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Abstract
Two new ergodic convergence theorems for approximating the common element of
the set of zero points of anm-accretive mapping and the set of fixed points of an
infinite family of non-expansive mappings in a real smooth and uniformly convex
Banach space are obtained, which improves some of the previous work. The
computational experiments to demonstrate the effectiveness of the proposed
iterative algorithms in this paper are conducted.
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1 Introduction and preliminaries
Let E be a real Banach space with norm ‖ · ‖ and let E∗ denote the dual space of E. We
use ‘→’ and ‘⇀’ (or ‘w-lim’) to denote strong and weak convergence either in E or in E∗,
respectively. We denote the value of f ∈ E∗ at x ∈ E by 〈x, f 〉.

A Banach space E is said to be uniformly convex if, for each ε ∈ (, ], there exists δ > 
such that

‖x‖ = ‖y‖ = , ‖x – y‖ ≥ ε ⇒ ∥
∥

x + y

∥
∥≤  – δ.

A Banach space E is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ {z ∈ E : ‖z‖ = }.
The normalized duality mapping J : E → E∗ is defined by

Jx :=
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, x ∈ E.

If E is reduced to the Hilbert space H , then J ≡ I is the identity mapping. If E is smooth,
then J : E → E∗ is norm-to-norm continuous. The normalized duality mapping J is said
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to be weakly sequentially continuous at zero if {xn} is a sequence in E which converges
weakly to ; it follows that {Jxn} converges in weak∗ to .

For a mapping T : D(T) � E → E, we use Fix(T) to denote the fixed point set of it; that
is, Fix(T) := {x ∈ D(T) : Tx = x}.

Let T : D(T) � E → E be a mapping. Then T is said to be:
() non-expansive if

‖Tx – Ty‖ ≤ ‖x – y‖ for ∀x, y ∈ D(T);

() contraction if there exists  < k <  such that

‖Tx – Ty‖ ≤ k‖x – y‖ for ∀x, y ∈ D(T);

() accretive if, for all x, y ∈ D(T), there exists j(x – y) ∈ J(x – y) such that

〈

Tx – Ty, j(x – y)
〉≥ ;

() m-accretive if T is accretive and R(I + λT) = E for ∀λ > ;
() strongly positive (see []) if D(T) = E where E is a real smooth Banach space and

there exists γ >  such that

〈Tx, Jx〉 ≥ γ ‖x‖ for ∀x ∈ E;

in this case,

‖aI – bT‖ = sup
‖x‖≤

∣
∣
〈

(aI – bT)x, J(x)
〉∣
∣,

where I is the identity mapping and a ∈ [, ], b ∈ [–, ];
() demiclosed at p if whenever {xn} is a sequence in D(T) such that xn ⇀ x ∈ D(T) and

Txn → p then Tx = p.
For the accretive mapping A, we use A– to denote the set of zero points of it; that is,

A– := {x ∈ D(A) : Ax = }. If A is accretive, then we can define, for each r > , a non-
expansive single-valued mapping JA

r : R(I + rA) → D(A) by JA
r := (I + rA)–, which is called

the resolvent of A []. It is well known that JA
r is non-expansive and A– = Fix(JA

r ).
Let C be a nonempty, closed, and convex subset of E and Q be a mapping of E onto C.

Then Q is said to be sunny [] if Q(Q(x) + t(x – Q(x))) = Q(x), for all x ∈ E and t ≥ .
A mapping Q of E into E is said to be a retraction [] if Q = Q. If a mapping Q is a

retraction, then Q(z) = z for every z ∈ R(Q), where R(Q) is the range of Q.
A subset C of E is said to be a sunny non-expansive retract of E [] if there exists a sunny

non-expansive retraction of E onto C and it is called a non-expansive retract of E if there
exists a non-expansive retraction of E onto C.

The first mean ergodic theorem for non-expansive mappings was proved by Baillon in
Hilbert space []. That is, for each x ∈ C, the Cesaro means

Sn(x) :=

n

n–
∑

k=

Tkx, n ≥ , (.)

converge weakly to a fixed point of a non-expansive mapping T .
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The implicit midpoint rule (IMR) for non-expansive mappings in a Hilbert space was
introduced by []. This rule generates a sequence {xn} via the semi-implicit procedure:

xn+ = ( – tn)xn + tnT
(

xn+ + xn



)

, n ≥ . (.)

{xn} is proved to be weakly convergent to a fixed point of the non-expansive mapping T .
The ergodic convergence of the sequence {xn} generated by (.) is considered in a

Hilbert space in []. That is, the convergence of the means

zn :=


∑n
k= ak

n
∑

k=

akxk , n = , , . . . , (.)

where {xk} satisfies (.), to a fixed point of the non-expansive mapping T is obtained.
In a Hilbert space, Marino et al. presented the following iterative algorithm in []:

x ∈ C, xn+ = αnγ f (xn) + (I – αnA)Txn, n ≥ , (.)

where f is a contraction, A is a strongly positive linear bounded operator, and T is non-
expansive. If Fix(T) �= ∅, they proved that {xn} converges strongly to p ∈ Fix(T), which
solves the variational inequality 〈(γ f – A)p, z – p〉 ≤ , for ∀z ∈ Fix(T) under some condi-
tions.

Motivated by the previous work, we shall present two iterative algorithms and the er-
godic convergence theorems are obtained. The connection between the strongly conver-
gent point and the solution of one kind variational inequalities is being set up. Some
examples are exemplified to illustrate the effectiveness of the proposed algorithms. The
computational experiments are conducted and the codes are written in Visual Basic
Six.

We need the following preliminaries.

Lemma . (see []) Let E be a Banach space and C be a nonempty closed and convex
subset of E. Let f : C → C be a contraction. Then f has a unique fixed point u ∈ C.

Lemma . (see []) Let E be a real uniformly convex Banach space, C be a nonempty,
closed, and convex subset of E and T : C → E be a non-expansive mapping such that
Fix(T) �= ∅, then I – T is demiclosed at zero.

Lemma . (see []) In a real Banach space E, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈

y, j(x + y)
〉

, ∀x, y ∈ E,

where j(x + y) ∈ J(x + y).

Lemma . (see []) Let {an} and {cn} be two sequences of nonnegative real numbers sat-
isfying

an+ ≤ ( – tn)an + bn + cn, ∀n ≥ ,
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where {tn} ⊂ (, ) and {bn} is a number sequence. Assume that
∑∞

n= tn = +∞,
lim supn→∞

bn
tn

≤ , and
∑∞

n= cn < +∞. Then limn→∞ an = .

Lemma . (see []) Let E be a Banach space and let A be an m-accretive mapping. For
λ > , μ > , and x ∈ E, one has

JA
λ x = JA

μ

(
μ

λ
x +

(

 –
μ

λ

)

JA
λ x
)

,

where JA
λ = (I + λA)– and JA

μ = (I + μA)–.

Lemma . (see []) Assume T is a strongly positive bounded operator with coefficient
γ >  on a real smooth Banach space E and  < ρ ≤ ‖T‖–. Then ‖I – ρT‖ ≤  – ργ .

Lemma . (see []) Let E be a real smooth and uniformly convex Banach space and C be
a nonempty, closed, and convex sunny non-expansive retract of E, and let QC be the sunny
non-expansive retraction of E onto C. Let f : E → E be a fixed contractive mapping with
coefficient k ∈ (, ), T : E → E be a strongly positive linear bounded operator with coeffi-
cient γ and U : C → C be a non-expansive mapping. Suppose that the duality mapping
J : E → E∗ is weakly sequentially continuous at zero,  < η < γ

k and Fix(U) �= ∅. If for each
t ∈ (, ), define Tt : E → E by

Ttx := tηf (x) + (I – tT)UQCx,

then Tt has a fixed point xt , for each  < t ≤ ‖T‖–, which is convergent strongly to the fixed
point of U , as t → . That is, limt→ xt = p ∈ Fix(U). Moreover, p satisfies the following
variational inequality: for ∀z ∈ Fix(U),

〈

(T – ηf )p, J(p – z)
〉≤ .

Lemma . (see []) Let E be a real strictly convex Banach space and let C be a
nonempty closed and convex subset of E. Let Tm : C → C be a non-expansive mapping
for each m ≥ . Let {am} be a real number sequence in (, ) such that

∑∞
m= am = .

Suppose that
⋂∞

m= Fix(Tm) �= ∅. Then the mapping
∑∞

m= amTm is non-expansive with
Fix(

∑∞
m= amTm) =

⋂∞
m= Fix(Tm).

2 Strong convergence theorems
Lemma . Suppose A : D(A) ⊂ E → E is an m-accretive mapping, where E is a Banach
space, and {rn}∞n= ⊂ (, +∞) is any real number sequence. Then, for n ≥ , ∀x, y ∈ E, if
rn ≤ rn+,

∥
∥JA

rn+ x – JA
rn y
∥
∥≤ ‖x – y‖ +

rn+ – rn

rn+

∥
∥JA

rn+ x – y
∥
∥; (.)

if rn+ ≤ rn,

∥
∥JA

rn+ x – JA
rn y
∥
∥≤ ‖x – y‖ +

rn – rn+

rn

∥
∥x – JA

rn y
∥
∥. (.)
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Proof In fact, if rn ≤ rn+, then, using Lemma ., we have

∥
∥JA

rn+ x – JA
rn y
∥
∥ =

∥
∥
∥
∥

JA
rn

[
rn

rn+
x +

(

 –
rn

rn+

)

JA
rn+ x

]

– JA
rn y
∥
∥
∥
∥

≤ rn

rn+
‖x – y‖ +

(

 –
rn

rn+

)
∥
∥JA

rn+ x – y
∥
∥

≤ ‖x – y‖ +
rn+ – rn

rn+

∥
∥JA

rn+ x – y
∥
∥,

which implies that (.) is true.
If rn+ ≤ rn, then imitating the proof of (.), we have (.).
This completes the proof. �

2.1 Ergodic convergence of the first iterative algorithm
Theorem . Let E be a real smooth and uniformly convex Banach space. Let C be a
nonempty, closed, and convex sunny non-expansive retract of E, and QC be the sunny non-
expansive retraction of E onto C. Let f : C → C be a contraction with contractive constant
k ∈ (, ), T : C → C be a strongly positive linear bounded operator with coefficient γ . Let
A : C → E be an m-accretive mapping, and Si : C → C be non-expansive mappings, for
i = , , . . . . Let 
 :=

⋂∞
i= Fix(Si) ∩ A– �= ∅. Suppose the duality mapping J : E → E∗ is

weakly sequentially continuous at zero, and  < η < γ

k . Suppose {αn,i}, {δn}, {βn}, {bn,i},
{γn} ⊂ (, ) and {rn} ⊂ (, +∞), where n ≥  and i = , , . . . . Let {xn} be generated by the
following iterative algorithm:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x ∈ C,
yn = βnxn + ( – βn)

∑∞
i= bn,i[( – αn,i)JA

rn + αn,iSi]QCxn,
un = ( – δn)yn + δnJA

rn ( un+yn
 ),

xn+ = γnηf (xn) + (I – γnT)un, n ≥ ,

(A)

where JA
rn = (I +rnA)–, for n ≥ . Further suppose that the following conditions are satisfied:

(i)
∑∞

n=
∑∞

i= |αn+,i – αn,i| < +∞;
(ii)

∑∞
n= γn = ∞, γn → , as n → ∞ and

∑∞
n= |γn – γn–| < +∞;

(iii)
∑∞

n= |rn+ – rn| < +∞ and  < ε ≤ rn, for n ≥ ;
(iv)

∑∞
n= |δn – δn–| < +∞,

∑∞
n= |βn – βn–| < +∞, βn → , δn → , as n → ∞;

(v)
∑∞

n=
∑∞

i= |bn+,i – bn,i| < +∞ and
∑∞

i= bn,i =  for n ≥ .
Then the three sequences {yn}, {un}, and {xn} converge strongly to the unique element

q ∈ 
 which satisfies the following variational inequality: for ∀y ∈ 
,

〈

(T – ηf )q, J(q – y)
〉≤ . (.)

Moreover, the ergodic convergence is obtained in the sense that

zn :=


∑n
k= ak

n
∑

k=

akxk , n ≥ ,

converges strongly to the above q, under the assumption that {an} is a sequence of positive
numbers such that

∑n
k= ak → ∞, as n → ∞.
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To prove Theorem ., we need the following lemmas.

Lemma . In Theorem ., set Wn,i = ( – αn,i)JA
rn + αn,iSi. Then Wn,i : C → C is non-

expansive for n ≥  and i = , , . . . . Moreover, 
 =
⋂∞

i= Fix(Wn,i).

Proof It can be easily obtained that Wn,i : C → C is non-expansive since both JA
rn and Si

are non-expansive, for n ≥  and i = , , . . . .
The fact that 
 ⊂⋂∞

i= Fix(Wn,i) is trivial. We are left to show that
⋂∞

i= Fix(Wn,i) ⊂ 
.
For p ∈⋂∞

i= Fix(Wn,i), then p = ( – αn,i)JA
rn p + αn,iSip. For ∀q ∈ 
 ⊂⋂∞

i= Fix(Wn,i), we
have

‖p – q‖ =
∥
∥( – αn,i)

(

JA
rn p – JA

rn q
)

+ αn,i(Sip – Siq)
∥
∥

≤ ( – αn,i)
∥
∥JA

rn p – q
∥
∥ + αn,i‖Sip – q‖

≤ ( – αn,i)
∥
∥JA

rn p – q
∥
∥ + αn,i‖p – q‖,

which implies that ‖JA
rn p – q‖ = ‖p – q‖. Similarly, ‖p – q‖ = ‖Sip – q‖. Since E is uniformly

convex, we have p – q = JA
rn p – q = Sip – q, which implies that p ∈⋂∞

i= Fix(Si) ∩ A–.
This completes the proof. �

Lemma . In Theorem ., {zn} is well-defined.

Proof In fact, it suffices to show that {un} is well-defined.
For t ∈ (, ), define Ut : C → C by Utx := ( – t)y + tU( x+y

 ), where U : C → C is non-
expansive for x, y ∈ C. Then for ∀x, y ∈ C,

‖Utx – Utz‖ ≤ t
∥
∥
∥
∥

x + y


–
y + z



∥
∥
∥
∥

≤ t

‖x – z‖.

Thus Ut is a contraction, which ensures from Lemma . that there exists xt ∈ C such
that Utxt = xt . That is, xt = ( – t)y + tU( y+xt

 ).
Note that JA

rn is non-expansive, then {un} is well-defined, and then {xn} and {zn} are all
well-defined.

This completes the proof. �

Lemma . The variational inequality (.) in Theorem . has a unique solution in 
.

Proof Using Lemmas ., . and ., we know that there exists vt such that vt = tηf (vt) +
(I – tT)

∑∞
i= bn,iWn,iQCvt , for t ∈ (, ), where Wn,i is the same as that in Lemma ., for

i = , , . . . . Moreover, vt → q ∈ 
, as t → , which is the unique solution of the variational
inequality (.).

This completes the proof. �

Proof of Theorem . Step . {un}, {yn}, and {xn} are all bounded.
For ∀p ∈ 
, noticing Lemma ., we see that for n ≥ ,

‖yn – p‖ ≤ ‖xn – p‖. (.)
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Also,

‖un – p‖ ≤ ( – δn)‖yn – p‖ + δn

∥
∥
∥
∥

yn + un


– p
∥
∥
∥
∥

≤
(

 –
δn



)

‖yn – p‖ +
δn


‖un – p‖,

which implies that

‖un – p‖ ≤ ‖yn – p‖ ≤ ‖xn – p‖. (.)

Using Lemma . and (.), we have, for n ≥ ,

‖xn+ – p‖ ≤ γnηk‖xn – p‖ + γn
∥
∥ηf (p) – Tp

∥
∥ + ( – γnγ )‖un – p‖

≤ [

 – γn(γ – kη)
]‖xn – p‖ + γn

∥
∥ηf (p) – Tp

∥
∥. (.)

By using the inductive method, we can easily get the following result from (.):

‖xn+ – p‖ ≤ max

{

‖x – p‖,
‖ηf (p) – Tp‖

γ – kη

}

.

Therefore, {xn} is bounded. Then both {yn} and {un} are bounded in view of (.).
Moreover, we can easily know that {JA

rn QCxn}, {SiQCxn}, {JA
rn ( un+yn

 )}, {QCxn}, {f (xn)}, and
{Wn,iQCxn} are all bounded, for n ≥  and i = , , . . . .

Set

M′ = sup

{

‖un‖,‖xn‖,‖yn‖,‖SiQCxn‖,
∥
∥
∥
∥

JA
rn

(
un + yn



)∥
∥
∥
∥

,
∥
∥JA

rn QCxn
∥
∥,‖QCxn‖,

∥
∥f (xn)

∥
∥,

‖Wn,iQCxn‖ : n ≥ , i ≥ 
}

.

Then M′ is a positive constant.
Step . limn→∞ ‖xn+ – xn‖ = .
In fact, using Lemma ., we have, for n ≥ ,

∥
∥
∥
∥

JA
rn+

(
un+ + yn+



)

– JA
rn

(
un + yn



)∥
∥
∥
∥

≤ ‖un+ – un‖


+
‖yn+ – yn‖


+ 

|rn – rn+|
ε

M′. (.)

In view of (.) and Lemma ., we have, for n ≥ ,

‖un+ – un‖
≤ ( – δn+)‖yn+ – yn‖ + |δn+ – δn|‖yn‖

+ δn+

∥
∥
∥
∥

JA
rn+

(
un+ + yn+



)

– JA
rn

(
un + yn



)∥
∥
∥
∥

+ |δn+ – δn|
∥
∥
∥
∥

JA
rn

(
un + yn



)∥
∥
∥
∥

≤ ( – δn+)‖yn+ – yn‖ + |δn+ – δn|M′

+
δn+


(‖un+ – un‖ + ‖yn+ – yn‖

)

+

ε
δn+|rn – rn+|M′,
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which implies that

‖un+ – un‖ ≤ ‖yn+ – yn‖ +
|δn+ – δn|M′

 – δn+
+

δn+|rn – rn+|M′

( – δn+)ε

≤ ‖yn+ – yn‖ + |δn+ – δn|M′ +
M′

ε
|rn+ – rn|. (.)

Now, in view of Lemma ., computing the following:

‖Wn+,iQCxn+ – Wn,iQCxn‖
=
∥
∥
[

( – αn+,i)JA
rn+ + αn+,iSi

]

QCxn+ –
[

( – αn,i)JA
rn + αn,iSi

]

QCxn
∥
∥

≤ ( – αn+,i)
∥
∥JA

rn+ QCxn+ – JA
rn QCxn

∥
∥

+ αn+,i‖SiQCxn+ – SiQCxn‖
+ |αn+,i – αn,i|

(‖SiQCxn‖ +
∥
∥JA

rn QCxn
∥
∥
)

≤ ( – αn+,i)‖xn+ – xn‖ + M′ |rn+ – rn|
ε

+ αn+,i‖xn+ – xn‖ + M′|αn+,i – αn,i|

= ‖xn+ – xn‖ + M′ |rn+ – rn|
ε

+ M′|αn+,i – αn,i|. (.)

Using (.), we have, for n ≥ ,

∥
∥
∥
∥
∥

∞
∑

i=

bn+,iWn+,iQCxn+ –
∞
∑

i=

bn,iWn,iQCxn

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞
∑

i=

bn+,iWn+,iQCxn+ –
∞
∑

i=

bn+,iWn,iQCxn

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞
∑

i=

bn+,iWn,iQCxn –
∞
∑

i=

bn,iWn,iQCxn

∥
∥
∥
∥
∥

≤
∞
∑

i=

bn+,i‖Wn+,iQCxn+ – Wn,iQCxn‖

+
∞
∑

i=

|bn+,i – bn,i|‖Wn,iQCxn‖

≤ ‖xn+ – xn‖ + M′ |rn+ – rn|
ε

+ M′
∞
∑

i=

|αn+,i – αn,i|

+ M′
∞
∑

i=

|bn+,i – bn,i|. (.)

Using (.), we know that

‖yn+ – yn‖
≤ βn+‖xn+ – xn‖ + |βn+ – βn|‖xn‖
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+ ( – βn+)

∥
∥
∥
∥
∥

∞
∑

i=

bn+,iWn+,iQCxn+ –
∞
∑

i=

bn,iWn,iQCxn

∥
∥
∥
∥
∥

+ |βn+ – βn|
∞
∑

i=

bn,i‖Wn,iQCxn‖

≤ ‖xn+ – xn‖ + |βn+ – βn|M′ + M′ |rn+ – rn|
ε

+ M′
∞
∑

i=

|αn+,i – αn,i| + M′
∞
∑

i=

|bn+,i – bn,i|. (.)

Thus in view of (.) and (.), we have, for n ≥ ,

‖xn+ – xn+‖
≤ γn+ηk‖xn+ – xn‖ + ( + η)|γn+ – γn|M′

+ ( – γn+γ )

[

‖xn – xn+‖ + M′|βn+ – βn| + M′ |rn+ – rn|
ε

+ M′
∞
∑

i=

|bn+,i – bn,i| + M′
∞
∑

i=

|αn+,i – αn,i| + M′|δn+ – δn| +
M′

ε
|rn+ – rn|

]

=
[

 – γn+(γ – ηk)
]‖xn+ – xn‖ + ( + η)M′|γn+ – γn|

+ ( – γn+γ )

[

M′
∞
∑

i=

|αn+,i – αn,i| + M′|βn+ – βn|

+ M′|δn+ – δn| + M′
∞
∑

i=

|bn+,i – bn,i| +
M′

ε
|rn+ – rn|

]

. (.)

Using Lemma ., we have from (.) limn→∞ ‖xn+ – xn‖ = . Since γn → , we have
xn+ – un = γn(ηf (xn) – Tun) → , as n → ∞, which implies that xn – un → , as n → ∞.

Since δn → , we have un – yn = δn[JA
rn ( un+yn

 ) – yn] → , as n → ∞. Therefore, xn – yn →
, as n → ∞.

Then
∥
∥
∥
∥
∥

yn –
∞
∑

i=

bn,iWn,iQCyn

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

yn –
∞
∑

i=

bn,iWn,iQCxn

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞
∑

i=

bn,iWn,i(QCxn – QCyn)

∥
∥
∥
∥
∥

≤ βn

∥
∥
∥
∥
∥

xn –
∞
∑

i=

bn,iWn,iQCxn

∥
∥
∥
∥
∥

+ ‖xn – yn‖ → ,

since βn → . Moreover, xn+ –
∑∞

i= bn,iWn,iQCyn → , as n → ∞.
Step . lim supn→+∞〈ηf (q) – Tq, J(xn+ – q)〉 ≤ .
From Lemma ., we know that vt = tηf (vt) + (I – tT)

∑∞
i= bn,iWn,iQCvt for t ∈ (, ).

Moreover, vt → q ∈ 
, as t → . q is the unique solution of the variational inequality
(.).
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Since ‖vt‖ ≤ ‖vt – q‖ + ‖q‖, we see that {vt} is bounded, as t → . Using Lemma .,
we have

‖vt – yn‖

=

∥
∥
∥
∥
∥

vt –
∞
∑

i=

bn,iWn,iQCyn +
∞
∑

i=

bn,iWn,iQCyn – yn

∥
∥
∥
∥
∥



≤
∥
∥
∥
∥
∥

vt –
∞
∑

i=

bn,iWn,iQCyn

∥
∥
∥
∥
∥



+ 

〈 ∞
∑

i=

bn,iWn,iQCyn – yn, J(vt – yn)

〉

=

∥
∥
∥
∥
∥

tηf (vt) + (I – tT)
∞
∑

i=

bn,iWn,iQCvt –
∞
∑

i=

bn,iWn,iQCyn

∥
∥
∥
∥
∥



+ 

〈 ∞
∑

i=

bn,iWn,iQCyn – yn, J(vt – yn)

〉

≤
∥
∥
∥
∥
∥

∞
∑

i=

bn,iWn,iQCvt –
∞
∑

i=

bn,iWn,iQCyn

∥
∥
∥
∥
∥



+ t

〈

ηf (vt) – T
∞
∑

i=

bn,iWn,iQCvt , J

(

vt –
∞
∑

i=

bn,iWn,iQCyn

)〉

+ 

〈 ∞
∑

i=

bn,iWn,iQCyn – yn, J(vt – yn)

〉

≤ ‖vt – yn‖ + t

〈

ηf (vt) – T
∞
∑

i=

bn,iWn,iQCvt , J

(

vt –
∞
∑

i=

bn,iWn,iQCyn

)〉

+ 

∥
∥
∥
∥
∥

∞
∑

i=

bn,iWn,iQCyn – yn

∥
∥
∥
∥
∥
‖vt – yn‖,

which implies that

t

〈

T
∞
∑

i=

bn,iWn,iQCvt – ηf (vt), J

(

vt –
∞
∑

i=

bn,iWn,iQCyn

)〉

≤
∥
∥
∥
∥
∥

∞
∑

i=

bn,iWn,iQCyn – yn

∥
∥
∥
∥
∥
‖vt – yn‖.

So, limt→ lim supn→+∞〈T∑∞
i= bn,iWn,iQCvt – ηf (vt), J(vt –

∑∞
i= bn,iWn,iQCyn)〉 ≤  in

view of Step .
Since vt → q, we have

∑∞
i= bn,iWn,iQCvt →∑∞

i= bn,iWn,iQCq = QCq = q, as t → .
Noticing the fact that

〈

Tq – ηf (q), J

(

q –
∞
∑

i=

bn,iWn,iQCyn

)〉

=

〈

Tq – ηf (q), J

(

q –
∞
∑

i=

bn,iWn,iQCyn

)

– J

(

vt –
∞
∑

i=

bn,iWn,iQCyn

)〉
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+

〈

Tq – ηf (q), J

(

vt –
∞
∑

i=

bn,iWn,iQCyn

)〉

=

〈

Tq – ηf (q), J

(

q –
∞
∑

i=

bn,iWn,iQCyn

)

– J

(

vt –
∞
∑

i=

bn,iWn,iQCyn

)〉

+

〈

Tq – ηf (q) – T
∞
∑

i=

bn,iWn,iQCvt + ηf (vt), J

(

vt –
∞
∑

i=

bn,iWn,iQCyn

)〉

+

〈

T
∞
∑

i=

bn,iWn,iQCvt – ηf (vt), J

(

vt –
∞
∑

i=

bn,iWn,iQCyn

)〉

,

we have lim supn→+∞〈Tq – ηf (q), J(q –
∑∞

i= bn,iWn,iQCyn)〉 ≤ .
Since 〈Tq –ηf (q), J(q –xn+)〉 = 〈Tq –ηf (q), J(q –xn+)– J(q –

∑∞
i= bn,iWn,iQCyn)〉+

〈Tq –ηf (q), J(q –
∑∞

i= bn,iWn,iQCyn)〉 and xn+ –
∑∞

i= bn,iWn,iQCyn →  in view of Step ,
we have lim supn→∞〈ηf (q) – Tq, J(xn+ – q)〉 ≤ .

Step . xn → q, as n → +∞, where q ∈ 
 is the same as that in Step .
Since

‖un – q‖ ≤ ( – δn)‖yn – q‖ + δn

∥
∥
∥
∥

yn + un


– q

∥
∥
∥
∥

,

we have

‖un – q‖ ≤ ‖yn – q‖ ≤ βn‖xn – q‖ + ( – βn)‖xn – q‖ = ‖xn – q‖.

Using Lemma ., we have, for n ≥ ,

‖xn+ – q‖

=
∥
∥γn

(

ηf (xn) – Tq
)

+ (I – γnT)(un – q)
∥
∥



≤ ( – γnγ )‖un – q‖ + γn
〈

ηf (xn) – Tq, J(xn+ – q)
〉

≤ ( – γnγ )‖xn – q‖

+ γnη
〈

f (xn) – f (q), J(xn+ – q) – J(xn – q)
〉

+ γnη
〈

f (xn) – f (q), J(xn – q)
〉

+ γn
〈

ηf (q) – Tq, J(xn+ – q)
〉

≤ [

 – γn(γ – ηk)
]‖xn – q‖

+ γn
[〈

ηf (q) – Tq, J(xn+ – q)
〉

+ η‖xn – q‖‖xn+ – xn‖
]

. (.)

Let δ
()
n = γn(γ – ηk), δ()

n = γn[〈ηf (q) – Tq, J(xn+ – q)〉+η‖xn – q‖‖xn+ – xn‖]. Then
(.) can be simplified as ‖xn+ – p‖ ≤ ( – δ

()
n )‖xn – q‖ + δ

()
n .

Using the assumption (ii), the result of Steps  and  and Lemma ., we know that
xn → q, as n → +∞.

Combining with the result of Step , yn → q and un → q, as n → ∞.
Step . zn → q, as n → ∞.
Since

∑n
k= ak → ∞ and ‖xn – q‖ → , as n → ∞, we have, for ∀ε > , there exists N∗,

such that, for all n ≥ N∗, 
∑n

k= ak

∑N∗
k= akM′′ < ε

 and ‖xn – q‖ < ε
 , where M′′ = max{‖xk –
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q‖ : k = , , . . . , N∗}. Then, for all n > N∗,

‖zn – q‖ =

∥
∥
∥
∥
∥


∑n

k= ak

n
∑

k=

ak(xk – q)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥


∑n

k= ak

[ N∗
∑

k=

ak(xk – q) +
n
∑

k=N∗+

ak(xk – q)

]∥
∥
∥
∥
∥

≤ 
∑n

k= ak

N∗
∑

k=

ak‖xk – q‖ +


∑n
k= ak

n
∑

k=N∗+

ak‖xk – q‖

≤ 
∑n

k= ak

N∗
∑

k=

akM′′ +
∑n

k=N∗+ ak
∑n

k= ak

ε



<
ε


+

ε


= ε,

which implies that zn → q, as n → ∞.
This completes the proof. �

Remark . The assumptions imposed on the real number sequences in Theorem . are
reasonable if we take αn,i = 

(n+)i , γn = δn = βn = 
+n , rn = ε + 

n+ , and bn,i = n+
(n+)i , for n ≥ 

and i = , , . . . .

2.2 Ergodic convergence of the second iterative algorithm
Theorem . Let E, 
, f , A, Si, {rn}, {δn}, {bn,i}, and {αn,i} be the same as those in Theo-
rem .. Let C be a nonempty, closed, and convex subset of E. Suppose 
 �= ∅,  < k < 

 , the
duality mapping J : E → E∗ is weakly sequentially continuous at zero and {ζn} ⊂ (, ). Let
{xn} be generated by the following iterative algorithm:

⎧

⎪⎨

⎪⎩

x ∈ C,
un = ( – δn)xn + δnJA

rn ( un+xn
 ),

xn+ = [ζnf + ( – ζn)I]
∑∞

i= bn,i[( – αn,i)JA
rn + αn,iSi]un, n ≥ .

(B)

Further suppose that the following conditions are satisfied:
(vi)

∑∞
n= ζn = ∞,

∑∞
n= |ζn+ – ζn| < +∞, and ζn → , as n → ∞.

Then both {un} and {xn} converge strongly to the unique element p ∈ 
, which satisfies
the following variational inequality: for ∀y ∈ 
,

〈

p – f (p), J(p – y)
〉≤ . (.)

Moreover, the ergodic convergence is obtained in the sense that

zn :=


∑n
k= ak

n
∑

k=

akxk , n ≥ ,

converges strongly to the above p under the assumption that {an} is a sequence of positive
numbers such that

∑n
k= ak → ∞, as n → ∞.



Wei et al. Journal of Inequalities and Applications  (2016) 2016:22 Page 13 of 20

Proof Using the same method as that in Theorem ., we know that {un} is well-defined.
Let Vn = ζnf + ( – ζn)I .

Step . Vn : C → C is a contraction.
For ∀x, y ∈ C,

‖Vnx – Vny‖ =
∥
∥ζn

(

f (x) – f (y)
)

+ ( – ζn)(x – y)
∥
∥

≤ ζnk‖x – y‖ + ( – ζn)‖x – y‖ =
[

 – ( – k)ζn
]‖x – y‖. (.)

Step . {xn} is bounded.
Let Wn,i be the same as that in Lemma . and Theorem ., then for p ∈ 
 =

⋂∞
i= Fix(Wn,i), we can easily know that ‖un – p‖ ≤ ‖xn – p‖. Using (.), we have

‖xn+ – p‖ =

∥
∥
∥
∥
∥

Vn

∞
∑

i=

bn,iWn,iun – Vn

∞
∑

i=

bn,iWn,ip + Vn

∞
∑

i=

bn,iWn,ip – p

∥
∥
∥
∥
∥

≤ [

 – ( – k)ζn
]‖un – p‖ + ζn

∥
∥f (p) – p

∥
∥

≤ [

 – ( – k)ζn
]‖xn – p‖ + ζn

∥
∥f (p) – p

∥
∥

≤ max

{

‖x – p‖,
‖f (p) – p‖

 – k

}

.

Therefore, {xn} is bounded. Thus {JA
rn ( un+xn

 )}, {un}, {Wn,iun} and {f (
∑∞

i= bn,iWn,iun)} are
all bounded for n ≥  and i = , , . . . . Let

M′′′ = sup

{

M′,‖xn‖,‖un‖,
∥
∥
∥
∥

JA
rn

(
un + xn



)∥
∥
∥
∥

,‖Wn,iun‖,

∥
∥
∥
∥
∥

f

( ∞
∑

i=

bn,iWn,iun

)∥
∥
∥
∥
∥

: n ≥ , i = , , . . .

}

,

where M′ is the same as that in Theorem ., then M′′′ is a positive constant.
Step . limn→∞ ‖xn+ – xn‖ = .
In fact, using Lemma ., we know that

‖un+ – un‖

≤ ( – δn+)‖xn+ – xn‖ + |δn+ – δn|‖xn‖ + δn+

∥
∥
∥
∥

JA
rn+

(
un+ + xn+



)

– JA
rn

(
un + xn



)∥
∥
∥
∥

+ |δn+ – δn|
∥
∥
∥
∥

JA
rn

(
un + xn



)∥
∥
∥
∥

≤ ( – δn+)‖xn+ – xn‖ + M′′′|δn+ – δn| + δn+

(‖un+ – un‖


+
‖xn+ – xn‖



)

+
M′′′

ε
|rn+ – rn|,

which implies that ‖un+ – un‖ ≤ ‖xn+ – xn‖ + |δn+ – δn|M′′′ + M′′′ |rn+–rn|
ε

.
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Thus using (.) and noticing the result of (.), we have, for n ≥ ,

‖xn+ – xn+‖

=

∥
∥
∥
∥
∥

Vn+

∞
∑

i=

bn+,iWn+,iun+ – Vn

∞
∑

i=

bn,iWn,iun

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

Vn+

∞
∑

i=

bn+,iWn+,iun+ – Vn+

∞
∑

i=

bn+,iWn,iun

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

Vn+

∞
∑

i=

bn+,iWn,iun – Vn

∞
∑

i=

bn,iWn,iun

∥
∥
∥
∥
∥

≤ [

 – ( – k)ζn+
]

∞
∑

i=

bn+,i‖Wn+,iun+ – Wn,iun‖

+

∥
∥
∥
∥
∥

Vn+

∞
∑

i=

bn+,iWn,iun – Vn+

∞
∑

i=

bn,iWn,iun

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

(Vn+ – Vn)
∞
∑

i=

bn,iWn,iun

∥
∥
∥
∥
∥

≤ [

 – ( – k)ζn+
]

∞
∑

i=

bn+,i

[

‖un+ – un‖ +
M′′′

ε
|rn+ – rn| + M′′′|αn+,i – αn,i|

]

+

∥
∥
∥
∥
∥
ζn+f

( ∞
∑

i=

bn+,iWn,iun

)

+ ( – ζn+)
∞
∑

i=

bn+,iWn,iun

– ζn+f

( ∞
∑

i=

bn,iWn,iun

)

– ( – ζn+)
∞
∑

i=

bn,iWn,iun

∥
∥
∥
∥
∥

+ |ζn+ – ζn|
∥
∥
∥
∥
∥

f

( ∞
∑

i=

bn,iWn,iun

)∥
∥
∥
∥
∥

+ |ζn+ – ζn|
∥
∥
∥
∥
∥

∞
∑

i=

bn,iWn,iun

∥
∥
∥
∥
∥

≤ [

 – ( – k)ζn+
]‖xn+ – xn‖ + M′′′

∞
∑

i=

|αn+,i – αn,i| +
M′′′

ε
|rn+ – rn|

+ M′′′|δn+ – δn| + M′′′|ζn+ – ζn| + M′′′
∞
∑

i=

|bn+,i – bn,i|.

Then Lemma . implies that limn→∞ ‖xn+ – xn‖ = .
Since ζn → , we have xn+ –

∑∞
i= bn,iWn,iun → , as n → ∞. Since δn → , we have

xn – un → , which implies that
∑∞

i= bn,iWn,iun – un → , as n → ∞.
Step . lim supn→+∞〈f (p) – p, J(xn+ – p)〉 ≤ .
Noticing Lemmas . and ., we know that there exists zt such that zt = tf (zt) + ( –

t)
∑∞

i= bn,iWn,izt for t ∈ (, ). Moreover, zt → p ∈ 
, as t → . p is the unique solution
of the variational inequality (.).

Since ‖zt‖ ≤ ‖zt – p‖ + ‖p‖, {zt} is bounded, as t → . Using Lemma ., we have

‖zt – un‖

=

∥
∥
∥
∥
∥

zt –
∞
∑

i=

bn,iWn,iun +
∞
∑

i=

bn,iWn,iun – un

∥
∥
∥
∥
∥
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≤
∥
∥
∥
∥
∥

zt –
∞
∑

i=

bn,iWn,iun

∥
∥
∥
∥
∥



+ 

〈 ∞
∑

i=

bn,iWn,iun – un, J(zt – un)

〉

=

∥
∥
∥
∥
∥

tf (zt) + ( – t)
∞
∑

i=

bn,iWn,izt –
∞
∑

i=

bn,iWn,iun

∥
∥
∥
∥
∥



+ 

〈 ∞
∑

i=

bn,iWn,iun – un, J(zt – un)

〉

≤ ‖zt – un‖ + t

〈

f (zt) –
∞
∑

i=

bn,iWn,izt , J

(

zt –
∞
∑

i=

bn,iWn,iun

)〉

+ 

〈 ∞
∑

i=

bn,iWn,iun – un, J(zt – un)

〉

≤ ‖zt – un‖ + t

〈

f (zt) –
∞
∑

i=

bn,iWn,izt , J

(

zt –
∞
∑

i=

bn,iWn,iun

)〉

+ 

∥
∥
∥
∥
∥

∞
∑

i=

bn,iWn,iun – un

∥
∥
∥
∥
∥
‖zt – un‖,

which implies that

t

〈 ∞
∑

i=

bn,iWn,izt – f (zt), J

(

zt –
∞
∑

i=

bn,iWn,iun

)〉

≤
∥
∥
∥
∥
∥

∞
∑

i=

bn,iWn,iun – un

∥
∥
∥
∥
∥
‖zt – un‖.

So, limt→ lim supn→+∞〈∑∞
i= bn,iWn,izt – f (zt), J(zt –

∑∞
i= bn,iWn,iun)〉 ≤  in view of

Step .
Since zt → p, we have

∑∞
i= bn,iWn,izt → ∑∞

i= bn,iWn,ip = p, as t → . Noticing the
fact that

〈

p – f (p), J

(

p –
∞
∑

i=

bn,iWn,iun

)〉

=

〈

p – f (p), J

(

p –
∞
∑

i=

bn,iWn,iun

)

– J

(

zt –
∞
∑

i=

bn,iWn,iun

)〉

+

〈

p – f (p), J

(

zt –
∞
∑

i=

bn,iWn,iun

)〉

=

〈

p – f (p), J

(

p –
∞
∑

i=

bn,iWn,iun

)

– J

(

zt –
∞
∑

i=

bn,iWn,iun

)〉

+

〈

p – f (p) –
∞
∑

i=

bn,iWn,izt + f (zt), J

(

zt –
∞
∑

i=

bn,iWn,iun

)〉

+

〈 ∞
∑

i=

bn,iWn,izt – f (zt), J

(

zt –
∞
∑

i=

bn,iWn,iun

)〉

,

we have lim supn→+∞〈p – f (p), J(p –
∑∞

i= bn,iWn,iun)〉 ≤ .
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Since 〈p – f (p), J(p – xn+)〉 = 〈p – f (p), J(p – xn+) – J(p –
∑∞

i= bn,iWn,iun)〉 + 〈p –
f (p), J(p –

∑∞
i= bn,iWn,iun)〉 and xn+ –

∑∞
i= bn,iWn,iun →  in view of Step , we have

lim supn→∞〈f (p) – p, J(xn+ – p)〉 ≤ .
Step . xn → p, as n → +∞, where p ∈ 
 is the same as in Step .
Since

‖un – p‖ ≤ ( – δn)‖xn – p‖ + δn‖xn + un


– p‖,

we have

‖un – p‖ ≤ ‖xn – p‖.

Using Lemma ., we have, for n ≥ ,

‖xn+ – p‖

=

∥
∥
∥
∥
∥

Vn

∞
∑

i=

bn,iWn,iun – p

∥
∥
∥
∥
∥



=

∥
∥
∥
∥
∥

Vn

∞
∑

i=

bn,iWn,iun – Vn

∞
∑

i=

bn,iWn,ip + Vnp – p

∥
∥
∥
∥
∥



≤ [

 – ( – k)ζn
]‖un – p‖ + 

〈

Vnp – p, J(xn+ – p)
〉

≤ [

 – ( – k)ζn
]‖xn – p‖ + ζn

〈

f (p) – p, J(xn+ – p)
〉

.

Using Lemma ., the assumptions and the result of Step , we know that xn → p, as
n → +∞. Combining with the result of Step , un → p, as n → ∞.

Copy Step  in Theorem ., zn → p, as n → ∞.
This completes the proof. �

Remark . The assumptions imposed on the real number sequences in Theorem . are
reasonable if we take αn,i = 

(n+)i , δn = ζn = 
n+ , bn,i = n+

(n+)i , and rn = ε + 
n+ , for n ≥  and

i = , , . . . .

Remark . The four sequences {xn}, {un}, {yn}, and {zn} in Theorem . and the three
sequences {un}, {xn}, and {zn} in Theorem . are proved to be strongly convergent to the
zero point of an m-accretive mapping and the fixed point of an infinite family of non-
expansive mappings. The strongly convergent point is proved to be the unique solution of
one kind variational inequalities.

Remark . In Theorem ., Vn can be regarded as an averaged mapping, whose defi-
nition can be seen in [].

Remark . The discussions on Theorems . and . are undertaken in the frame of
a real smooth and uniformly convex Banach space, which is more general than that in
Hilbert space.
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3 Examples and numerical experiments
In this section, we provide some numerical experiments to show that both algorithms (A)
and (B) are effective. In our experiments, we consider the following examples.

Example . In algorithm (A), suppose E = C = (–∞, +∞). Let ai = , αn,i = 
n+i , bn,i =

n+
(n+)i , γn = δn = βn = 

n+ , rn = n+
n+ , ε = , f (x) = x

 , k = 
 , Ax = x

 , Tx = x
 , γ = 

 , η = 
 , and

Six = x
i . Then all of the assumptions in Theorem . are satisfied. And 
 =

⋂∞
i= Fix(Si) ∩

A– = {}.

Table 1 The values of {yn}, {un}, {xn}, and {zn} with initial value x0 = –4

n yn un xn zn

0 –4.0000000000 –1.333333333333333 –4.0000000000000
1 –0.8477427 –0.635807052254677 –1.0952380952381 –1.0952380952381
2 –0.408616 –0.348080327113469 –0.564535296490403 –0.829886695864249
3 –0.2269676 –0.203325144325693 –0.321650478060882 –0.660474623263127
4 –0.1335324 –0.122849839925766 –0.191673798999402 –0.543274417197196
5 –0.08100538 –0.075755030882579 –0.117198947637147 –0.458059323285186
6 –0.05007082 –0.047345876009489 –0.072845261243154 –0.393856979611514
7 –0.03134004 –0.029870972328354 –0.045785050770546 –0.344132418348518
8 –0.01979206 –0.018977571393789 –0.029008549436138 –0.304741934734471
9 –0.01258285 –0.012121482143799 –0.018490222101272 –0.272936188886338
10 –0.008041086 –0.007775264661297 –0.011841190590053 –0.246826689056709
11 –0.005159962 –0.005004685808672 –0.007611755159024 –0.225079876884192
12 –0.003322376 –0.003230633801933 –0.004908180655962 –0.20673223553184
13 –0.002145251 –0.002090525234888 –0.003173114874022 –0.191073841635085
14 –0.001388506 –0.001355593524252 –0.002055956135385 –0.177572564099392
15 –0.000900557 –0.000880623111319 –0.001334667828875 –0.165823371014691
16 –0.000585129 –0.000572980669566 –0.000867876867878 –0.155513652630515
17 –0.000380779 –0.000373335337785 –0.000565174013077 –0.146399036241254
18 –0.000248140 –0.000243557044559 –0.000368530757053 –0.13828623038102
19 –0.000619034 –0.000159070048612 –0.000240587259597 –0.131020670216735
20 –0.000105754 –0.000103995450936 –0.000157227239453 –0.124477498067871
21 –0.0000691467 –0.000068051443395 –0.000102847940106 –0.118554895680834
22 –0.0000452522 –0.000044567863803 –0.000067334619358 –0.113169097450767
23 –0.0000296392 –0.0000292103517604 –0.000044118782606 –0.108250620117369
24 –0.0000194276 –0.000019158216414 –0.000028928262428 –0.103741382956746
25 –0.0000127431 –0.000012573398811 –0.000018980591458 –0.099592486862135
26 –0.0000083638 –0.000008256737423 –0.000012461301835 –0.095762485879046
27 –0.0000054928 –0.000005425047229 –0.000008185847743 –0.092216030322332
28 –0.0000036092 –0.000003566325208 –0.000005380130737 –0.088922792815489
29 –0.0000023728 –0.000002345554771 –0.000003537814776 –0.085856611608568
30 –0.0000015607 –0.000001543347773 –0.000002327427839 –0.082994802135877
31 0.0000000000 0.000000000000000 –0.000001531804738 –0.080317599867130

Figure 1 The convergence of {yn}, {un}, {xn}, and {zn}.
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Figure 2 Screenshot of Figure 1.

Figure 3 The convergence of {zn} under different initial values.

Table 2 The values of {un}, {xn}, and {zn} with initial value x0 = 8

n xn un zn

0 8.0000000000000 2.6666666666667
1 0.0907029478458 0.0680272108844 0.09070295
2 0.0199727386316 0.0170138143899 0.05533785
3 0.0068807569080 0.0061640113968 0.03918548
4 0.0028754047605 0.0026453723797 0.03010796
5 0.0013373257810 0.0012506472582 0.02435383
6 0.0006653502921 0.0006291407524 0.02040576
7 0.0003466462534 0.0003303972103 0.01754017
8 0.0001867447646 0.0001790597949 0.01537099
9 0.0001031871958 0.0000994036653 0.01367457
10 0.0000581631893 0.0000562404392 0.01231293
11 0.0000333151231 0.0000323125847 0.01119660
12 0.0000193365400 0.0000188025922 0.01026516
13 0.0000113483809 0.0000110588814 0.00947641
14 0.0000067234088 0.0000065640391 0.00879999
15 0.0000040158582 0.0000039269655 0.00821360
16 0.0000024157047 0.0000023655516 0.00770040
17 0.0000014622202 0.0000014336377 0.00724752
18 0.0000008899717 0.0000008735364 0.00684493
19 0.0000005443463 0.0000005348202 0.00648470
20 0.0000003344191 0.0000003288581 0.00616048

Remark . All codes were written in Visual Basic Six. For the initial value x = –, the
values of {yn}, {un}, {xn}, and {zn} with different n are reported in Table .

Remark . In Figure , the abscissa denotes the iterative step and the ordinate denotes
the values of {yn}, {un}, {xn}, and {zn} with different iterative step n.
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Figure 4 The convergence of {un}, {xn}, and {zn}.

Figure 5 The convergence of {zn} for different initial values.

Remark . Table  and Figure  show that the sequences {yn}, {un}, {xn}, and {zn} con-
verge to . Also, {} = 
.

Remark . Figure  is a screen shot of Figure , whose ordinates are enlarged. Our pur-
pose to draw Figure  is to let Figure  be clearer.

Remark . Figure  shows the values of ergodic sequence {zn} with the initial value x

being chosen arbitrarily in [–, ].

Example . In algorithm (B), suppose E = (–∞, +∞) and C = [–, ]. Let ai = , αn,i =


n+i , bn,i = n+
(n+)i , δn = ζn = 

n+ , rn = n+
n+ , ε = , f (x) = x

 , k = 
 , Ax = x

 , and Six = x
i . Then all

of the assumptions in Theorem . are satisfied. Also 
 =
⋂∞

i= Fix(Si) ∩ A– = {}.
All codes were written in Visual Basic Six, the values of {un}, {xn}, and {zn} with different

n are reported in Table .
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Remark . Table  and Figure  show that the sequences {un}, {xn}, and {zn} converge
to . Also, {} = 
.

Remark . Figure  shows the values of ergodic sequence {zn} with the initial value x

being chosen arbitrarily in [–, ].
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