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Abstract
In this paper, we generalize some operator inequalities for positive linear maps due to
Lin (Stud. Math. 215:187-194, 2013) and Zhang (Banach J. Math. Anal. 9:166-172, 2015).
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1 Introduction
Throughout this paper, let M, M′, m, m′ be scalars, I be the identity operator, and B(H)
be the set of all bounded linear operators on a Hilbert space (H, 〈·, ·〉). The operator norm
is denoted by ‖ · ‖. We write A ≥  if the operator A is positive. If A – B ≥ , then we say
that A ≥ B. For A, B > , we use the following notation:

A ∇μ B = ( – μ)A + μB, A �μ B = A 
 (A– 

 BA– 
 )μA 

 , where  ≤ μ ≤ .
When μ = 

 we write A ∇ B and A � B for brevity for A ∇ 


B and A � 


B, respectively; see
Kubo and Ando [].

A linear map � is positive if �(A) ≥  whenever A ≥ . It is said to be unital if �(I) = I .
We say that � is -positive if whenever the  ×  operator matrix

[ A B
B∗ C

]
is positive, then

so is
[ �(A) �(B)

�(B∗) �(C)

]
.

Let  < m ≤ A, B ≤ M and � be positive unital linear map. Lin [], Theorem ., proved
the following reversed operator AM-GM inequalities:

�
(

A + B


)
≤ K(h)�(A � B), (.)

�
(

A + B


)
≤ K(h)

(
�(A) � �(B)

), (.)

where K(h) = (h+)

h with h = M
m is the Kantorovich constant.

Can the inequalities (.) and (.) be improved? Lin [], Conjecture ., conjectured

that the constant K(h) can be replaced by the Specht ratio S(h) = h


h–

e log h


h–
in (.) and (.),

which remains as an open question.
Zhang [], Theorem ., generalized (.) and (.) when p ≥ :

�p
(

A + B


)
≤ (K(M + m))p

Mpmp �p(A � B), (.)
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�p
(

A + B


)
≤ (K(M + m))p

Mpmp

(
�(A) � �(B)

)p. (.)

We will present some operator inequalities which are generalizations of (.), (.), (.),
and (.) in the next section.

Bhatia and Davis [] proved that if  < m ≤ A ≤ M and X and Y are two partial isometries
on H whose final spaces are orthogonal to each other. Then for every -positive unital
linear map �,

�
(
X∗AY

)
�

(
Y ∗AY

)–
�

(
Y ∗AX

) ≤
(

M – m
M + m

)

�
(
X∗AX

)
. (.)

Lin [], Conjecture ., conjectured that the following inequality could be true:

∥∥�
(
X∗AY

)
�

(
Y ∗AY

)–
�

(
Y ∗AX

)
�

(
X∗AX

)–∥∥ ≤
(

M – m
M + m

)

.

Recently, Fu and He [], Theorem , proved

∥∥�
(
X∗AY

)
�

(
Y ∗AY

)–
�

(
Y ∗AX

)
�

(
X∗AX

)–∥∥ ≤ 


((
M – m
M + m

)

M +

m

)

. (.)

We will get a stronger result than (.).

2 Main results
We begin this section with the following lemmas.

Lemma  [] Let A, B > . Then the following norm inequality holds:

‖AB‖ ≤ 


‖A + B‖. (.)

Lemma  [] Let A > . Then for every positive unital linear map �,

�
(
A–) ≥ �–(A). (.)

Lemma  [] Let A, B > . Then, for  ≤ r < ∞,

∥
∥Ar + Br∥∥ ≤ ∥

∥(A + B)r∥∥. (.)

Lemma  ([], Theorem ) Suppose that two operators A, B and positive real numbers
m, m′, M, M′ satisfy either of the following conditions:

()  < m ≤ A ≤ m′ < M′ ≤ B ≤ M,
()  < m ≤ B ≤ m′ < M′ ≤ A ≤ M.
Then

A ∇μ B ≥ Kr(h′)A �μ B

for all μ ∈ [, ], where r = min(μ,  – μ) and h′ = M′
m′ .
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Theorem  Let  < m ≤ A ≤ m′ < M′ ≤ B ≤ M. Then

A + B


+ MmK


(
h′)(A � B)– ≤ M + m, (.)

where K(h′) = (h′+)

h′ with h′ = M′
m′ .

Proof It is easy to see that




(M – A)(m – A)A– ≤ ,

then

Mm
A–


+

A


≤ M + m


.

Similarly,

Mm
B–


+

B


≤ M + m


.

Summing up the above two inequalities, we get

A + B


+ Mm
A– + B–


≤ M + m.

By (A � B)– = A– � B– and Lemma , we have

A + B


+ MmK


(
h′)(A � B)– =

A + B


+ MmK


(
h′)(A– � B–)

≤ A + B


+ Mm
A– + B–


≤ M + m.

This completes the proof. �

Theorem  Let  < m ≤ A ≤ m′ < M′ ≤ B ≤ M. Then for every positive unital linear map
�,

�
(

A + B


)
≤ K(h)

K(h′)
�(A � B) (.)

and

�
(

A + B


)
≤ K(h)

K(h′)
(
�(A) � �(B)

), (.)

where K(h) = (h+)

h , K(h′) = (h′+)

h′ , h = M
m , and h′ = M′

m′ .
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Proof The inequality (.) is equivalent to
∥∥
∥∥�

(
A + B



)
�–(A � B)

∥∥
∥∥ ≤ K(h)

K 
 (h′)

. (.)

Compute
∥
∥∥
∥�

(
A + B



)
MmK



(
h′)�–(A � B)

∥
∥∥
∥

≤ 


∥∥
∥∥�

(
A + B



)
+ MmK



(
h′)�–(A � B)

∥∥
∥∥



(by (.))

≤ 


∥∥
∥∥�

(
A + B



)
+ MmK



(
h′)�

(
(A � B)–)

∥∥
∥∥



(by (.))

=



∥∥
∥∥�

(
A + B


+ MmK



(
h′)(A � B)–

)∥∥
∥∥



≤ 


∥∥�(M + m)
∥∥ (by (.))

=



(M + m).

That is,
∥∥
∥∥�

(
A + B



)
�–(A � B)

∥∥
∥∥ ≤ (M + m)

MmK 
 (h′)

=
K(h)

K 
 (h′)

.

Thus, (.) holds. The proof of (.) is similar, we omit the details.
This completes the proof. �

Remark  Because of K(h)
K (h′) < K(h), inequalities (.) and (.) are refinements of (.)

and (.), respectively.

Theorem  Let  < m ≤ A ≤ m′ < M′ ≤ B ≤ M and  ≤ p < ∞. Then for every positive
unital linear map �,

�p
(

A + B


)
≤ 



(
K(h)(M + m)

K(h′)Mm

)p

�p(A � B) (.)

and

�p
(

A + B


)
≤ 



(
K(h)(M + m)

K(h′)Mm

)p(
�(A) � �(B)

)p, (.)

where K(h) = (h+)

h , K(h′) = (h′+)

h′ , h = M
m , and h′ = M′

m′ .

Proof By the operator reverse monotonicity of inequality (.), we have

�–(A � B) ≤ L�–
(

A + B


)
, (.)

where L = K (h)

K

 (h′)

.
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Compute
∥∥
∥∥�p

(
A + B



)
Mpmp�–p(A � B)

∥∥
∥∥

≤ 


∥∥
∥∥L

p
 �p

(
A + B



)
+

(
Mm

L

) p

�–p(A � B)

∥∥
∥∥



(by (.))

≤ 


∥∥
∥∥L�

(
A + B



)
+

Mm

L
�–(A � B)

∥∥
∥∥

p

(by (.))

≤ 


∥
∥∥
∥L�

(
A + B



)
+ LMm�–

(
A + B



)∥
∥∥
∥

p

(by (.))

≤ 


(
L
(
M + m))p (by [], (.)).

That is,

∥
∥∥
∥�p

(
A + B



)
�–p(A � B)

∥
∥∥
∥ ≤ 



(
L(M + m)

Mm

)p

=



(
K(h)(M + m)

K(h′)Mm

) p


.

Thus, (.) holds. By inequality (.), the proof of (.) is similar, we omit the details.
This completes the proof. �

Remark  Since K(h′) > , inequalities (.) and (.) are sharper than (.) and (.),
respectively.

Theorem  Let  < m ≤ A ≤ M and let X, Y be two isometries on H whose final spaces
are orthogonal to each other. Then for every -positive unital linear map �,

∥∥�
(
X∗AY

)
�

(
Y ∗AY

)–
�

(
Y ∗AX

)
�

(
X∗AX

)–∥∥ ≤ (M – m)

Mm
. (.)

Proof Since X is isometric and  < m ≤ A ≤ M, m ≤ �(X∗AX) ≤ M and 
M ≤

�(X∗AX)– ≤ 
m .

Compute

(
M – m
M + m

)

Mm
∥
∥�

(
X∗AY

)
�

(
Y ∗AY

)–
�

(
Y ∗AX

)
�

(
X∗AX

)–∥∥

≤ 


∥∥∥
∥�

(
X∗AY

)
�

(
Y ∗AY

)–
�

(
Y ∗AX

)
+

(
M – m
M + m

)

Mm�
(
X∗AX

)–
∥∥∥
∥



(by (.))

≤ 


∥
∥∥
∥

(
M – m
M + m

)

�
(
X∗AX

)
+

(
M – m
M + m

)

Mm�
(
X∗AX

)–
∥
∥∥
∥



(by (.))

≤ 


(
M – m
M + m

)

(M + m).

Hence,

∥∥�
(
X∗AY

)
�

(
Y ∗AY

)–
�

(
Y ∗AX

)
�

(
X∗AX

)–∥∥ ≤ (M – m)

Mm
.

This completes the proof. �
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Remark  Since  < m ≤ M,




((
M – m
M + m

)

M +

m

)

≥
(

M – m
M + m

) M
m

≥
(

M – m
M + m

) (M + m)

Mm
=

(M – m)

Mm
.

Thus, (.) is tighter than (.).
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