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Abstract
Studying fixed points of nonlinear mappings in Hilbert spaces is of paramount
importance (see, e.g., (Browder and Petryshyn in J. Math. Anal. Appl. 20:197-228,
1967)). We extend the notions of weakly contractive and asymptotically weakly
contractive nonself-mappings defined on a closed convex proper subset of (into) a
real Hilbert space to a real countably Hilbert space. Using the notion of metric
projection on countably Hilbert spaces, we study iterative methods for approximating
fixed points of nonself-maps. Moreover, we prove convergence theorems with
estimates of convergence rates. Furthermore, we also establish the stability of the
methods with respect to perturbations of the operators and with respect to the
perturbations of the constraint sets.

1 Introduction
Definition . (Uniformly convex space [–]) A normed linear space E is called uni-
formly convex if for any ε ∈ (, ], there exists δ = δ(ε) >  such that if x, y ∈ E with ‖x‖ = ,
‖y‖ = , and ‖x – y‖ ≥ ε, then ‖ 

 (x + y)‖ ≤  – δ.

Definition . (Modulus of convexity [–]) Let E be a normed linear space with
dim E ≥ . The modulus of convexity of E is the function δE : (, ] → [, ] defined by

δE(ε) := inf

{
 –

∥∥∥∥x + y


∥∥∥∥ : ‖x‖ ≤ ,‖y‖ ≤ ;‖x – y‖ ≥ ε

}
.

Definition . (Uniformly smooth space [–]) A normed linear space E is said to be
uniformly smooth if whenever given ε > , there exists δ >  such that if ‖x‖ =  and ‖y‖ ≤ δ,
then

‖x + y‖ + ‖x – y‖ <  + ε‖y‖.

Definition . (Modulus of smoothness [–]) Let E be a normed linear space with
dim E ≥ . The modulus of smoothness of E is the function ρE : [,∞) → [,∞) defined by

ρE(τ ) := sup

{‖x + y‖ + ‖x – y‖


–  : ‖x‖ = ;‖y‖ = τ

}

= sup

{‖x + τy‖ + ‖x – τy‖


–  : ‖x‖ =  = ‖y‖
}

.
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Let K be a nonempty convex subset of a real normed linear space E. For strict contrac-
tion self-mappings of K into itself, with a fixed point in K , a well-known iterative method
‘the celebrated Picard method’ has successfully been employed to approximate such fixed
points. If, however, the domain of a mapping is a proper subset of E (and this is the case
in several applications) and if it maps K into E, this iteration method may not be well de-
fined. In this situation, for Hilbert spaces and uniformly convex uniformly smooth Banach
spaces, this problem has been overcome by the introduction of the metric projection in the
recursion formulas (see, e.g., [–]). The advantage of this is that if K is a nonempty closed
convex subset of a Hilbert space H and PK : H → K is the metric projection of H onto K ,
then PK is nonexpansive. This fact characterizes Hilbert spaces and unfortunately is not
available in general Banach spaces.

Definition . (Metric projection [, , , ]) Let E be a real uniformly convex and
uniformly smooth Banach space, K be a nonempty proper subset of E. The operator
PK : E → K is called a metric projection operator if it assigns to each x ∈ E its nearest
point x̄ ∈ K , which is the solution of the minimization problem

PK x = x̄; x̄ : ‖x – x̄‖ = inf
ξ∈K

‖x – ξ‖.

Our purpose in this paper is to study, in countably Hilbert spaces, the classes of weakly
contractive and asymptotically weakly contractive nonself-maps, which are important
extensions of the classes of maps studied by Alber and Guerre-Delabriere [] and by
Chidume et al. []. Then, assuming the existence of fixed points for maps in our classes
of operators and using several results of Alber and Guerre-Delabriere [], we prove con-
vergence theorems with estimates of the convergence rates. Our theorems give analogue
versions of some results of [, ] in countably Hilbert spaces.

2 Preliminaries
Let K be a nonempty proper subset of a real Banach space E. A map A : K → K is called a
strict contraction if there exists k ∈ [, ) such that ‖Ax – Ay‖ ≤ k‖x – y‖ for all x, y ∈ K , and
A is called nonexpansive if, for arbitrary x, y ∈ K , ‖Ax – Ay‖ ≤ ‖x – y‖. The map A is called
asymptotically nonexpansive if, for all x, y ∈ K , we have ‖Anx – Any‖ ≤ kn‖x – y‖ for all
n ≥ , where {kn} is a sequence of real numbers such that limn→∞ kn = . It is obvious that
for asymptotically nonexpansive mappings, we may assume that kn ≥  and that ki+ ≤ ki,
i = , , . . . (see, e.g., []).

A mapping A is called weakly contractive of the class Cψ(t) on a nonempty set K in a
Banach space E if there exists a continuous and nondecreasing function ψ(t) defined on
R

+ with ψ(t) >  for all t ∈R
+ \{}, ψ() = , and limt→∞ ψ(t) = +∞ such that ‖Ax–Ay‖ ≤

‖x – y‖ – ψ(‖x – y‖) for all x, y ∈ K .

Definition . (Asymptotically weakly contractive []) Let K be a nonempty subset of
a real Banach space E. A mapping A : K → E is called asymptotically weakly contractive
of class Cψ(t) if there exists a continuous and nondecreasing function ψ(t) defined on R

+

such that ψ is positive on R
+ \ {}, ψ() = , and limt→∞ ψ(t) = +∞, and there exists a

real sequence {kn} ⊆ [,∞) with limn→∞ kn =  such that

∥∥A(�K A)n–x – A(�K A)n–y
∥∥ ≤ kn‖x – y‖ – ψ

(‖x – y‖) ∀x, y ∈ K ,
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where �K is the generalized projection operator in a Banach space E, recently introduced
by Alber [], which is an analogue of the metric projection PK in Hilbert spaces.

Definition . (Countably normed space [–]) Two norms ‖·‖ and ‖·‖ in a linear
space E are said to be compatible if, whenever a sequence {xn} in E is Cauchy with re-
spect to both norms and converges to a limit x ∈ E with respect to one of them, it also
converges to the same limit x with respect to the other norm. A linear space E equipped
with a countable system of compatible norms ‖·‖n is said to be countably normed. Every
countably normed linear space becomes a topological linear space when equipped with
the topology generated by the neighborhood base consisting of all sets of the form

Uf,ε =
⋂{

x : x ∈ E;‖x‖i < ε, i ∈ f
}

for some number ε >  and finite set f of indices.

Remark . ([]) By considering the new norms ‖|x‖|n = maxn
i= ‖x‖i we may assume that

the sequence of norms {‖·‖n; n = , , . . .} is increasing, that is,

‖x‖ ≤ ‖x‖ ≤ · · · ≤ ‖x‖n ≤ · · · ∀x ∈ E.

If E is a countably normed space, the completion of E in the norm ‖·‖n is denoted by En.
Then, by definition, En is a Banach space. Also in the light of Remark ., we can assume
that E ⊂ · · · ⊂ En+ ⊂ En ⊂ · · · ⊂ E.

Remark . In the light of Remark ., we can easily see that the topology of a countably
normed space is generated by the neighborhood base consisting of all sets of the form
Ur,ε = {x : x ∈ E;‖x‖r < ε} for a positive integer r. Moreover, it is obvious that a nonempty
subset K of a countably normed space E is bounded in E if and only if K is bounded in
each ‖·‖i.

Proposition . ([]) Let E be a countably normed space. Then E is complete if and only
if E =

⋂∞
n= En.

Each Banach space En has a dual, which is a Banach space and denoted by E∗
n .

Proposition . ([]) The dual of a countably normed space E is given by E∗ =
⋃∞

n= E∗
n,

and we have the following inclusions: E∗
 ⊂ · · · ⊂ E∗

n ⊂ E∗
n+ ⊂ · · · ⊂ E∗. Moreover, for f ∈ E∗

n,
we have ‖f ‖n ≥ ‖f ‖n+.

Example . ([]) For  < p < ∞, the space 	p+ :=
⋂

q>p 	q is a countably normed space.
In fact, we can easily see that 	p+ =

⋂
n 	pn for any choice of a monotonic decreasing

sequence {pn} converging to p. Using Proposition . and the fact that 	pn is a Banach
space for every n, it is clear now that the countably normed space 	p+ is complete.

Definition . (Countably Hilbert space [, ]) A linear space H equipped with a count-
able system of compatible norms ‖·‖n is said to be countably Hilbert space if each ‖·‖n is
an inner product norm and E is complete with respect to its topology.
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Remark . In the light of Remark ., Proposition ., and Proposition ., we can see
that if H is a countably Hilbert space and if the completion of H in the inner product 〈·, ·〉n

is denoted by Hn, then by definition, each Hn is a Hilbert space, hence H =
⋂∞

n= Hn and
H∗ =

⋃∞
n= H∗

n . Where,

H ⊂ · · · ⊂ Hn+ ⊂ Hn ⊂ · · · ⊂ H.

Remark If β = (βn) is a sequence of positive numbers, the dual of the Hilbert space
	(β) := {x =

∑∞
n= xn

en
βn

:
∑∞

n= |xi| < ∞} is the Hilbert space 	(β).

Example . The space E :=
⋂∞

i= 	(β i) is a countably Hilbert space, where β i = (β i
n)n∈N

satisfies β i
n ≤ β i+

n , so that the Hilbert spaces Hi = 	(β i) follow the inclusion Hi+ ⊆ Hi for
all i.

Example The Köthe space 	[‖en‖i] := {x = (xn) : ‖x‖i = (
∑∞

n= |xn|‖en‖
i ) 

 < ∞, i ∈ N}
with unit basis identified by (en) is an example of a countably Hilbert space (E,‖·‖i)∞i= that
has an unconditional basis (en) (see []).

Let E be a countably normed space. In [], E is called uniformly convex if (Ei,‖·‖i) is
uniformly convex for all i, that is, if for each i, ∀ε >  ∃δi(ε) >  such that if x, y ∈ Ei

with ‖x‖i =  = ‖y‖i and ‖x – y‖i ≥ ε, then  – ‖ x+y
 ‖i > δi. The space E is called uni-

formly smooth if (Ei,‖·‖i) is uniformly smooth for all i, that is, if for each i whenever
given ε >  there exists δi >  such that if ‖x‖i =  and ‖y‖i ≤ δi, then ‖x + y‖i + ‖x – y‖i <
 + ε‖y‖i.

Following these two notions, we see that any countably Hilbert space E is uniformly
convex and uniformly smooth because each of its Hi is a Hilbert space.

In [], we proved that if E is a countably normed linear space, then:
(i) E is uniformly convex if and only if for each i, δEi (ε) >  for all ε ∈ (, ].

(ii) E is uniformly smooth if and only if limt→+
ρEi (t)

t =  for all i.
(iii) For each n, let En be the completion of E in the norm ‖·‖n, and E∗

n its dual. Then for
each i, we have: for every τ > ,

ρEi (τ ) = sup

{
τε


– δE∗

i
(ε) :  < ε ≤ 

}
.

(iv) E is uniformly smooth if and only if E∗
i is uniformly convex for all i.

(v) E is uniformly convex if and only if E∗
i is uniformly smooth for all i.

Lemma . (see [, –]) Let {λk} be a sequence of nonnegative numbers, and {αk} be
a sequence of positive numbers such that

∑∞
n= αn = ∞. If the recursive inequality

λn+ ≤ λn – αnψ(λn), n = , , . . . , ()

holds, where ψ(λ) is a continuous strictly increasing function for all λ ≥  with ψ() = ,
then:

. λn →  as n → ∞;
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. the estimate of convergence rate

λn ≤ –

(
(λ) –

n–∑
j=

αj

)
()

is satisfied, where  is defined by (t) =
∫ dt

ψ(t) , and – is the inverse function to .

Lemma . (see [, –]) Let {αn}, {βn}, {λn}, and {γn} be sequences of nonnegative
numbers such that {αn} ⊆ (, ],

∑∞
n= αn = ∞,

∑∞
n= βn < ∞, and γn

αn
→  as n → ∞. If the

recursive inequality

λn+ ≤ ( + βn)λn – αnψ(λn) + γn, n = , , . . . , ()

is given, where ψ(λ) is a continuous and nondecreasing function ψ(t) defined on R
+ such

that ψ is positive on R
+ \ {}, ψ() = , and limt→∞ ψ(t) = +∞. Then

. λn →  as n → ∞;
. there exists a subsequence {λnl } ⊂ {λn}, l = , , . . . , such that

λnl ≤ ψ–
(

∑nl
m= αm

+
γ̄nl

αnl

)
, γ̄nl = γnl + βnl M, M > , ()

λnl+ ≤ ψ–
(

∑nl
m= αm

+
γ̄nl

αnl

)
+ γ̄nl , ()

λn ≤ λnl+ –
n–∑

m=nl+

αm

Am
, nl +  ≤ n ≤ nl+,Am =

m–∑
i=

αi, ()

λn+ ≤ λ –
n∑

m=

αm

Am
≤ λ,  ≤ n ≤ n – , ()

 ≤ n ≤ smax = max

{
s :

s∑
m=

αm

Am
≤ λ

}
. ()

Lemma . (see [, –]) If E is a uniformly convex space, K, K are nonempty closed
convex subsets of E, and H(K, K) ≤ σ , then

‖PK x – PK x‖ ≤ Cδ
–
E

(
L(d + r)σ

)
,

where r = ‖x‖, d = max{d, d}, di = dist(θ , Ki), i = , , θ is the origin of E, C =  max{, r +
d}, and H is the Hausdorff distance.

A version of the following theorem in countably Hilbert spaces is very important and
will be used in the proofs of our main results.

Theorem . ([]) Let E be a real uniformly convex complete countably normed space,
and K be a nonempty convex proper subset of E such that K is closed in each Ei. Then the
metric projection is well defined on K , that is,

∀x ∈ E \ K ∃!x̄ ∈ K : ‖x – x̄‖i = inf
ξ∈K

‖x – ξ‖i ∀i.
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3 Main results ‘successive approximations in a countably Hilbert space’
In this section we give new versions for some definitions of [, ] in countably Hilbert
spaces and prove our main theorems.

Definition . (Weakly contractive) Let K be a nonempty subset of a real countably
Hilbert space E. A mapping A : K → K is called weakly contractive of the class Cψ(t) if
there exists a continuous and nondecreasing function ψ(t) defined on R

+ with ψ(t) > 
∀t ∈R

+ \ {}, ψ() = , and limt→∞ ψ(t) = +∞ such that for each i, we have ‖Ax – Ay‖i ≤
‖x – y‖i – ψ(‖x – y‖i) ∀x, y ∈ K .

Definition . (Asymptotically weakly contractive) Let K be a nonempty subset of a real
countably Hilbert space E. A mapping A : K → E is called asymptotically weakly contrac-
tive of class Cψ(t) if there exists a continuous and nondecreasing function ψ(t) defined on
R

+ such that ψ is positive on R
+ \ {}, ψ() = , and limt→∞ ψ(t) = +∞ and if there exists

a real sequence {kn} : kn ≥  with limn→∞ kn =  such that for each i, we have

∥∥A(PK A)n–x – A(PK A)n–y
∥∥

i ≤ kn‖x – y‖i – ψ
(‖x – y‖i

) ∀x, y ∈ K .

Theorem . Let K be a nonempty convex subset of a real countably Hilbert space E =⋂
Hn such that K is closed in each Hn, and A : K → E be a weakly contractive map of the

class Cψ(t). Suppose that F(A) �= ∅ and for x ∈ K consider the iteration xn+ = PK Axn, n ≥ .
Then {xn} and {Axn} are bounded in E, {xn} strongly converges to some point x∗ ∈ F(A), and
the estimate

∥∥xn – x∗∥∥
i ≤ –((∥∥x – x∗∥∥

i – (n – )
))

is satisfied for each i, where  is defined by (t) =
∫ dt

ψ(t) .

Proof Since PK is nonexpansive in each Hi and A is weakly contractive, for each i, we have

∥∥xn+ – x∗∥∥
i =

∥∥PK Axn – PK Ax∗∥∥
i

≤ ∥∥Axn – Ax∗∥∥
i

≤ ∥∥xn – x∗∥∥
i – ψ

(∥∥xn – x∗∥∥
i

)
≤ ∥∥xn – x∗∥∥

i. ()

Hence, for each i, we get by induction ‖xn – x∗‖i ≤ ‖x – x∗‖i. Since x and x∗ are fixed, this
implies that ‖xn‖i ≤ ‖x‖i + ‖x∗‖i = Ri; therefore, the sequence {xn} is bounded in each
Hi, so it is bounded in E.

From () it follows that ‖Axn‖i – ‖Ax∗‖i ≤ ‖xn‖i + ‖x∗‖i ≤ ‖x‖i + ‖x∗‖i + ‖x∗‖i. Since
Ax∗ = x∗, we have ‖Axn‖i ≤ ‖x‖i + ‖x∗‖i = R′

i, and therefore {Axn} is bounded.
By (), for each i, the sequence of positive numbers {λi

n} defined by λi
n = ‖xn – x∗‖i satis-

fies λi
n+ ≤ λi

n – ψ(λi
n). This implies that for each i, the sequence {λi

n} is nonincreasing and
bounded below by , and thus it converges to some λi such that  ≤ –ψ(λi) ≤ . By the
hypothesis on ψ we have that λi =  for all i; hence, for each i, λi

n →  as n → ∞. Further,
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by Lemma . we have the estimate

λi
n ≤ –((

λi

)

– (n – )
) ∀n ≥ . ()

�

Now, we present stability theorems for the perturbed approximations. First, we study
the iterative method with perturbed operators An : K → E.

Theorem . Let K be a nonempty convex subset of a real countably Hilbert space E such
that K is closed in each Hn, A : K → E be a weakly contractive map of the class Cψ(t), and
x∗ ∈ K be its fixed point. Suppose that there exist sequences of positive numbers {δn} and
{hn} converging to  as n → ∞ and a finite positive function g(t) defined on R

+ such that
for each i and for all n ≥ , ‖Anυ – Aυ‖i ≤ hng(‖υ‖i) + δn. If the iteration yn+ = PK Anyn,
n ≥ , starting at arbitrary y ∈ K is bounded, say by C, then it converges in norm to the
point x∗. There exists a subsequence {ynl } of {yn}, l ≥ , such that for each i,

∥∥ynl – x∗∥∥
i ≤ ψ–

(

nl

+ Dhnl + γnl

)
, D = g(C), ()

∥∥ynl+ – x∗∥∥
i ≤ ψ–

(

nl

+ Dhnl + γnl

)
+ Dhnl + γnl , ()

∥∥yn – x∗∥∥
i ≤ ∥∥ynl+ – x∗∥∥

i –
n–∑
nl+


m

, nl +  ≤ n ≤ nl+, ()

∥∥yn+ – x∗∥∥
i ≤ ∥∥y – x∗∥∥

i –
n∑



m

≤ ∥∥y – x∗∥∥
i,  ≤ n ≤ nl – , ()

 ≤ n ≤ smax = max

{
s :

s∑



m

≤ ∥∥y – x∗∥∥
i

}
. ()

Proof Since the metric projection PK is nonexpansive in each Hi, it follows that

∥∥yn+ – x∗∥∥
i =

∥∥PK Anyn – PK Ax∗∥∥
i

≤ ∥∥Anyn – Ax∗∥∥
i

≤ ∥∥Ayn – Ax∗∥∥
i + ‖Anyn – Ayn‖i

≤ ∥∥yn – x∗∥∥
i – ψ

(∥∥yn – x∗∥∥
i

)
+ γ i

n, ()

where  ≤ γ i
n = ‖Anyn – Ayn‖i ≤ Dhn + δn → .

Thus, the sequence of positive numbers defined by λi
n = ‖yn – x∗‖i, n ≥ , satisfies the

recursive inequality λi
n+ ≤ λi

n – ψ(λi
n) + γ i

n. Then the assertion λi
n = ‖yn – x∗‖i →  as n →

∞ and estimates ()-() follow from Lemma . with αi =  and βi =  for all i ≥ . �

Let us suppose that, instead of an exact set K , we have a sequence of perturbed sets
Kn ⊂ E, n ≥ , such that the Hausdorff distance H(Kn, K) ≤ σn, that is, ‘H(Kn, K) tends to
 as n tends to ∞’. Let D(A) be any domain for the operator A that contains both K and
the perturbed sets Knand such that the Hausdorff distance ‘H(Kn, K) tends to  as n tends
to ∞’.



Faried and El-Sharkawy Journal of Inequalities and Applications  (2016) 2016:26 Page 8 of 13

Theorem . Let K ⊂ D(A), Kn ⊂ D(A), n ≥ , be nonempty convex sets in a real countably
Hilbert space E such that K and Kn are closed in each component Hn and H(Kn, K) ≤ σn, let
A : D(A) → E be a weakly contractive map of the class Cψ(t) with strictly increasing function
ψ(t), and x∗ ∈ K be its fixed point. If σn →  as n → ∞, then the iteration zn+ = PKn+ Azn,
n ≥ , starting at arbitrary z ∈ K converges in norm to x∗. There exist a constant C > 
and a subsequence {znl } of {zn}, l = , , . . . , such that for each i,

∥∥znl – x∗∥∥
i ≤ ψ–

(

nl

+ C√
σnl+

)
, ()

∥∥znl+ – x∗∥∥
i ≤ ψ–

(

nl

+ C√
σnl

)
+ √

σnl , ()

∥∥zn – x∗∥∥
i ≤ ∥∥znl+ – x∗∥∥

i –
n–∑
nl+


m

, nl +  ≤ n ≤ nl+, ()

∥∥zn+ – x∗∥∥
i ≤ ∥∥z – x∗∥∥

i –
n∑



m

≤ ∥∥z – x∗∥∥
i,  ≤ n ≤ nl – , ()

 ≤ n ≤ smax = max

{
s :

s∑



m

≤ ∥∥z – x∗∥∥
i

}
. ()

Proof For each i and all n ≥ , we have

∥∥zn+ – x∗∥∥
i =

∥∥PKn+ Azn – Ax∗︸︷︷︸
=PK x∗

∥∥
i

≤ ∥∥PKn+ Azn – PKn+ Ax∗∥∥
i +

∥∥PKn+ Ax∗ – PK x∗∥∥
i.

Since the metric projection operator is nonexpansive on each closed convex set Kn, we
have

∥∥zn+ – x∗∥∥
i ≤ ∥∥Azn – Ax∗∥∥

i +
∥∥PKn+ Ax∗ – PK x∗∥∥

i. ()

By Lemma ., ifH(Kn+, K) ≤ σn+, then there exist positive constants C ≥  and C ≥ :
‖PKn+ x∗ –PK x∗‖ ≤ Cδ

–
E (Cσn+). Since ε

 ≤ δE(ε), that is, δ–
E (ὲ) ≤ c

√
ὲ, and thus, for the

fixed point x∗ ∈ E, there exists a constant C >  such that

∥∥PKn+ x∗ – PK x∗∥∥
i ≤ C

√
σn+. ()

Since A is weakly contractive, using () in (), we get

∥∥zn+ – x∗∥∥
i ≤ ∥∥zn – x∗∥∥

i – ψ
(∥∥zn – x∗∥∥

i

)
+ C

√
σn+.

Thus, the sequence of positive numbers λi
n := ‖zn – x∗‖i, n ≥ , satisfies

λi
n+ ≤ λi

n – ψ
(
λi

n
)

+ C
√

σn+. ()

Since by assumption σn+ →  as n → ∞, all the conditions of Lemma . are satisfied
with αi =  and βi =  for all i ≥ . Thus, λi

n →  as n → ∞, that is, the sequence {zn}
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converges in norm to x∗, and estimates ()-() are all satisfied, which completes the proof
of the theorem. �

Now we work in a system of perturbed operators An and perturbed sets Kn to approxi-
mate a fixed point x∗ of the operator A on K .

Theorem . Let K ⊂ D(A), Kn ⊂ D(A), n ≥ , be nonempty convex sets in a real countably
Hilbert space E such that K and Kn are closed in each component Hn, A : D(A) → E be a
weakly contractive map of the class Cψ(t) with strictly increasing function ψ(t), and x∗ ∈ K
be its fixed point. Assume that, instead of A, the sequences {An} of operators An : Kn → E,
n ≥ , are given. Assume also that there exist sequences of positive numbers {hn} and {σn}
converging to  as n → ∞ and a finite positive function g(t) defined on R

+ such that for all
n ≥  and t ≥ , the Hausdorff distance H(Kn, K) ≤ σn, and

‖Anυ – Aυ‖i ≤ hng
(‖υ‖i

) ∀υ ∈ Kn. ()

If the iteration un+ = PKn+ Anun, n ≥ , starting at arbitrary u ∈ K is bounded, then it
converges in norm to the point x∗. Moreover, there exist constants C >  and C ≥  and a
subsequence {unl } ⊂ {un}, l ≥ , such that for each i,

∥∥unl – x∗∥∥
i ≤ ψ–

(

nl

+ C√
σnl+

)
+ ψ–

(

nl

+ Chnl

)
. ()

Proof Considering the iteration zn of Theorem . with z ∈ K, we get

∥∥un+ – x∗∥∥
i ≤ ‖un+ – zn+‖i +

∥∥zn+ – x∗∥∥
i,

where ‖zn+ – x∗‖i →  as n → ∞ and σn →  (by Theorem .).
By assumptions {un} is bounded; then ∀n ≥  ∃M ≥ : ‖un‖i ≤ M. Since A is weakly

contractive, then using (), we get

‖un+ – zn+‖i = ‖PKn+ Anun – PKn+ Azn‖i

≤ ‖Anun – Azn‖i

≤ ‖Aun – Azn‖i + ‖Anun – Aun‖i

≤ ‖un – zn‖i – ψ
(‖un – zn‖i

)
+ hng

(‖un‖i
)

≤ ‖un – zn‖i – ψ
(‖un – zn‖i

)
+ hn g(M)︸ ︷︷ ︸

=C

.

Thus, the sequence of positive numbers defined by λi
n = ‖un – zn‖i, n ≥ , satisfies the

inequality λi
n+ ≤ λi

n – ψ(λi
n) + Chn. Since hn →  as n → ∞, we have by Lemma . that

λi
n = ‖un – zn‖i →  and ‖unl – znl‖i ≤ ψ–

(

nl

+ Chnl

)
.

Therefore,

∥∥un – x∗∥∥
i ≤ ‖un – zn‖i +

∥∥zn – x∗∥∥
i → , i.e., un → x∗ as n → ∞
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and

∥∥unl – x∗∥∥
i ≤ ‖unl – znl‖i +

∥∥znl – x∗∥∥
i

≤ ψ–
(


nl

+ Chnl

)
+ ψ–

(

nl

+ C√
σnl+

)
. �

Theorem . Let K ⊂ D(A), Kn ⊂ D(A), n ≥ , be nonempty convex sets in a real count-
ably Hilbert space E such that K and Kn are closed in each Hn, A : D(A) → E be a weakly
contractive map of the class Cψ(t), and x∗ ∈ K be its fixed point. Assume that, instead of
A, the sequences {An} of the operators An : Kn → E, n ≥ , are given. Assume also that
there exist sequences of positive numbers hn, βn, δn, μn, and σn and a finite positive func-
tion g(t) defined on R

+ such that for each i, for all n ≥  and t ≥ , the Hausdorff distance
H(Kn, K) ≤ σn, and

‖Anu – Anυ‖i ≤ ( + βn)‖u – υ‖i – ψn
(‖u – υ‖i

)
+ μn ∀u,υ ∈ Kn, ()

‖Anυ – Aυ‖i ≤ hng
(‖υ‖i

)
+ δn ∀υ ∈ Kn, ()

∣∣ψn(t) – ψ(t)
∣∣ ≤ υn ∀t ≥ . ()

If
∑∞

n= βn < ∞ and γn → , where γn = hn + δn + μn + υn + √
σn, then the iteration un+ =

PKn+ Anun, n ≥ , starting at arbitrary u ∈ K converges in norm to the fixed point x∗.

Remark . Observe that () for An is similar to the condition of weak contraction of A.
At the same time, () is a standard condition of proximity between An and A in each point
of K .

Proof of Theorem . Consider the iteration of Theorem . with z ∈ K,

∥∥un+ – x∗∥∥
i ≤ ‖un+ – zn+‖i +

∥∥zn+ – x∗∥∥
i, ()

where, for each i,
∥∥zn+ – x∗∥∥

i →  as n → ∞ and σn →  (Theorem .). ()

The claim now is to prove that ‖un – zn‖i → . Noting that the sequence {zn} is bounded,
say by M, and following (), (), (), and (), for all n ≥ , we have

‖un+ – zn+‖i = ‖PKn+ Anun – PKn+ Azn‖i

≤ ‖Anun – Azn‖i

≤ ‖Anzn – Azn‖i + ‖Anun – Anzn‖i

≤ ( + βn)‖un – zn‖i – ψn
(‖un – zn‖i

)
+ μn

+ hng
(‖zn‖i

)
+ δn

≤ ( + βn)‖un – zn‖i + υn – ψ
(‖un – zn‖i

)
+ μn

+ hng
(‖zn‖i

)
︸ ︷︷ ︸

≤hng(M)

+δn

≤ ( + βn)‖un – zn‖i – ψ
(‖un – zn‖i

)
+ γn,
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where γn = μn + υn + δn + Chn and C = g(M). Thus, the positive numbers {λi
n}n≥ defined

by λi
n = ‖un – zn‖i satisfy the inequality

λi
n+ ≤ ( + βn)λi

n – ψ
(
λi

n
)

+ γn. ()

Since the sequence {βn} is summable, that is,
∑∞

n= βn < ∞, and hence βn → , we can
see that the convergence conditions of λi

n given by Lemma . and () are the same.
Therefore, λi

n = ‖un – zn‖i →  as n → ∞ and γn → , which proves the claim. Now,
using () and (), we conclude that limn→∞ ‖un – x∗‖i = . �

Theorem . Let K be a nonempty convex subset of a real countably Hilbert space E such
that K is closed in each Hn, A : K → E be an asymptotically weakly contractive map of class
Cψ(t) with {kn} ⊆ [,∞) such that

∑∞
n=(kn – ) < ∞, and let x∗ ∈ F(A). For x ∈ K , consider

the sequence {xn} defined by

xn+ = (PK A)nxn, n ≥ . ()

Then {xn} converges strongly to x∗ ∈ F(A).

Proof Considering () and that PK is nonexpansive and A is asymptotically weakly con-
tractive, set βn = kn – . Then, for each i, we have

∥∥xn+ – x∗∥∥
i =

∥∥(PK A)nxn – (PK A)nx∗∥∥
i

≤ ∥∥A(PK A)n–xn – A(PK A)n–x∗∥∥
i

≤ kn
∥∥xn – x∗∥∥

i – ψ
(∥∥xn – x∗∥∥

i

)
= ( + βn)

∥∥xn – x∗∥∥
i – ψ

(∥∥xn – x∗∥∥
i

)

≤ exp

( n∑
j=

βj

)∥∥x – x∗∥∥
i, ()

so that ‖xn – x∗‖i is bounded. If we now set λi
n := ‖xn – x∗‖i, then Lemma . and ()

imply limn→∞ ‖xn – x∗‖i =  for all i. This completes the proof. �

Theorem . Let K be a nonempty convex subset of a real countably Hilbert space E such
that K is closed in each Hn, let A : K → E be a map such that A(PK A)n– is bounded and
PK A : K → K is asymptotically weakly contractive of the class Cψ(t) with {kn} ⊆ [,∞) such
that

∑∞
n=(kn – ) < ∞, and let x∗ ∈ F(A). Consider the perturbed operators An : K → E.

Suppose that there exist sequences of positive numbers {δn} and {hn} converging to  as
n → ∞ and a finite positive function g(t) defined on R

+ such that for all n ≥ ,

∥∥An(PK An)n–υ – A(PK A)n–υ
∥∥

i ≤ hng
(‖υ‖i

)
+ δn ∀υ ∈ K . ()

If the iteration yn+ = (PK An)nyn, n ≥ , starting at arbitrary y ∈ K is bounded or
limn→∞ ‖(PK An)nyn – (PK A)nyn‖i = , then it converges to the point x∗. Moreover, there
exists a subsequence {ynl } ⊂ {yn}, l ≥ , such that

∥∥ynl – x∗∥∥
i ≤ ψ–

(

nl

+ γ̄nl

)
, ()
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∥∥ynl+ – x∗∥∥
i ≤ ψ–

(

nl

+ γ̄nl

)
+ γ̄nl , ()

∥∥yn – x∗∥∥
i ≤ ∥∥ynl+ – x∗∥∥

i –
n–∑
nl+


m

, nl +  ≤ n ≤ nl+, ()

∥∥yn+ – x∗∥∥
i ≤ ∥∥y – x∗∥∥

i –
n∑



m

≤ ∥∥y – x∗∥∥
i,  ≤ n ≤ nl – , ()

 ≤ n ≤ smax = max

{
s :

s∑



m

≤ ∥∥y – x∗∥∥
i

}
. ()

Proof Set βn := kn – . From the iteration and property of PK A we get

∥∥yn+ – x∗∥∥
i =

∥∥(PK An)nyn – (PK A)nx∗∥∥
i

≤ ∥∥(PK A)nyn – (PK A)nx∗∥∥
i +

∥∥(PK An)nyn – (PK A)nyn
∥∥

i

≤ kn
∥∥yn – x∗∥∥

i – ψ
(∥∥yn – x∗∥∥

i

)
+

∥∥(PK An)nyn – (PK A)nyn
∥∥

i. ()

(i) Assume that the given iteration starting at arbitrary y ∈ K is bounded, say by
M > ; then {A(PK A)n–yn} is bounded, and hence, using (), we get that
{An(PK An)n–yn} is bounded. Thus, by the nonexpansive property of PK in each Hi

and () we get ‖(PK An)nyn – (PK A)nyn‖i →  as hn, δn → . Therefore, by () all
the conditions of Lemma . are satisfied with αi =  ∀i ≥ .

(ii) Assume that the assumption limn→∞ ‖(PK An)nyn – (PK A)nyn‖i =  is satisfied. Then
setting λi

n := ‖yn – x∗‖i, from () we get by Lemma . that the conclusions hold.
�
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