x) +
〈
x∗, u – x

〉
–

β


d(x; (∂f )–(x̄∗)),

∀(
u, x̄∗),

(
x, x∗) ∈ gph ∂f ∩Bδ

(
x̄, x̄∗), ()

then the subdifferential ∂f is metrically subregular at (x̄, x̄∗).
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Proof Let ϑ = min{θ ,μ}. It follows from () that, for all x ∈ Bϑ (x̄) and λ ∈ (, ),

( – λ)f (x) ≥ f
(
( – λ)x + λx̄

)
– λf (x̄) +

α


λ( – λ)d(x; (∂f )–(x̄∗)),

i.e.,

f (x) ≥ 
 – λ

f
(
( – λ)x + λx̄

)
–

λ

 – λ
f (x̄) +

α


λd(x; (∂f )–(x̄∗)). ()

Moreover, by (),

f
(
( – λ)x + λx̄

) ≥ f (x̄) + ( – λ)
〈
x̄∗, x – x̄

〉
–

r


( – λ)‖x – x̄‖, ()

which together with the inequality () gives

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+

α


λd(x; (∂f )–(x̄∗)) –

r


( – λ)‖x – x̄‖. ()

Letting λ ↑  in this inequality, we obtain (). By applying Theorem . of [], it follows
from () and () that the subdifferential ∂f is metrically subregular at (x̄, x̄∗). �

Furthermore, it is easy to observe the following consequence of Theorem . concerning
the strong metric subregularity of the subdifferential.

Corollary . Let there be given f : X → R̄, (x̄, x̄∗) ∈ gph ∂f , and κ > . If there are real
numbers r ∈ (,κ–) and θ >  such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
–

r

‖x – x̄‖ for all x ∈ Bθ (x̄), ()

and for any real number α ∈ (,κ–), there is a positive real number μ such that for all
x ∈ Bμ(x̄) and λ ∈ (, ),

f
(
( – λ)x + λx̄

) ≤ ( – λ)f (x) + λf (x̄) –
α


λ( – λ)‖x – x̄‖, ()

then there is a real number η >  such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+

α


‖x – x̄‖ for all x ∈ Bη(x̄). ()

Furthermore, if there are a real number β ∈ (,α) and a positive real number δ such that

f (x̄) ≥ f (x) +
〈
x∗, x̄ – x

〉
–

β


‖x – x̄‖, ∀(

x, x∗) ∈ gph ∂f ∩Bδ

(
x̄, x̄∗), ()

then we see that the subdifferential ∂f is strongly metrically subregular at (x̄, x̄∗).

The conditions () and () can be weakened, if we strengthen slightly the condition
(). More specifically, we have the following result.
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Theorem . Let there be given f : X → R̄, (x̄, x̄∗) ∈ gph ∂f , and κ > . If there are real
numbers r ∈ (,κ–) and θ >  such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
–

r

‖x – x̄‖ for all x ∈ Bθ (x̄), ()

and for any real number α ∈ (,κ–), there is a positive real number μ such that for all
x ∈ Bμ(x̄) and λ ∈ (, ),

f
(
( – λ)x + λx̄

) ≤ ( – λ)f (x) + λf (x̄) –
α


λ( – λ)d

(
x; (∂f )–(x̄∗))‖x – x̄‖, ()

then there is a real number η >  such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+

α


d(x; (∂f )–(x̄∗)) for all x ∈ Bη(x̄). ()

Furthermore, if there are a real number β ∈ (,α) and a positive real number δ such that

f (x̄) ≥ f (x) +
〈
x∗, x̄ – x

〉
–

β


d
(
x; (∂f )–(x̄∗))‖x – x̄‖, ∀(

x, x∗) ∈ gph ∂f ∩Bδ

(
x̄, x̄∗), ()

then the subdifferential ∂f is metrically subregular at (x̄, x̄∗).

Proof Let ϑ = min{θ ,μ}. For all x ∈ Bϑ (x̄) and λ ∈ (, ), the inequality () gives

f
(
( – λ)x + λx̄

) ≥ f (x̄) + ( – λ)
〈
x̄∗, x – x̄

〉
–

r


( – λ)‖x – x̄‖. ()

It follows from () that, for all x ∈ Bϑ (x̄) and λ ∈ (, ),

f (x) ≥ 
 – λ

f
(
( – λ)x + λx̄

)
–

λ

 – λ
f (x̄) +

α


λd

(
x; (∂f )–(x̄∗))‖x – x̄‖, ()

which together with the inequality () gives

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+

α


λd

(
x; (∂f )–(x̄∗))‖x – x̄‖ –

r


( – λ)‖x – x̄‖. ()

Letting λ ↑  in this inequality, we have

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+

α


d
(
x; (∂f )–(x̄∗))‖x – x̄‖, ∀x ∈ Bϑ (x̄), ()

which implies ().
Furthermore, letting ε = min{ϑ , δ}, it follows from () and () that, for all (x, x∗) ∈

gph ∂f ∩Bε(x̄, x̄∗),

〈
x∗ – x̄∗, x – x̄

〉 ≥ α – β


d
(
x; (∂f )–(x̄∗))‖x – x̄‖,

which implies

d
(
x; (∂f )–(x̄∗)) ≤ 

α – β

∥∥x∗ – x̄∗∥∥, ∀x ∈ Bε(x̄),∀x∗ ∈ ∂f (x).

Thus the subdifferential ∂f is metrically subregular at (x̄, x̄∗). �
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4 Second-order characterizations of quadratic growth properties
In this section, we characterize the quadratic growth properties by the second-order subd-
ifferential (or generalized Hessian) defined in (). To motivate the subsequent discussion,
we first review the standard second-order optimality condition and restate it in terms of
the gradient itself. The proof of the following proposition is similar to [], Proposition ..

Proposition . Consider a C-smooth function f on R
n and let x̄ be a local minimizer

of f . Then the following conditions are equivalent:
(i) the gradient mapping ∇f is strongly metrically subregular at (x̄, ),

(ii) the Hessian matrix ∇f (x̄) is positive definite.

Proof Since f is C-smooth, we have

∇f (x) = ∇f (x̄)(x – x̄) + o
(‖x – x̄‖)

and hence

∥∥∇f (x) + r(x – x̄)
∥∥ =

∥∥(∇f (x̄) + rI
)
(x – x̄)

∥∥ + o
(‖x – x̄‖) for all r ≥ ,

where the symbol I denote the identity mapping. If the Hessian matrix ∇f (x̄) is positive
definite, there are a real number ε >  and a positive real number λ which is slightly smaller
than the minimal eigenvalue of ∇f (x̄) such that

∥∥∇f (x) + r(x – x̄)
∥∥ ≥ (λ + r)‖x – x̄‖ for all x ∈ Bε(x̄).

It follows from the last inequality that

λ‖x – x̄‖ ≤ ∥∥∇f (x)
∥∥ for all x ∈ Bε(x̄),

which verifies the gradient mapping ∇f is strongly metrically subregular at (x̄, ) with
modulus λ–. Hence the implication (ii) ⇒ (i) holds.

To show the implication (i) ⇒ (ii), suppose the gradient mapping ∇f is strongly metri-
cally subregular at (x̄, ) with κ > , then there is a real number δ >  such that

‖x – x̄‖ ≤ κ
∥∥∇f (x)

∥∥ for all x ∈ Bδ(x̄),

which implies that one can pick a real number r ∈ [, 
κ

) such that

∥∥∇f (x) + r(x – x̄)
∥∥ ≥ (

κ– – r
)‖x – x̄‖ for all x ∈ Bδ(x̄).

Hence there exists a positive real number μ such that

∥∥∇f (x) + r(x – x̄)
∥∥ ≥ (μ + r)‖x – x̄‖ for all x ∈ Bδ(x̄). ()

If the Hessian matrix ∇f (x̄) is not positive definite, then there is an eigenvalue λ̄ =  and
a corresponding eigenvector v ∈ R

n with ‖v‖ = . Let xt = x̄ + tv, then xt ∈ Bδ(x̄) when t is
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small enough. It follows from () that

(μ + r)t ≤ ∥∥∇f (xt) + r(xt – x̄)
∥∥ =

∥∥(∇f (x̄) + rI
)
(xt – x̄)

∥∥ + o
(‖xt – x̄‖)

≤ rt + o(t),

which is a contradiction and thus completes the proof. �

In a nonsmooth setting, it is natural to use a second-order subdifferential construction.
The next theorem establishes a relationship among the strong metric subregularity, the
quadratic growth condition, and the positive-definiteness property of the combined sec-
ond-order subdifferential for a prox-regular and subdifferentially continuous function. Its
proof technique follows [], Corollary ..

Definition . Let there be given f : Rn → R̄ and (x̄, x̄∗) ∈ gph ∂f . We say that f is con-
tingent-normal at x̄ for x̄∗ if the following property holds: for a vector u ∈ R

n, if there
exists a vector w∗ such that (u, w∗) ∈ Tgph ∂f (x̄, x̄∗), then there is a vector u∗ such that
(u∗, –u) ∈ N̂gph∂f (x̄, x̄∗).

Definition . Let there be given f : Rn → R̄ and (x̄, x̄∗) ∈ gph ∂f . We say that f is normal-
contingent at x̄ for x̄∗ if the following property holds: for a vector u ∈ R

n, if there exists a
vector u∗ such that (u∗, –u) ∈ N̂gph∂f (x̄, x̄∗), then there is a vector w∗ such that (–u, –w∗) ∈
Tgph∂f (x̄, x̄∗).

Remark . We observe that the assumptions in Definition . and Definition . can
be satisfied automatically by many functions. For instance, if gph ∂f has the form of the
following set:

⋃{
(x, y) ∈R

n ×R
n
+ | 〈(ai, bi), (x, y)

〉
= , (ai, bi) ∈ (

R
n \ {})×R

n
––, i = , , . . . , p

}
, ()

then the function f is contingent-normal and normal-contingent at any point (x̄, x̄∗) ∈
gph ∂f . For example, consider the real-valued function

f (x) =

⎧
⎨

⎩


 x, x ≥ ,

– 
 x, x < .

Then ∇f (x) = |x| and

gph∇f =
{

(x, y) ∈R×R+ | 〈(, –), (x, y)
〉

= 
}

∪ {
(x, y) ∈R×R+ | 〈(–, –), (x, y)

〉
= 

}
,

which is a form of (). Take (x̄, x̄∗) = (, ), we have

Tgph∇f
(
x̄, x̄∗) = gph∇f and N̂gph∇f

(
x̄, x̄∗) =

[
Tgph∇f

(
x̄, x̄∗)]–.

It is easy to verify that this function f is contingent-normal and normal-contingent at (, ).
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Theorem . Let there be given f : Rn → R̄ and (x̄, x̄∗) ∈ gph ∂f . Assume f is prox-regular
at x̄ for x̄∗ with r >  and subdifferentially continuous at x̄ for x̄∗. Consider the following
three statements:

(i) the subdifferential ∂f is strongly metrically subregular at (x̄, x̄∗) with modulus κ > ,
(ii) there exist a neighborhood U of x̄ and a positive constant α > r such that

f (x) ≥ f (x̄) +
〈
x̄∗, x – x̄

〉
+

α


‖x – x̄‖ for all x ∈ U , ()

(iii) there is a constant c >  such that the combined second-order subdifferential
∂̆f (x̄, x̄∗) is positive-definite in the sense that

〈
u∗, u

〉 ≥ c‖u‖ for all u ∈ X and u∗ ∈ ∂̆f
(
x̄, x̄∗)(u). ()

Then implication (i) ⇒ (ii) holds when κ– > r. Implication (ii) ⇒ (iii) holds with c = α–r
 if f

is normal-contingent at x̄ for x̄∗. Furthermore, (iii) ⇒ (i) holds with κ > 
c if f is contingent-

normal at x̄ for x̄∗.

Proof The implication (i) ⇒ (ii) has been established in [], Theorem . Next, we show
the implication (iii) ⇒ (i). Our immediate goal now is to show that for any κ > /c, there
are some neighborhoods U of x̄ and V of x̄∗ such that

‖x – x̄‖ ≤ κ
∥∥x∗ – x̄∗∥∥, whenever

(
x, x∗) ∈ (gph ∂f ) ∩ (U × V ). ()

If it is not the case, then for all n ∈ N there is (xn, x∗
n) ∈ gph ∂f with ‖xn – x̄‖ ≤ 

n ,
‖x∗

n – x̄∗‖ ≤ 
n and such that ‖xn – x̄‖ > κ‖x∗

n – x̄∗‖. This implies xn �= x̄ for all n, hence
the bounded sequence ( xn–x̄

‖xn–x̄‖ , x∗
n–x̄∗

‖xn–x̄‖ ) must have a convergent subsequence. Without loss
of generality, we may assume that the sequence ( xn–x̄

‖xn–x̄‖ , x∗
n–x̄∗

‖xn–x̄‖ ) is convergent, hence there
are some points u and w∗ with

(
xn – x̄

‖xn – x̄‖ ,
x∗

n – x̄∗

‖xn – x̄‖
)

→ (
u, w∗) ∈ Tgph ∂f

(
x̄, x̄∗). ()

Since f is contingent-normal at x̄ for x̄∗, there is a vector u∗ such that (u∗, –u) ∈
N̂gph∂f (x̄, x̄∗) = [Tgph∂f (x̄, x̄∗)]–, i.e., u∗ ∈ ∂̆f (x̄, x̄∗)(u), thus we have

〈(
u∗, –u

)
,
(
u, w∗)〉 ≤ , i.e.,

〈
u∗, u

〉 ≤ 〈
w∗, u

〉
,

this together with () gives 〈w∗, u〉 ≥ c‖u‖, thus we have

 = ‖u‖ ≥ κ
∥∥w∗∥∥ ≥ cκ‖u‖ > .

This is a clear contradiction, which shows condition () holds. Thus, the subdifferential
∂f is strongly metrically subregular at (x̄, x̄∗) with any constant κ > /c.

Finally, we prove the implication (ii) ⇒ (iii). Since (ii) holds, there exist a neighbor-
hood U of x̄ and a positive constant α such that () holds. Let u ∈ R

n and consider
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u∗ ∈ ∂̆f (x̄, x̄∗)(u), i.e., (u∗, –u) ∈ N̂gph∂f (x̄, x̄∗). Since f is normal-contingent at x̄ for x̄∗, there
is a vector w∗ such that (–u, –w∗) ∈ Tgph∂f (x̄, x̄∗), thus we have

〈(
u∗, –u

)
,
(
–u, –w∗)〉 ≤ , i.e.,

〈
u∗, u

〉 ≥ 〈
w∗, u

〉
, ()

and there are (xn, x∗
n) ∈ gph ∂f and τn ↓  with (xn, x∗

n) → (x̄, x̄∗) and

[(
xn, x∗

n
)

–
(
x̄, x̄∗)]/τn → (

–u, –w∗).

Let x ∈ U and consider x∗ ∈ ∂f (x), we have

〈
x∗, x – x̄

〉 ≥ f (x) – f (x̄) –
r

‖x – x̄‖,

this together with () gives

〈
x∗ – x̄∗, x – x̄

〉 ≥ α – r


‖x – x̄‖ for all x ∈ U , x∗ ∈ ∂f (x).

Since x∗
n ∈ ∂f (xn) and xn ∈ U when n is large enough, one has

〈
x∗

n – x̄∗, xn – x̄
〉 ≥ α – r


‖xn – x̄‖

when n is large enough. Hence,

〈
x∗

n – x̄∗

τn
,

xn – x̄
τn

〉
≥ α – r



∥∥∥∥
xn – x̄

τn

∥∥∥∥



, eventually.

Letting n → +∞ we have 〈w∗, u〉 ≥ α–r
 ‖u‖, this together with () yields 〈u∗, u〉 ≥

α–r
 ‖u‖, which justifies that the combined second-order subdifferential ∂̆f (x̄, x̄∗) is

positive-definite and thus completes the proof of the theorem. �

In the following theorem, we establish an equivalence among the strong metric subreg-
ularity, the quadratic growth condition, the positive-definiteness property of the second-
order subdifferential/generalized Hessian, the strong metric regularity, and tilt stability for
a proper l.s.c. function acting in R

n.

Theorem . Consider a proper l.s.c. function f : Rn → R̄ and a point (x̄, ) ∈ gph ∂f . If
f is normal-contingent at x̄ for x̄∗ =  and gph ∂f is convex, then the following statements
are equivalent:

(i) the subgradient mapping ∂f is strongly metrically subregular at (x̄, ) with κ > ,
(ii) there is a constant c >  such that the second-order subdifferential ∂f (x̄, ) is

positive-definite in the sense that

〈
u∗, u

〉 ≥ c‖u‖ for all u ∈ X and u∗ ∈ ∂f (x̄, )(u), ()

(iii) there exist neighborhoods U of x̄ and V of  such that for any u∗ ∈ V there is a point
u ∈ (∂f )–(u∗) ∩ U satisfying the inequality

f (x) ≥ f (u) +
〈
u∗, x – u

〉
+


κ

‖x – u‖ for all x ∈ U , ()
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(iv) the subgradient mapping ∂f is strongly metrically regular around (x̄, ) with κ > ,
(v) the second-order subdifferential ∂f (x̄, ) is positive-definite in the sense that

〈
u∗, u

〉
>  for all u ∈ X and u∗ ∈ ∂f (x̄, )(u), u �= , ()

(vi) the point x̄ is a tilt-stable local minimizer of the function f .

Proof Since gph ∂f is convex, we have N̂gph∂f (x̄, x̄∗) = Ngph∂f (x̄, x̄∗). Thereby, ∂̆f (x̄, x̄∗)(u) =
∂f (x̄, x̄∗)(u), which together with Theorem . shows that the implications (i) ⇒ (ii) holds.
The equivalence among (iii), (iv), (v), and (vi) has been established by Drusvyatskiy et al.
[]. The implications (ii) ⇒ (v) and (iv) ⇒ (i) hold trivially. �

Remark .
(i) Under the assumptions of Theorem ., we see that the constant c in the quadratic

growth condition () can attain to 
κ

, and the strong metric subregularity is
equivalent to the strong metric regularity.

(ii) The assumption that gph ∂f is convex is essential in the conclusion of Theorem ..
If this assumption fails, the equivalence between the strong metric subregularity and
the strong metric regularity may be a failure. To illustrate it, take the real-valued
function f (x) = |x|, we observe that ∂f is strongly metrically subregular at (, ) with
any κ >  and f is normal-contingent at x̄ =  for x̄∗ =  as well as gph ∂f is not
convex. On the other hand, ∂f is not strongly metrically regular at (, ).
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