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Abstract
In this paper, we will prove that, for 1 < p < ∞, the Lp norm of the truncated centered
Hardy-Littlewood maximal operatorMc

γ equals the norm of the centered
Hardy-Littlewood maximal operator for all 0 < γ <∞. When p = 1, we also find that
the weak (1, 1) norm of the truncated centered Hardy-Littlewood maximal operator
Mc

γ equals the weak (1, 1) norm of the centered Hardy-Littlewood maximal operator
for 0 < γ <∞. Moreover, the same is true for the truncated uncentered
Hardy-Littlewood maximal operator. Finally, we investigate the properties of the
iterated Hardy-Littlewood maximal function.
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1 Introduction
Define the centered Hardy-Littlewood maximal function by

Mcf (x) = sup
r>


|B(x, r)|

∫
B(x,r)

∣∣f (y)
∣∣dy, (.)

and the uncentered Hardy-Littlewood maximal function by

Mf (x) = sup
B�x


|B|

∫
B

∣∣f (y)
∣∣dy. (.)

The basic real-variable construct was introduced by Hardy and Littlewood [] for n = ,
and by Wiener [] for n ≥ . It is well known that the Hardy-Littlewood maximal function
plays an important role in many parts of analysis. It is a classical mean operator, and it is
frequently used to majorize other important operators in harmonic analysis.

It is clear that

Mcf (x) ≤ Mf (x) ≤ nMcf (x) (.)

holds for all x ∈ R
n. Both M and Mc are sublinear operators. Although the study of the

boundedness for M or Mc is fairly completed, it is very hard to calculate the precise norm
about M or Mc.
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As is well known, the truncated operator has some important properties. In fact, in most
situations, Lp boundedness of the truncated operator and the corresponding oscillatory
operator is equivalent. There are many works in this regard and the reader can refer to []
and [].

Now we define the truncated centered Hardy-Littlewood maximal operator and the
truncated uncentered Hardy-Littlewood maximal operator.

Define

Mc
γ f (x) := sup

<r<γ


|B(x, r)|

∫
B(x,r)

∣∣f (y)
∣∣dy (.)

and

Mγ f (x) := sup
<r<γ ,|y–x|<r


|B(y, r)|

∫
B(y,r)

∣∣f (t)
∣∣dt, (.)

for x ∈R
n and some real positive number γ .

Obviously, like the inequality (.), in the pointwise sense, we immediately deduce from
the definition (.) and (.) that

Mc
γ f (x) ≤ Mc

ρ f (x) ≤ Mcf (x)

and

Mγ f (x) ≤ Mρ f (x) ≤ Mf (x),

for all x ∈R
n, as long as γ ≤ ρ . Consequently, referring to the two truncated operators Mc

γ

and Mγ , as the sublinear operators, we naturally obtain

∥∥Mc
γ

∥∥
Lp(Rn)→Lp(Rn) ≤ ∥∥Mc

ρ

∥∥
Lp(Rn)→Lp(Rn) ≤ ∥∥Mc∥∥

Lp(Rn)→Lp(Rn),

and

‖Mγ ‖Lp(Rn)→Lp(Rn) ≤ ‖Mρ‖Lp(Rn)→Lp(Rn) ≤ ‖M‖Lp(Rn)→Lp(Rn),

if γ ≤ ρ , for  < p ≤ ∞. Clearly, when γ is fixed, for example γ = , ‖Mc
‖Lp(Rn)→Lp(Rn)

and ‖Mc‖Lp(Rn)→Lp(Rn) are two fixed numbers. We think that it is very significant to make
certain the precise relation of the two numbers. In the paper, we will consider the question.
Surprisingly, the two numbers are equal whenever γ > . The same is true for p = .

Now we formulate our main theorems.

Theorem . Let Mc
γ be defined by (.) and γ > . Then

∥∥Mc
γ

∥∥
Lp(Rn)→Lp(Rn) =

∥∥Mc∥∥
Lp(Rn)→Lp(Rn)

holds for  < p ≤ ∞.
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Theorem . Let Mc
γ be defined by (.) and γ > . Then

∥∥Mc
γ

∥∥
L(Rn)→L,∞(Rn) =

∥∥Mc∥∥
L(Rn)→L,∞(Rn)

holds.

For the truncated uncentered Hardy-Littlewood Maximal operator, we have similar con-
clusions.

Theorem . Let Mγ be defined by (.) and γ > . Then

‖Mγ ‖Lp(Rn)→Lp(Rn) = ‖M‖Lp(Rn)→Lp(Rn)

holds for  < p ≤ ∞.

Theorem . Let Mγ be defined by (.) and γ > . Then

‖Mγ ‖L(Rn)→L,∞(Rn) = ‖M‖L(Rn)→L,∞(Rn)

holds.

In Section , we will investigate the properties of the iterated Hardy-Littlewood maximal
function.

2 Auxiliary and some lemmas
To prove our main theorems, we first provide some definitions and lemmas which will be
used in the follows. Some lemmas can be found in the classic literature and here we omit
their proofs.

Definition . Let f be a measurable function on R
n. The distribution function of f is the

function df defined on [, +∞) as follows:

df (α) =
∣∣{x ∈R

n :
∣∣f (x)

∣∣ > α
}∣∣, (.)

where |A| is the Lebesgue measure of the measurable set A.

Lemma . For f ∈ Lp(Rn) with  < p < ∞, we have

‖f ‖p
Lp(Rn) = p

∫ ∞


αp–df (α) dα. (.)

It is easy for us to verify the lemma by Fubini’s theorem. For more details as regards this
lemma, one can refer to [].

Lemma . Suppose that μ is a positive measure on a σ -algebra M. If A ⊂ A ⊂ A · · · ,
An ∈M, and A =

⋃∞
n= An, then

lim
n→∞μ(An) = μ(A).
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Lemma . can be found in the book []. Using Lemma ., we can formulate the fol-
lowing conclusions.

Lemma . Suppose that the operators Mc and Mc
γ are defined as in (.) and (.). The

equality

dMcf (λ) = lim
γ→∞ dMc

γ f (λ) (.)

holds for all f ∈ Lp(Rn) and λ > .

Proof For a fixed x ∈ R
n, by the definition of Mc in (.), associate to each ε a ball B(x, rε)

which satisfies


|B(x, rε)|

∫
B(x,rε)

∣∣f (y)
∣∣dy > Mcf (x) – ε. (.)

Now taking γ > rε , it follows from the definition of Mc
γ that

Mc
γ f (x) ≥ 

|B(x, rε)|
∫

B(x,rε)

∣∣f (y)
∣∣dy > Mcf (x) – ε. (.)

Note that Mc
γ f (x) increases as γ → ∞. Thus we have

lim
γ→∞ Mc

γ f ≥ Mf . (.)

Clearly, we have

Mc
γ f ≤ Mf . (.)

Hence combining (.) with (.) yields

lim
γ→∞ Mc

γ f = Mcf . (.)

Obviously it implies from (.) that

lim
n→∞ Mc

nf = Mcf . (.)

Set

An =
{

x ∈R
n : Mc

nf (x) > λ
}

,

and

A =
{

x ∈R
n : Mcf (x) > λ

}
.

We have An ⊂ An+ for n = , , . . . , and A =
⋃∞

n= An. It follows from Lemma . and the
definition of the distribution function that

dMcf (λ) = |A| = lim
n→∞|An| = lim

n→∞ dMc
nf (λ) = lim

γ→∞ dMc
γ f (λ).

This is our desired result. �
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Using the same method as in the proof of Lemma ., we obtain Lemma ..

Lemma . Suppose that the operators M and Mγ are defined as in (.) and (.). For a
given λ > , the equality

dMf (λ) = lim
γ→∞ dMγ f (λ) (.)

holds for all f ∈ Lp(Rn).

Lemma . Let  < p < ∞. For ε > , there exists a function g ∈ C∞
c (Rn) such that

‖Mcg‖Lp(Rn)

‖g‖Lp(Rn)
≥ ∥∥Mc∥∥

Lp(Rn)→Lp(Rn) – ε, (.)

where

∥∥Mc∥∥
Lp(Rn)→Lp(Rn) = sup

‖f ‖Lp(Rn) 
=

‖Mcf ‖Lp(Rn)

‖f ‖Lp(Rn)
.

Proof By the definition of the operator norm of Mc, we can find a function f ∈ Lp(Rn) such
that

‖Mcf ‖Lp(Rn)

‖f ‖Lp(Rn)
≥ ∥∥Mc∥∥

Lp(Rn)→Lp(Rn) –
ε


. (.)

Since C∞
c (Rn) is dense in Lp(Rn), for δ > , there exists a function g ∈ C∞

c (Rn) which sat-
isfies

‖f – g‖Lp(Rn) < δ. (.)

Thus it implies from (.) that

∥∥Mc(f – g)
∥∥

Lp(Rn) ≤ A‖f – g‖Lp(Rn) < Aδ, (.)

where the constant A is a bound of the operator Mc.
Combining (.) with (.) yields

‖Mcg‖Lp(Rn)

‖g‖Lp(Rn)
≥ ‖Mcf ‖Lp(Rn) – ‖Mc(f – g)‖Lp(Rn)

‖f ‖Lp(Rn) + ‖f – g‖Lp(Rn)
≥ ‖Mcf ‖Lp(Rn) – Aδ

‖f ‖Lp(Rn) + δ
. (.)

If the number δ is small enough, we can immediately deduce that

‖Mcf ‖Lp(Rn) – Aδ

‖f ‖Lp(Rn) + δ
≥ ‖Mcf ‖Lp(Rn)

‖f ‖Lp(Rn)
–

ε


≥ ∥∥Mc∥∥

Lp(Rn)→Lp(Rn) – ε. (.)

It implies from (.) and (.) that the inequality (.) holds. �
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3 Proof of main theorems
Now we shall prove our main theorems. We first consider the case  < p < ∞.

Proof of Theorem . For convenience, we first prove

∥∥Mc
γ

∥∥
Lp(Rn)→Lp(Rn) =

∥∥Mc

∥∥

Lp(Rn)→Lp(Rn)

for all  < γ < ∞.
From the definition of the operator Mc

γ in (.), we have

Mc
γ f (x) = sup

<r<γ


|B(x, r)|

∫
B(x,r)

∣∣f (y)
∣∣dy = sup

<r<γ


vnrn

∫
|y|≤r

∣∣f (x – y)
∣∣dy, (.)

for x ∈R
n and  < γ < ∞, where vn is the volume of the unit ball in R

n.
A simple computation implies that

Mc
γ f (γ x) = sup

<r<γ


vnrn

∫
|y|≤r

∣∣f (γ x – y)
∣∣dy

= sup
<r<γ

γ n

vnrn

∫
|y|≤ r

γ

∣∣f (γ x – γ y)
∣∣dy

= sup
< r

γ <


vn( r

γ
)n

∫
|y|≤ r

γ

∣∣(τγ f )(x – y)
∣∣dy

= sup
<r<


vnrn

∫
|y|≤r

∣∣(τγ f )(x – y)
∣∣dy

= Mc
(τγ f )(x), (.)

where the dilation operator τγ is defined as follows:

(τγ f )(x) = f (γ x), (.)

for γ >  and x ∈ R
n.

It follows from (.) that

‖Mc
γ f ‖Lp(Rn)

‖f ‖Lp(Rn)
=

‖Mc
γ f (γ ·)‖Lp(Rn)

‖f (γ ·)‖Lp(Rn)
=

‖Mc
(τγ f )‖Lp(Rn)

‖τγ f ‖Lp(Rn)
. (.)

Taking the supremum over all f ∈ Lp(Rn) with ‖f ‖Lp(Rn) 
=  for the two sides of equation
(.), we have

∥∥Mc
γ

∥∥
Lp(Rn)→Lp(Rn) =

∥∥Mc

∥∥

Lp(Rn)→Lp(Rn). (.)

Next, we will use equation (.) to prove

∥∥Mc
γ

∥∥
Lp(Rn)→Lp(Rn) =

∥∥Mc∥∥
Lp(Rn)→Lp(Rn)

for all γ > .
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Since

∥∥Mc
γ

∥∥
Lp(Rn)→Lp(Rn) ≤ ∥∥Mc∥∥

Lp(Rn)→Lp(Rn),

we merely need to prove

∥∥Mc
γ

∥∥
Lp(Rn)→Lp(Rn) ≥ ∥∥Mc∥∥

Lp(Rn)→Lp(Rn).

By Lemma ., for ε > , there exists a function g ∈ C∞
c (Rn) such that

‖Mcg‖Lp(Rn)

‖g‖Lp(Rn)
≥ ∥∥Mc∥∥

Lp(Rn)→Lp(Rn) – ε. (.)

We may assume that the support of g is contained in the ball B(, R), where R is a positive
number. Since g ∈ C∞

c (Rn) implies g ∈ Lp(Rn), naturally we have Mcg ∈ Lp(Rn) by the Lp

boundedness of the operator Mc. It is not hard to find a positive number S such that

∥∥(
Mcg

)
χ{|·|≥S}

∥∥
Lp(Rn) ≤ ε‖g‖Lp(Rn). (.)

Now we set γ = R + S. Then it can be deduced from the definition of Mc
γ that

Mcg(x) = Mc
γ g(x) (.)

holds for |x| < S.
It follows from (.), (.), and (.) that

∥∥Mc
γ g

∥∥
Lp(Rn) ≥ ∥∥(

Mc
γ g

)
χ{|·|<S}

∥∥
Lp(Rn)

=
∥∥(

Mcg
)
χ{|·|<S}

∥∥
Lp(Rn)

≥ ∥∥Mcg
∥∥

Lp(Rn) –
∥∥(

Mcg
)
χ{|·|≥S}

∥∥
Lp(Rn)

≥ ∥∥Mc∥∥
Lp(Rn)→Lp(Rn)‖g‖Lp(Rn) – ε‖g‖Lp(Rn). (.)

Obviously, (.) implies that

‖Mc
γ g‖Lp(Rn)

‖g‖Lp(Rn)
≥ ∥∥Mc∥∥

Lp(Rn)→Lp(Rn) – ε. (.)

Consequently, the inequality (.) yields

∥∥Mc
γ

∥∥
Lp(Rn)→Lp(Rn) ≥ ∥∥Mc∥∥

Lp(Rn)→Lp(Rn) – ε. (.)

By (.) and (.), we can derive from the arbitrariness property of ε that

∥∥Mc
γ

∥∥
Lp(Rn)→Lp(Rn) =

∥∥Mc∥∥
Lp(Rn)→Lp(Rn) (.)

for all γ > .
This finishes the proof of Theorem .. �
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Next we will pay attention to proving the weak (, ) boundedness for the truncated
centered Hardy-Littlewood maximal operator.

Proof of Theorem . First, we prove that

∥∥Mc
γ

∥∥
L(Rn)→L,∞(Rn) =

∥∥Mc

∥∥

L(Rn)→L,∞(Rn)

holds for all  < γ < ∞.
From the identity (.), we have

Mc
γ f (γ x) = Mc

(τγ f )(x). (.)

For any λ > , we derive from (.) that

∣∣{x : Mc
(τγ f )(x) > λ

}∣∣ =
∣∣{x : Mc

γ f (γ x) > λ
}∣∣

=
∣∣∣∣
{

x
γ

: Mc
γ f (x) > λ

}∣∣∣∣
=


γ n

∣∣{x : Mc
γ f (x) > λ

}∣∣. (.)

Thus (.) implies that

sup
λ>

λ
∣∣{x : Mc

(τγ f )(x) > λ
}∣∣ =


γ n sup

λ>
λ
∣∣{x : Mc

γ f (x) > λ
}∣∣. (.)

If ‖f ‖L(Rn) 
= , then it follows from (.) that


γ n

supλ> λ|{x : Mc
γ f (x) > λ}|

‖f ‖L(Rn)
=

supλ> λ|{x : Mc
(τγ f )(x) > λ}|

‖f ‖L(Rn)

=


γ n
supλ> λ|{x : Mc

(τγ f )(x) > λ}|
‖τγ f ‖L(Rn)

. (.)

Now taking the supremum over all f ∈ L(Rn) with ‖f ‖L(Rn) 
=  for the two sides of (.),
we have

∥∥Mc
γ

∥∥
L(Rn)→L,∞(Rn) =

∥∥Mc

∥∥

L(Rn)→L,∞(Rn). (.)

Next we will use (.) to prove that

∥∥Mc
γ

∥∥
L(Rn)→L,∞(Rn) =

∥∥Mc∥∥
L(Rn)→L,∞(Rn)

holds for all γ > .
We assert the following equation:

sup
λ>

λdMcf (λ) = lim
γ→∞ sup

λ>
λdMc

γ f (λ) (.)

holds for any f ∈ L(Rn) with ‖f ‖L 
= .
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Clearly the left side of (.) is not smaller than the right side, so it suffices to prove the
opposite inequality.

It follows from Lemma . that

sup
λ>

λdMcf (λ) = sup
λ>

λ
(

lim
γ→∞ dMc

γ f (λ)
)

.

Set

A = sup
λ>

λdMcf (λ).

For ε > , there must be a positive number λ such that

A – ε ≤ λdMcf (λ) ≤ A.

We conclude that

sup
λ>

λ
(

lim
γ→∞ dMc

γ f (λ)
)

≥ lim
γ→∞λdMc

γ f (λ) = λdMcf (λ) ≥ A – ε.

This is equivalent to

sup
λ>

λ
(

lim
γ→∞ dMc

γ f (λ)
)

≥ A.

Consequently, (.) holds.
Using equation (.), we deduce that

∥∥Mc∥∥
L(Rn)→L,∞(Rn) = sup

‖f ‖L(Rn) 
=

supλ> λdMcf (λ)
‖f ‖L(Rn)

= sup
‖f ‖L(Rn) 
=

lim
γ→∞

supλ> λdMc
γ f (λ)

‖f ‖L(Rn)

= lim
γ→∞ sup

‖f ‖L(Rn) 
=

supλ> λdMc
γ f (λ)

‖f ‖L(Rn)

= lim
γ→∞

∥∥Mc
γ

∥∥
L(Rn)→L,∞(Rn). (.)

Consequently, we immediately obtain our desired conclusion by the two identities (.)
and (.). �

Proof of Theorem . We conclude from the definition of the operator Mγ in (.) that

Mγ f (γ x) = sup
<r<γ ,|y–γ x|<r


|B(y, r)|

∫
B(y,r)

∣∣f (t)
∣∣dt

= sup
<r<γ ,|γ y–γ x|<r


vnrn

∫
|t|<r

∣∣f (γ y – t)
∣∣dt

= sup
<r<γ ,|y–x|< r

γ

γ n

vnrn

∫
|t|< r

γ

∣∣f (γ y – γ t)
∣∣dt
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= sup
< r

γ <,|y–x|< r
γ


vn( r

γ
)n

∫
|t|< r

γ

∣∣(τγ f )(y – t)
∣∣dt

= sup
<r<,|y–x|<r


|B(y, r)|

∫
|t|<r

∣∣(τγ f )(x – t)
∣∣dt

= M(τγ f )(x). (.)

Thus we have

‖Mγ ‖Lp(Rn)→Lp(Rn) = ‖M‖Lp(Rn)→Lp(Rn) (.)

for all γ >  and  < p < ∞.
Next we will prove that

‖Mγ ‖Lp(Rn)→Lp(Rn) = ‖M‖Lp(Rn)→Lp(Rn).

If f ∈ Lp(Rn), then we have Mf ∈ Lp(Rn). It follows from Lemma ., Lemma ., and
equation (.) that

‖Mf ‖p
Lp(Rn) = p

∫ ∞


λp–dMf (λ) dλ

= p
∫ ∞


λp– lim

γ→∞ dMγ f (λ) dλ

= lim
γ→∞ p

∫ ∞


λp–dMγ f (λ) dλ

= lim
γ→∞‖Mγ f ‖p

Lp(Rn)

≤ lim
γ→∞‖Mγ ‖p

Lp(Rn)→Lp(Rn)‖f ‖p
Lp(Rn)

= ‖M‖p
Lp(Rn)→Lp(Rn)‖f ‖p

Lp(Rn). (.)

Since we have the obvious inequality

‖M‖Lp(Rn)→Lp(Rn) ≥ ‖M‖Lp(Rn)→Lp(Rn), (.)

we derive from (.) that

‖M‖Lp(Rn)→Lp(Rn) = ‖M‖Lp(Rn)→Lp(Rn).

This is our desired result. �

Proof of Theorem . Using the almost same methods of proving Theorem ., we can
formulate the proof of Theorem .. �

4 Iterated Hardy-Littlewood maximal function
In this section, we will consider the iterated Hardy-Littlewood maximal function.
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Let M be the uncentered Hardy-Littlewood maximal function defined by (.). Define
the iterated Hardy-Littlewood maximal function denoted by Mk+ as follows:

Mk+f (x) := M
(
Mkf

)
(x), (.)

for k = , , . . . , and x ∈R
n. Set Mf (x) := Mf (x).

In order to study the properties of the iterated Hardy-Littlewood maximal function, we
first introduce the following lemma.

Lemma . Suppose that a sequence {ci}∞i= satisfies the following two conditions simulta-
neously:

(i) c = r ∈ (, );
(ii) for any k ≥ , ck+ = ( – r)ck + r.

Then {ci}∞i= is strictly monotone increasing and we have

lim
k→∞

ck = .

Proof By the mathematical induction and the two conditions (i) and (ii), we can easily
obtain  < ck <  for each k ∈ N. Moreover, the condition (ii) implies

ck+ – ck = ( – r)ck + r – ck = r( – ck) > .

This shows that {ci}∞i= is strictly monotone increasing. Since {ci}∞i= is monotone increasing
and has the upper bound, the limit of {ci}∞i= exists, and we can easily get

lim
k→∞

ck = . �

By Lemma ., we have the following theorem.

Theorem . For any f ∈ L∞(Rn), the equation

lim
k→∞

Mkf (x) = ‖f ‖∞ (.)

holds for any x ∈ R
n.

Proof If ‖f ‖∞ = , the proof is trivial. If ‖f ‖∞ > , for any ε ∈ (,‖f ‖∞), define a set

Eε :=
{

x ∈R
n :

∣∣f (x)
∣∣ ≥ ‖f ‖∞ – ε

}
. (.)

Then we have |Eε| > , where |Eε| denotes the Lebesgue measure of Eε . For any fixed point
a ∈R

n, there exists a number R >  such that

∣∣Eε ∩ B(a, R)
∣∣ ≥ 


|Eε|. (.)

Denote Ẽε = Eε ∩ B(a, R).
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Define a set as

SL(f ) :=
{

x ∈R
n : x is the Lebesgue point of f and Mkf , k = , , . . .

}
.

Actually if f ∈ Lp(Rn) with  ≤ p ≤ ∞, then |(SL(f ))c| = , where (SL(f ))c denotes the com-
plement set of SL(f ). When x ∈ Ẽε ∩ SL(f ), we derive from (.) that

∣∣f (x)
∣∣ ≥ ‖f ‖∞ – ε,

and

Mkf (x) ≥ ‖f ‖∞ – ε,

for all k = , , . . . .
When x ∈ B(a, R), we consider the uncentered Hardy-Littlewood maximal function of f

at the point x. It follows that

Mf (x) ≥ 
|B(a, R)|

∫
B(a,R)

∣∣f (y)
∣∣dy ≥ |Ẽε|

|B(a, R)|
(‖f ‖∞ – ε

)
. (.)

Set

r =
|Ẽε|

|B(a, R)| > .

It implies from (.) that

Mf (x) ≥ r
(‖f ‖∞ – ε

)
. (.)

A straightforward computation implies from (.) that

Mf (x) ≥ 
|B(a, R)|

∫
B(a,R)

∣∣Mf (y)
∣∣dy

=


|B(a, R)|
∫

Ẽε

∣∣Mf (y)
∣∣dy +


|B(a, R)|

∫
B(a,R)\Ẽε

∣∣Mf (y)
∣∣dy

≥ |Ẽε|
|B(a, R)|

(‖f ‖∞ – ε
)

+
|B(a, R)| – |Ẽε|

|B(a, R)| r
(‖f ‖∞ – ε

)

=
(
r + ( – r)r

)(‖f ‖∞ – ε
)
. (.)

Denote

c = r

and

ck+ = c + ( – c)ck ,

for k = , , . . . .
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It implies from (.) that

Mf (x) ≥ c
(‖f ‖∞ – ε

)
.

Using the inductive method, we can easily obtain

Mk+f (x) ≥ ck+
(‖f ‖∞ – ε

)
.

Thus Lemma . implies that

lim inf
k→∞

Mkf (x) ≥ ‖f ‖∞ – ε.

When ε → , we have

lim inf
k→∞

Mkf (x) ≥ ‖f ‖∞. (.)

By the definition of the Hardy-Littlewood function, we obviously deduce

lim sup
k→∞

Mkf (x) ≤ ‖f ‖∞. (.)

Combining (.) with (.) yields

lim
k→∞

Mkf (x) = ‖f ‖∞.

By the arbitrary choice of a, we obtain

lim
k→∞

Mkf (x) = ‖f ‖∞

for all x ∈R
n. �
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