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centering and disjunctive programming: see [� …� ]. A large number of results have ap-

peared in the literature: see,e.g., [� …� ] and the references therein. Recently, standard semi-

in“nite programming problems have been generalized to multiobjective case. Chuonget

al. [�� ] derived necessary and su�cient conditions for lower and upper semi-continuity

of Pareto solution maps for parametric semi-in“nite multiobjective optimization prob-

lems. Chuonget al. [�� ] obtained the pseudo-Lipschitz property of Pareto solution maps

for the parametric linear semi-in“nite multiobjective optimization problem. Chuong and

Yao [�� ] derived necessary and su�cient optimality conditions of strongly isolated solu-

tions and positively properly e�cient solutions for nonsmooth semi-in“nite multiobjec-

tive optimization problems. Huy and Kim [�� ] established su�cient conditions for the

Aubin Lipschitz-like property for nonconvex semi-in“nite multiobjective optimization

problems. Gobernaet al. [�� ] derived some optimality conditions for linear semi-in“nite

vector optimization problems by using the constraint quali“cations.

On the other hand, it is well known that the well-posedness is very important for

both optimization theory and numerical methods of optimization problems, which guar-

antees that, for approximating solution sequences, there is a subsequence which con-

verges to a solution. The notion of well-posedness was “rst introduced and studied by

Tykhonov [�	 ] for unconstrained optimization problems. One limitation in Tykhonov

well-posedness is that every minimizing sequence needs to satisfy feasibility conditions.

To overcome this drawback, Levitin and Polyak [�
 ] introduced a notion of well-posedness

which does not necessarily require the feasibility of the minimizing sequence. Konsulova

and Revalski [�� ] investigated the Levitin-Polyak well-posedness for convex optimiza-

tion problems with functional constraints. Huang and Yang [�� ] extended the results of

Konsulova and Revalski [�� ] to nonconvex case. Huang and Yang [�� , �� ] studied the

Levitin-Polyak well-posedness for vector optimization problems with functional con-

straints. They also derived characterizations for the nonemptiness and compactness of

weakly e�cient solutions for a convex vector optimization problem with functional con-

straints in “nite dimensional spaces. Lalitha and Chatterjee [�� ] gave some characteriza-

tions for the Levitin-Polyak well-posedness of quasiconvex vector optimization problems

in terms of e�cient solutions. Long et al. [�� ] introduced several types of Levitin-Polyak

well-posedness for equilibrium problems with functional constraints and obtained criteria

and characterizations for these types of well-posedness. About the other well-posedness

of optimization problems, we refer the readers to [�� …�� ] and the references therein.

Very recently, Wanget al.[�� ] considered the generalized Levitin-Polyak well-posedness

for generalized semi-in“nite programming problems. The criteria and characterizations

of the generalized Levitin-Polyak well-posedness for this problem are established.

We remark that, so far as we know, there are no papers dealing with the Levitin-Polyak

well-posedness for generalized semi-in“nite multiobjective programming problems. This

paper is the e
ort in this direction.

The rest of this article is organized as follows. In Section� , we recall some basic def-

initions required in the sequel. In Section� , we introduced a notion of Levitin-Polyak

well-posedness for generalized semi-in“nite multiobjective programming problems. We

also give some criteria and characterizations for this kind of well-posedness. We discuss

the relations between the Levitin-Polyak well-posedness and the upper semi-continuity

of approximate solution maps for generalized semi-in“nite multiobjective programming

problems in Section� .
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2 Preliminaries
Let C � Rp be a closed convex and cone with nonempty interiorintC, which induces an

order in Rp, i.e., for anyx,y � Rp, x � C y if and only if y…x � C. The corresponding ordered

vector space is denoted by (Rp,C). Arbitrarily “x an e� intC. Let (Rn,d) be a metric space

and K � Rn. We denote byd(a,K) := infb� K 	 a …b	 , the distance from the pointa to the

setK.

Definition . A point x� � M is said to be a weakly e�cient solution for problem

(GSIMP) i
 for any x � M,

f (x) …f (x� ) /� …int C.

Denote bySthe set of weakly e�cient solutions of problem (GSIMP).

Remark . From De“nition �.� , we have

S=
�
x
 � Rn : f (x) …f

�
x
� /� …int C,� x � M,g

�
x
,y

�
� �, � y � Y

�
x
�� .

To reformulate problem (GSIMP) as a “nite nonlinear multiobjective programming

problem, we de“ne the value function of the lower-level problem by

ϕ(x) :=

�
supy� Y(x) g(x,y), if Y(x) �= � ;

…� , else.

Let X = {x � Rn : Y(x) �= �} . It is easy to see that problem (GSIMP) can be equivalently

reformulated as the following multiobjective programming problem with a single nons-

mooth constraint:

MinC f (x), s.t.ϕ(x) � �.

We will use the following de“nitions of continuity for a set-valued map.

Definition . [�� ] Let G : K ⇒ Rm be a set-valued map.G is said to be upper semi-

continuous atx� � K i
 for any open set V containing G(x� ), there exists an open setU

containingx� such that, for allt � U 
 K, G(t) � V . G is said to be upper semi-continuous

on K i
 it is upper semi-continuous at all x � K.

Definition . [�� ] Let G : K ⇒ Rm be a set-valued map.G is said to be lower semi-

continuous atx� � K i
 for any y� � G(x� ) and any neighborhoodV(y� ) of y� , there exists

a neighbourhoodU(x� ) of x� such thatG(x) 
 V (y� ) �= � , � x � U(x� ) 
 K. G is said to be

lower semi-continuous onK i
 it is lower semi-continuous at eachx � K.

Remark . [�� ] G is lower semi-continuous atx� � K if and only if for anyxn � x� and

anyy � G(x� ), there existsyn � G(xn) such thatyn � y.

Definition . [�� ] Let G : K ⇒ Rm be a set-valued map. We say thatG is Hausdor


upper continuous atx� � K i
 for any neighborhood V(�) of �, there exists a neighborhood
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W(x� ) of x� such that

G(x) � G(x� ) + V(�), for all x � W(x� ) 
 K.

We say thatG is Hausdor
 upper continuous i
 G is Hausdor
 upper continuous at every
point of K.

Remark . If G is upper semi-continuous atx� � K, then G is Hausdor
 upper contin-
uous atx� � K; the converse implication is true whenG(x� ) is compact (see [�� ]).

Remark . For the index setY(x) in problem (GSIMP), Wanget al.[�� ] gave a condition
ensuring that the set-valued mappingY is lower semi-continuous onX. They also proved
that if Y is lower semi-continuous onX and g is lower semi-continuous, thenϕ is lower
semi-continuous onX.

Definition . [�� ] Let A be a nonempty subset ofRn. The Kuratowski measure [�� ] of
non-compactnessμ of the setA is de“ned by

μ(A) = inf

�

ε > � : A �
n�

i=�

Ai ,diamAi < ε, i = �, �, . . . , n

�

,

wherediamAi is the diameter ofAi de“ned by diamAi = sup{d(x� ,x� ) : x� ,x� � Ai }.

Definition . Let A andB be two nonempty subsets ofRn. The Hausdor
 distance be-
tweenA andB is de“ned by

H(A,B) = max
�
e(A,B),e(B,A)

�
,

wheree(A,B) = supa� A d(a,B). Let {An} be a sequence of nonempty subsets ofX. We say
that An converges toA in the sense of Hausdor
 distance ifH(An,A) � �. It is easy to see
that e(An,A) � � if and only if d(an,A) � � for every an � An. For more details on this
topic, we refer the reader to [�� ].

3 Metric characterizations of Levitin-Polyak well-posedness
In this section, we introduce a notion of Levitin-Polyak well-posedness for generalized
semi-in“nite multiobjective programming problems. We also obtain some metric charac-
terizations of Levitin-Polyak well-posedness by considering the non-compactness of ap-
proximate solution set.

We “rst introduce the notion of Levitin-Polyak well-posedness for problem (GSIMP).

Definition . A sequence{xn} � Rn is said to be a Levitin-Polyak minimizing sequence
of problem (GSIMP) i
 there exists a sequenceεn > � with εn � � such that

f (x) …f (xn) + εne /� …intC, � x � M

and

g(xn,y) � εn, � y � Y(xn).
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Definition . Problem (GSIMP) is said to be Levitin-Polyak well-posed i
 the solution

setS is nonempty, and for every Levitin-Polyak minimizing sequence has a subsequence

which converges to an element ofS.

Remark . We remark that:

(i) The Levitin-Polyak well-posedness implies that the set Sof weakly efficient
solutions of problem (GSIMP) is nonempty and compact.

(ii) When f is a real-valued function and C = R�
+, the Levitin-Polyak well-posedness

reduces to generalized type II Levitin-Polyak well-posedness for generalized
semi-infinite programming problems considered by Wang et al. [].

(iii) When the index set is finite, e.g., Y(x) = {y� ,y� , . . . ,yt } for all x � Rn, the concept of
the Levitin-Polyak well-posedness for problem (GSIMP) is similar to the definition
introduced by Huang and Yang [].

Consider the following statement:

�
S�= � and, for any Levitin-Polyak minimizing sequence{xn},

we haved(xn,S) � �
�
. (�)

The proof of the following proposition is easy and so we omit it.

Proposition . If problem (GSIMP) is Levitin-Polyak well-posed, then (� ) holds. Con-

versely, if (� ) holds and S is nonempty compact, then problem(GSIMP) is Levitin-Polyak

well-posed.

For anyε > �, we consider the following approximating solution set:

�(ε) =
�
x
 � Rn : f (x) …f

�
x
� + εe /� …intC,� x � M,g

�
x
,y

�
� ε, � y � Y

�
x
�� .

Theorem . Problem(GSIMP)is Levitin-Polyak well-posed if and only if the solution set

S is nonempty compact and

e
�
�(ε),S

�
� � asε � �. (�)

Proof Suppose that problem (GSIMP) is Levitin-Polyak well-posed. ThenSis nonempty

and compact. Now, we prove (� ) holds. Suppose by contradiction that there existα > �,

εn > � with εn � �, and {xn} � �(εn) such that

d(xn,S) > α. (�)

As {xn} � �(εn), we know that{xn} is a Levitin-Polyak minimizing sequence for problem

(GSIMP). By the Levitin-Polyak well-posedness of problem (GSIMP), there exists a sub-

sequence{xnk } of {xn} converging to some point ofS. This contradicts (� ). It follows that

(� ) holds.

Conversely, suppose thatS is nonempty compact and (� ) holds. Let{xn} is a Levitin-

Polyak minimizing sequence for problem (GSIMP). Then there exists a sequenceεn > �
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with εn � � such that

f (x) …f (xn) + εne /� …intC, � x � M,

g(xn,y) � εn, � y � Y(xn).

It follows that {xn} � �(εn). By (� ), there exists a sequence{zn} � Ssuch that

	 xn …zn	 � �.

Note that Sis compact. Then there exists a subsequence{znk } of {zn} converging tox� � S.
Thus, the corresponding subsequence{xnk } of {xn} converges tox� . Therefore, problem
(GSIMP) is Levitin-Polyak well-posed. The proof is complete. �

The following theorem shows that the Levitin-Polyak well-posedness of problem
(GSIMP) can be characterized by considering the non-compactness of approximate solu-
tion set.

Theorem . Assume that f is continuous, g is lower semi-continuous and the set-valued
mapping Y is lower semi-continuous. Then, problem(GSIMP)is Levitin-Polyak well-posed
if and only if

�(ε) �= � , � ε > � and lim
ε� �

μ
�
�(ε)

�
= �. (�)

Proof Let problem (GSIMP) be Levitin-Polyak well-posed. By Theorem�.� ,Sis nonempty
compact and

e
�
�(ε),S

�
� � as ε � �. (	)

Clearly,�(ε) �= � for any ε > �, since S� �(ε). Observe that forε > �, we have

H
�
�(ε),S

�
= max

�
e
�
�(ε),S

�
,e

�
S,�(ε)

��
= e

�
�(ε),S

�
.

SinceSis compact,μ(S) = �. It follows that

μ
�
�(ε)

�
� � H

�
�(ε),S

�
+ μ(S) = � H

�
�(ε),S

�
= � e

�
�(ε),S

�
.

This fact together with (	 ) implies that (� ) holds.
Conversely, assume that (� ) holds. We “rst show that�(ε) is a closed set for anyε > �.

Let xn � �(ε) with xn � x� such that

f (x) …f (xn) + εe /� …intC, � x � M, (
)

g(xn,y) � ε, � y � Y(xn).

By (
 ), we have

f (x) …f (xn) + εe� Rp\ (…intC), � x � M.



Long et al. Journal of Inequalities and Applications  (2016) 2016:12 Page 7 of 13

Sincef is continuous andRp\ (…int C) is closed,

f (x) …f (x� ) + εe� Rp\ (…int C), � x � M,

or equivalently,

f (x) …f (x� ) + εe /� …intC, � x � M. (�)

On the other hand, for anyy
 � Y(x� ), sinceY is lower semi-continuous, there exists a
sequence{yn} with yn � Y(xn) converging toy
 such that

g(xn,yn) � ε.

By the lower semi-continuity ofg, we have

g
�
x� ,y
� � ε.

This fact together with (� ) yieldsx� � �(ε). It follows that �(ε) is closed.
We next prove that

S=
	

ε>�

�(ε). (�)

Obviously,S�



ε>� �(ε). Now suppose thatεn > � with εn � � and x� �

 +�

n=� �(εn). It
follows that for anyn,

f (x) …f (x� ) + εne /� …int C, � x � M,

g(x� ,y) � εn, � y � Y(x� ).

SinceRp\ (…intC) is closed andεn � �,

f (x) …f (x� ) /� …int C, � x � M,

g(x� ,y) � �, � y � Y(x� ).

This implies that x� � S. Therefore, (� ) holds.
Suppose that (� ) holds. Note that�(ε) is closed and�(ε� ) � �(ε� ) wheneverε� < ε� . By

the Kuratowski theorem ([�� ], p.���),

lim
ε� �

H
�
�(ε),S

�
= � (�)

andSis nonempty and compact.
Let {xn} be a Levitin-Polyak minimizing sequence for problem (GSIMP). Then there

exists a sequenceεn > � with εn � � such that

f (x) …f (xn) + εne /� …int C, � x � M,

g(xn,y) � εn, � y � Y(xn).
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Thus,{xn} � �(εn). This fact together with (� ) yields thatd(xn,S) � �. By Proposition �.� ,

problem (GSIMP) is Levitin-Polyak well-posed. This completes the proof. �

We now give an example to illustrate Theorem�.� .

Example . LetC = R�
+ ande= (�, �). We consider the following generalized semi-in“nite

multiobjective programming problem:

(GSIMP) MinC f (x) =

�
(�, �), if x � �,

(x� ,x� ), if x < �,

s.t.g(x,y) = x …y� … �� �, � y � Y(x),

whereY(x) =
�
y � R : h(x,y) = y …x� � �

�
.

By simple calculations,Y(x) = (…� ,x� ] and M = (…� , �]. It is easy to verify thatf and g

are continuous andY(x) is lower semi-continuous. It is clear thatS= [�, �] and

�(ε) =
�
x
 � R : f (x) …f

�
x
� + εe /� …intC,� x � M,g

�
x
,y

�
� ε, � y � Y

�
x
��

= […
�

ε, � + ε].

It follows that limε� � μ(�(ε)) = �. By Theorem �.� , problem (GSIMP) is Levitin-Polyak

well-posed.

The following example illustrates that the continuity off in Theorem �.� is essential.

Example . Let C, e, g, andY be considered in Example�.� . Let f : R � R� be de“ned

by

f (x) =

�
�


��

(�, �), if x � �,

(…x,…x), if …�� x < �,

(…� …x,…� …x), if x < …�.

Then Y(x) = (…� ,x� ], M = (…� , �], and S= [�, �]. It is easy to see that g are continuous

andY(x) is lower semi-continuous. Moreover,

�(ε) = […ε, � + ε] � […� …ε,…�).

Obviously,f is not continuous. By Theorem�.� , problem (GSIMP) is not Levitin-Polyak

well-posed. In fact, for sequence{xn} = {…�…�/n} is a Levitin-Polyak minimizing sequence

for problem (GSIMP), but any subsequence of{xn} converges to …� /� S.

Theorem . Assume that f is continuous, g is lower semi-continuous and the set-valued

mapping Y is lower semi-continuous. If there exists someε > � such that�(ε) is nonempty

bounded, then problem(GSIMP)is Levitin-Polyak well-posed.
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Proof Let {xn} be a Levitin-Polyak minimizing sequence for problem (GSIMP). Then there

exists a sequenceεn > � with εn � � such that

f (x) …f (xn) + εne /� …intC, � x � M, (��)

g(xn,y) � εn, � y � Y(xn). (��)

Let ε > � be such that �(ε) is nonempty bounded. Then there existsn� such that{xn} �

�(ε) for all n > n� . This implies that {xn} is bounded. It follows that there exists a subse-

quence{xnk } of {xn} such thatxnk � x� . From (�� ), we have

f (x) …f (xnk ) + εnke� Rp\ (…int C), � x � M.

SinceRp\ (…intC) is closed,f is continuous andεnk � �,

f (x) …f (x� ) � Rp\ (…intC), � x � M,

which implies that

f (x) …f (x� ) /� …int C, � x � M. (��)

Note that (�� ) also holds forxnk and εnk . For anyy
 � Y(x� ), by the lower semi-continuity

of Y, there exists a sequence{ynk } with ynk � Y(xnk ) converging toy
 such that

g(xnk ,ynk ) � εnk .

Sinceg is lower semi-continuous andεnk � �,

g
�
x� ,y
� � �.

Thus, x� � M. This fact together with (�� ) yieldsx� � S. Therefore, problem (GSIMP) is

Levitin-Polyak well-posed. This completes the proof. �

Remark . Theorem�.� illustrates that under suitable conditions, Levitin-Polyak well-

posedness of problem (GSIMP) is equivalent to the existence of solutions.

The following example illustrates that the boundedness condition in Theorem�.� is

essential.

Example . Let C = R�
+ and e = (�, �). We consider the following generalized semi-

in“nite multiobjective programming problem:

(GSIMP) MinC f (x) =

�
(x,…x), if x � �,

(…x,…x), if x < �,

s.t.g(x,y) = …x …y� … �� �, � y � Y(x),

whereY(x) =
�
y � R : h(x,y) = x …y � �

�
.
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Then, it is easy to check thatY(x) = [x,+� ) andM = […�,+� ). Clearly,f andgare contin-
uous andY(x) is lower semi-continuous. By simple calculations,S= [�, + � ) and for any
ε > �,

�(ε) = […ε, +� ).

It follows that �(ε) is not bounded. By Theorem�.� , problem (GSIMP) is not Levitin-
Polyak well-posed. In fact, for sequence{xn} = {n} is a Levitin-Polyak minimizing sequence
for problem (GSIMP), but it does not have any subsequence which converges to an element
of S.

Remark . It is worth mentioning that Huang and Yang [�� ] established the equivalence
between the generalized type I Levitin-Polyak well-posedness and the nonemptiness and
compactness of weakly e�cient solution set for convex vector optimization problems with
a cone constraint by the linear scalarization method (see Theorem �.� in [�� ]). However,
based on di
erent problems and di
erent approaches, their result and ours cannot include
each other; for more details, see [�� ].

4 Links with upper semi-continuity of approximate solution maps
In this section, we investigate the relationship between the Levitin-Polyak well-posedness
of problem (GSIMP) and the upper semi-continuity of approximate solution maps. We
“rst have the following result concerning the necessary condition for problem (GSIMP)
to be Levitin-Polyak well-posed.

Theorem . If problem(GSIMP) is Levitin-Polyak well-posed, then the set-valued map
� : R+ ⇒ Rn is upper semi-continuous atε = �.

Proof Let problem (GSIMP) be Levitin-Polyak well-posed. Suppose by contradiction that
� is not upper semi-continuous atε = �. Then there exists an open setU with �(�) � U,
and for anyεn > � with εn � �, there exists xn � �(εn) such thatxn /� U. Sincexn � �(εn),
we have

f (x) …f (xn) + εne /� …intC, � x � M,

g(xn,y) � εn, � y � Y(xn).

It follows that {xn} is a Levitin-Polyak minimizing sequence for problem (GSIMP). Note
that problem (GSIMP) is Levitin-Polyak well-posed. Then there exists a subsequence{xnk }
of {xn} which converges to some pointx� � S. It is easy to see thatS= �(�). This implies
x� � �(�). It follows that

xnk � x� � S= �(�) � U.

Asxn /� U, we havexn � Rn\ U. By the closedness ofRn\ U andxnk � x� , we getx� � Rn\ U.
This gives a contradiction. Therefore,� is upper semi-continuous atε = �. This completes
the proof. �

By Theorem�.� and Remark�.� , we have the following corollary.
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Corollary . If problem (GSIMP) is Levitin-Polyak well-posed, then for every Levitin-

Polyak minimizing sequence{xn} � Rn and for every neighborhood W of�, there exists

n� � N such that xn � S+ W for all n > n� .

The next theorem gives a su�cient condition for problem (GSIMP) to be Levitin-Polyak

well-posed.

Theorem . If S is nonempty compact and� is upper semi-continuous atε = �, then

problem(GSIMP)is Levitin-Polyak well-posed.

Proof Let B be an open unit ball inRn. For anyρ > �, �(�)+ ρB is a neighborhood of�(�).

Since� is upper semi-continuous atε = �, there exists a neighborhood ofV of � such that

�(v) � �(�) + ρB, � v � V .

Let {xn} be a Levitin-Polyak minimizing sequence for problem (GSIMP). Thus, there exists

ε
 � V andn� � N such that{xn} � �(ε
) whenn > n� . It follows that

xn � �(�) + ρB = S+ ρB.

Let sn � Sandbn � ρB be such that

xn = sn + bn.

SinceSis nonempty compact, there exists a subsequence{snk } of {sn} which converges to

some points� � S, and for the aboveρ > �, there existsN � N such that	 snk …s� 	 < ρ for

all k > N. It follows that

	 xnk …s� 	 = 	 snk + bnk …s� 	 � 	 snk …s� 	 + 	 bnk 	 < � ρ, � k > N.

By the arbitrariness ofρ, we getxnk � s� � S. Hence, problem (GSIMP) is Levitin-Polyak

well-posed. This completes the proof. �

Remark . It is worth mentioning that the compactness assumption ofS cannot be

dropped in the above theorem. Let us consider Example�.� . Clearly,S= �(�) = [�, + � )

is not compact and for anyρ > �, V = (…ρ, +� ) is an open set with�(�) � V . It is easy

to see that� is upper semi-continuous atε = �. But the problem is not Levitin-Polyak

well-posed.

As a consequence of Theorem�.� and Remark�.� , we have the following corollary.

Corollary . If S is nonempty compact and� is Hausdor� upper continuous atε = �,

then problem(GSIMP)is Levitin-Polyak well-posed.

From Theorems�.� and �.� , we obtain the equivalent relation between the Levitin-

Polyak well-posed of problem (GSIMP) and the upper semi-continuity of approximate

solution maps.
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Corollary . If S is nonempty compact, then problem(GSIMP) is Levitin-Polyak well-

posed if and only if� is upper semi-continuous atε = �.

5 Conclusion
The purpose of this paper is to study the Levitin-Polyak well-posedness for general-

ized semi-in“nite multiobjective programming problems, where the objective function

is vector-valued and the generalized semi-in“nite constraint functions are real-valued.

Metric characterizations for this kind of Levitin-Polyak well-posedness are obtained. The

relations between the Levitin-Polyak well-posedness and the upper semi-continuity of ap-

proximate solution maps for generalized semi-in“nite multiobjective programming prob-

lems are established. It would be interesting to consider the Levitin-Polyak well-posedness

for semi-in“nite vector optimization problems, where the objective function and the semi-

in“nite constraint functions are also vector-valued. This may be the topic of some of our

forthcoming papers.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All
authors read and approved the final manuscript.

Author details
1College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, 400067, P.R. China.
2College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, 400074, P.R. China.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (11471059, 11301571, 11301570), the
Chongqing Research Program of Basic Research and Frontier Technology (cstc2014jcyjA00037, cstc2015jcyjB00001,
cstc2015jcyjA00025, cstc2015jcyjA00002), the Education Committee Project Research Foundation of Chongqing
(KJ1400618, KJ1500626), the Postdoctoral Science Foundation of China (2015M580774) and the Program for Core Young
Teacher of the Municipal Higher Education of Chongqing ([2014]47).

Received: 24 September 2015 Accepted: 27 December 2015

References
1. Goberna, MA, López, MA: Linear Semi-Infinite Optimization. Wiley, Chichester (2001)
2. Reemtsen, R, Ruckmann, JJ (eds.): Semi-Infinite Programming. Kluwer Academic, Boston (1998)
3. Stein, O: How to solve a semi-infinite optimization problem. Eur. J. Oper. Res. 223, 312-320 (2012)
4. Stein, O: Bi-Level Strategies in Semi-Infinite Programming. Kluwer Academic, Boston (2003)
5. Jongen, HTH, Shikhman, V: Generalized semi-infinite programming: the nonsmooth symmetric reduction ansatz.

SIAM J. Optim. 21, 193-211 (2011)
6. Kanzi, N, Nobakhtian, S: Necessary optimality conditions for nonsmooth generalized semi-infinite programming

problems. Eur. J. Oper. Res. 205, 253-261 (2010)
7. Ruckmann, JJ, Shapiro, A: First-order optimality conditions in generalized semi-infinite programming. J. Optim.

Theory Appl. 101, 677-691 (1999)
8. Vaquez, FG, Rukmann, JJ, Stein, O, Still, G: Generalized semi-infinite programming: a tutorial. J. Comput. Appl. Math.

217, 394-419 (2008)
9. Ye, JJ, Wu, SY: First order optimality conditions for generalized semi-infinite programming problems. J. Optim. Theory

Appl. 137, 419-434 (2008)
10. Chuong, TD, Huy, NQ, Yao, JC: Stability of semi-infinite vector optimization problems under functional perturbations.

J. Glob. Optim. 45, 583-595 (2009)
11. Chuong, TD, Huy, NQ, Yao, JC: Pseudo-Lipschitz property of linear semi-infinite vector optimization problems. Eur.

J. Oper. Res. 200, 639-644 (2010)
12. Chuong, TD, Yao, JC: Isolated and proper efficiencies in semi-infinite vector optimization problems. J. Optim. Theory

Appl. 162, 447-462 (2014)
13. Huy, NQ, Kim, DS: Lipschitz behavior of solutions to nonconvex semi-infinite vector optimization problems. J. Glob.

Optim. 56, 431-448 (2013)
14. Goberna, MA, Guerra-Vazquez, F, Todorov, MI: Constraint qualifications in linear vector semi-infinite optimization. Eur.

J. Oper. Res. 227, 12-21 (2013)
15. Tykhonov, AN: On the stability of the functional optimization problems. USSR Comput. Math. Math. Phys. 6, 28-33

(1966)



Long et al. Journal of Inequalities and Applications  (2016) 2016:12 Page 13 of 13

16. Levitin, ES, Polyak, BT: Convergence of minimizing sequences in conditional extremum problem. Sov. Math. Dokl. 7,
764-767 (1966)

17. Konsulova, AS, Revalski, JP: Constrained convex optimization problems-well-posedness and stability. Numer. Funct.
Anal. Optim. 15, 889-907 (1994)

18. Huang, XX, Yang, XQ: Generalized Levitin-Polyak well-posedness in constrained optimization. SIAM J. Optim. 17,
243-258 (2006)

19. Huang, XX, Yang, XQ: Levitin-Polyak well-posedness of constrained vector optimization problems. J. Glob. Optim. 37,
287-304 (2007)

20. Huang, XX, Yang, XQ: Further study on the Levitin-Polyak well-posedness of constrained vector optimization
problems. Nonlinear Anal. 75, 1341-1347 (2012)

21. Lalitha, CS, Chatterjee, P: Levitin-Polyak well-posedness for constrained quasiconvex vector optimization problems.
J. Glob. Optim. 59, 191-205 (2014)

22. Long, XJ, Huang, NJ, Teo, KL: Levitin-Polyak well-posedness for equilibrium problems with functional constraints.
J. Inequal. Appl. 2008, Article ID 657329 (2008)

23. Bednarczuck, EM: An approach to well-posedness in vector optimization: consequences to stability and parametric
optimization. Control Cybern. 23, 107-122 (1994)

24. Dontchev, AL, Zolezzi, T: Well-Posed Optimization Problems. Lecture Notes in Mathematics, vol. 1543. Springer, Berlin
(1993)

25. Long, XJ, Huang, NJ: Metric characterizations of α-well-posedness for symmetric quasi-equilibrium problems. J. Glob.
Optim. 45, 459-471 (2009)

26. Long, XJ, Peng, JW: Generalized B-well-posedness for set optimization problems. J. Optim. Theory Appl. 157, 612-623
(2013)

27. Long, XJ, Peng, JW, Peng, ZY: Scalarization and pointwise well-posedness for set optimization problems. J. Glob.
Optim. 62, 763-773 (2015)

28. Loridan, P: Well-posedness in vector optimization. In: Lucchetti, R, Recalski, J (eds.) Recent Developments in
Variational Well-Posedness Problems. Mathematics and Its Applications, vol. 331, pp. 171-192. Kluwer Academic,
Dordrecht (1995)

29. Miglierina, E, Molho, E, Rocca, M: Well-posedness and scalarization in vector optimization. J. Optim. Theory Appl. 126,
391-409 (2005)

30. Wang, G, Yang, XQ, Cheng, TCE: Generalized Levitin-Polyak well-posedness for generalized semi-infinite programs.
Numer. Funct. Anal. Optim. 34, 695-711 (2013)

31. Aubin, JP, Ekeland, I: Applied Nonlinear Analysis. Wiley, New York (1984)
32. Nikodem, K: Continuity of K -convex set-valued function. Bull. Pol. Acad. Sci., Math. 34, 393-400 (1986)
33. Göpfert, A, Riahi, H, Tammer, C, Zălinescu, C: Variational Methods in Partially Ordered Spaces. Springer, New York

(2003)
34. Kuratowski, K: Topology, vols. 1 and 2. Academic Press, New York (1968)


