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Abstract
When multiple followers are involved in a bilevel programming problem, the leader’s
decision will be affected by the reactions of these followers. For actual problems, the
leader in general cannot obtain complete information from the followers so that he
may be risk-averse. Then he would need a safety margin to bound the damage
resulting from the undesirable selections of the followers. This situation is called a
pessimistic bilevel multi-follower (PBLMF) programming problem. This research
considers a partially-shared linear PBLMF programming in which there is a
partially-shared variable among the followers. The concept and solution algorithm of
such a problem are developed. As an illustration, the partially-shared linear PBLMF
programming model is applied to a company making venture investments.
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1 Introduction
Bilevel programming plays an exceedingly important role in different application fields,
such as transportation, economics, ecology, engineering and others; see [] and the refer-
ences therein. It has been developed and researched by many authors; e.g., see the mono-
graphs [–].

When the set of solutions of the lower level problem does not reduce to a singleton, the
leader can hardly optimize his choice unless he knows the follower’s reaction to his choice.
In this situation, at least two approaches have been suggested: optimistic (or strong) for-
mulation and pessimistic (or weak) formulation [, , ]. The pessimistic bilevel program-
ming problem is very difficult []. As a result, most research on bilevel programming fo-
cuses on the optimistic formulation. Interested readers can refer to [, ] and the references
therein.

This research focuses on the concept, algorithms and applications of the pessimistic
bilevel programming problem. Several relative studies are reviewed for existing results of
solutions and approximations results for pessimistic bilevel programming; see [–]. For
papers discussing optimality conditions, see [, ]. Recently, Wiesemann et al. [] ana-
lyzed the structural properties and presented a solvable ε-approximation algorithm for the
independent pessimistic bilevel programming problem. Based on an exact penalty func-
tion, Zheng et al. [] proposed an algorithm for the pessimistic linear bilevel program-
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ming problem. C̆ervinka, Matonoha and Outrata [] developed a new numerical method
to compute approximate and so-called relaxed pessimistic solutions to mathematical pro-
gramming with equilibrium constraints which is a generalized bilevel programming prob-
lem.

As is well known, most theoretical and algorithmic contributions to bilevel program-
ming are limited to a specific situation with one leader and one follower. For the actual
bilevel programming problems, however, the lower level problem often involves multi-
ple decision makers. For example, in a university, the dean of a faculty is the leader, and
aims to minimize the faculty annual budget. All the heads of departments in the faculty
are the followers whose aims are maximizing their respective annual budget. The leader
chooses an optimal strategy knowing how the followers will react. This is a typical bilevel
multi-follower (BLMF) programming problem. Note that the research on BLMF has been
concentrated in its optimistic formulation. For example, Calvete and Galé [] discussed
the linear BLMF with independent followers and transformed such a problem into a linear
bilevel problem with one leader and one follower. Lu et al. [] generalized a framework
for a special kind of BLMF, and identified nine main types of relations among followers.
Lu et al. [] considered a trilevel multi-follower programming problem, and analyzed
various kinds of relations between decision entities. However, some practical problems
need to be modeled as a partially-shared pessimistic BLMF programming model. Let us
consider a simple example as follows.

Example . Assume that a company (i.e., leader) undertakes M projects which will be
performed by M construction teams (i.e., followers), respectively. In addition to his own
resources, each team usually need to use some shared resources, such as piling machines
and cranes, in the company. Furthermore, assume that the construction teams are com-
petitive, and the company cannot obtain complete information from these teams. Then
the company may be risk-averse, and consequently, he protects himself against the pos-
sible worst choice of the teams. That is, his aim is to minimize the worst-case cost. Let
the cost function of the corporation be H(x, y, y, . . . , yM, z). The cost function of the ith
construction team is fi(x, yi, z) and the ith team subjects constraints are Gi(x, yi, z) ≤  in
which z is a shared resource among teams. Then the model is given as follows:

min
x

sup
y,y,...,yM ,z

H(x, y, y, . . . , yM, z),

where (yi, z) is a solution of the ith team’s problem (i = , , . . . , M)

min
yi ,z

fi(x, yi, z)

s.t. Gi(x, yi, z) ≤ .

Note that the above problem cannot be modeled from the existing approaches. To model
such a problem, the proposed study considers a partially-shared PBLMF programming
problem. The main contributions of this study are three-fold: (i) the concept of a solu-
tion of the general PBLMF programming problem is presented and the related existence
theorem is established; (ii) a simple algorithm based on penalty function is developed for
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solving a partially-shared linear PBLMF programming problem; and (iii) we apply the pro-
posed partially-shared linear PBLMF programming problem to a company making ven-
ture investments.

The paper is organized as follows. In the next section, the concept of a partially-shared
PBLMF programming problem is introduced, and an equivalently penalty problem in-
spired from [, –] is given. In Section , we analyze the relationships between the
original problem and its penalty problem, and then present a solution algorithm. To il-
lustrate the feasibility and rationality of the proposed partially-shared linear PBLMF pro-
gramming model, an example of venture investments is proposed in Section . Finally,
concluding remarks are provided in Section .

2 Concept and penalty function of partially-shared linear PBLMF
Consider the following partially-shared linear PBLMF programming problem in which
M ≥  followers are involved and there is a partially shared decision variable z among
followers:

min
x∈X

sup
(yi ,z)∈�i(x)

[
cT x +

M∑
i=

dT
i yi + sT z

]
, ()

where �i(x) is the set of solutions of the ith follower’s problem

min
yi ,z

uT
i yi + vT

i z

s.t. Aix + Biyi + Ciz ≤ bi,

yi, z ≥ .

Here, x, c ∈ R
n, yi, di, ui ∈ R

mi , s, z, vi ∈ R
l , Ai ∈ R

qi×n, Bi ∈ R
qi×mi , Ci ∈ R

qi×l , bi ∈ R
qi ,

i = , , . . . , M, X is a closed subset of Rn, and T stands for transpose.

Definition 
(a) Constraint region of problem ():

S =
{

(x, y, y, . . . , yM, z) : x ∈ X, Aix + Biyi + Ciz ≤ bi, yi, z ≥ , i = , , . . . , M
}

.

(b) Projection of S onto the leader’s decision space:

S(X) =
{

x ∈ X : ∃(y, y, . . . , yM, z), such that (x, y, y, . . . , yM, z) ∈ S
}

.

(c) Feasible set for the ith follower ∀x ∈ S(X):

Si(x) =
{

(yi, z) : Biyi + Ciz ≤ bi – Aix, yi, z ≥ 
}

.

(d) The ith follower’s rational reaction set for x ∈ S(X):

�i(x) =
{

(yi, z) : (yi, z) ∈ Arg min
[
uT

i yi + vT
i z : (yi, z) ∈ Si(x)

]}
.
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(e) Inducible region or feasible region of the leader:

IR =
{

(x, y, y, . . . , yM, z) : (x, y, y, . . . , yM, z) ∈ S, (yi, z) ∈ �i(x), i = , , . . . , M
}

.

To introduce the concept of a solution of problem () (also called pessimistic solution),
one usually employs the following value function ϕ(x):

ϕ(x) := cT x + sup
(yi ,z)∈�i(x)

[ M∑
i=

dT
i yi + sT z

]
.

Definition  A point (x∗, y∗
 , y∗

, . . . , y∗
M, z∗) ∈ IR is called a pessimistic solution to prob-

lem (), if

ϕ
(
x∗) = cT x∗ +

M∑
i=

dT
i y∗

i + sT z∗,

ϕ
(
x∗) ≤ ϕ(x), ∀(x, y, y, . . . , yM, z) ∈ IR.

For the sake of simplicity, this study only considers a special case of M =  in problem (),
i.e.,

min
x∈X

sup
(yi ,z)∈�i(x)

[
cT x + dT

 y + dT
 y + sT z

]
, ()

where �i(x) is the set of solutions of the ith follower’s problem

min
yi ,z

uT
i yi + vT

i z

s.t. Aix + Biyi + Ciz ≤ bi, ()

yi, z ≥ .

For each x ∈ S(X), denote by f (x) the optimal value of the following problem P(x):

sup
(yi ,z)∈�i(x)

[
dT

 y + dT
 y + sT z

]
.

Then problem () is equivalently transformed into the following problem P:

min
x∈S(X)

[
cT x + f (x)

]
.

The dual problem of () is written as

max
wi≥

–(bi – Aix)T wi

s.t. –BT
i wi ≤ ui,

–CT
i wi ≤ vi.

Denote by πi(x, yi, wi, z) = uT
i yi + vT

i z + (bi – Aix)T wi the ith (i = , ) follower’s duality gap.
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For ρ > , we now consider the following penalized problem Pρ(x):

max
y,y,w,w,z

{
dT

 y + dT
 y + sT z – ρ

∑
i=

πi(x, yi, wi, z)

}

s.t. –BT
i wi ≤ ui,

–CT
i wi ≤ vi, ()

Aix + Biyi + Ciz ≤ bi,

yi, wi, z ≥ , i = , ,

and denote the optimal value function by fρ(x).
The dual problem of () is

min
t,t,...,t

[
uT

 t + uT
 t + vT

 t + vT
 t + (b – Ax)T t + (b – Ax)T t

]
s.t. –BT

 t ≤ ρu – d,

–BT
 t ≤ ρu – d,

–CT
 t – CT

 t ≤ ρv + ρv – s, ()

Bt + Ct ≤ ρ(b – Ax),

Bt + Ct ≤ ρ(b – Ax),

ti ≥ , i = , , . . . , .

Furthermore, for each x ∈ S(X), if fρ(x) exists, then it is also the optimal value function of
problem ().

Finally, we find two penalized problems of problem P as follows.
Problem Pρ :

min
x,t,t,...,t

[
cT x + uT

 t + uT
 t + vT

 t + vT
 t + (b – Ax)T t + (b – Ax)T t

]
s.t. –BT

 t ≤ ρu – d,

–BT
 t ≤ ρu – d,

–CT
 t – CT

 t ≤ ρv + ρv – s,

Bt + Ct ≤ ρ(b – Ax),

Bt + Ct ≤ ρ(b – Ax),

x ∈ X, ti ≥ , i = , , . . . , .

Problem P̃ρ :

min
x∈S(X)

[
cT x + fρ(x)

]
.

The following section outlines the existence of solutions to problems Pρ(x), Pρ , P̃ρ , and P,
gives the relationships among them and presents a solution algorithm.
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3 Algorithm of partially-shared linear PBLMF
In order to establish theoretical results, we state the main assumption throughout the
paper.

Assumption (A) S is a non-empty compact polyhedron.

For convenience, we denote

Z(ρ) :=
{

(t, t) : –BT
 t ≤ ρu – d, –BT

 t ≤ ρu – d,

–CT
 t – CT

 t ≤ ρv + ρv – s, t, t ≥ 
}

,

Z(ρ) :=
{

(x, t, t, t) : Bt + Ct ≤ ρ(b – Ax),

Bt + Ct ≤ ρ(b – Ax), x ∈ X, t, t, t ≥ 
}

,

Z(ρ, x) :=
{

(t, t, t) : ∃x ∈ X, such that (x, t, t, t) ∈ Z(ρ)
}

,

Zi
 :=

{
wi : –BT

i wi ≤ ui, –CT
i wi ≤ vi, wi ≥ 

}
,

Z(x) :=
{

(y, y, z) : ∃x ∈ X, such that Aix + Biyi + Ciz ≤ bi, yi, z ≥ , i = , 
}

.

In the sequel, denote by V (A) the set of vertices of A for a set A.
The following three lemmas provide the existence of solutions to problems Pρ(x), Pρ ,

and P̃ρ , respectively.

Lemma . Under Assumption (A), for each x ∈ S(X) and a fixed value of ρ > , problem
Pρ(x) has at least one solution in V (Z(x)) × V (Z

) × V (Z
).

Proof For each x ∈ S(X) and fixed ρ > , we have

sup
(yi ,z)∈Si(x),wi∈Zi



{
dT

 y + dT
 y + sT z – ρ

∑
i=

πi(x, yi, wi, z)

}

≤ max
(yi ,z)∈Si(x)

[
dT

 y + dT
 y + sT z

]
.

It follows from Assumption (A) that the objective function of the linear programming
problem Pρ(x) is bounded from above, and hence it has at least one solution in V (Z(x)) ×
V (Z

) × V (Z
). This completes the proof. �

Lemma . Under Assumption (A), for a fixed value of ρ > , problem Pρ has at least one
solution in V (Z(ρ)) × V (Z(ρ)).

Proof Clearly, problem Pρ is a disjoint bilinear programming problem whose solution oc-
curs at a vertex of its constraint region []. This completes the proof. �

Lemma . Under Assumption (A), for a fixed value of ρ > , problem P̃ρ has at least one
solution.

Proof Under Assumption (A), it follows from Theorem . in [] that fρ(x) is continuous.
Hence, the result follows immediately from the Weierstrass theorem. �
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For any η > , let Z := {(x, t) : Bt ≤ η(b – Ax)} and Z := {(x, y) : By ≤ b – Ax}. To prove
Theorem ., we first provide the following lemma.

Lemma . For any η > , if (x∗
η, t∗

η) ∈ V (Z), then there exists (x∗, y∗) ∈ V (Z), such that
x∗ = x∗

η and t∗
η = ηy∗.

Proof It is easy to verify that (x∗
η, t∗η

η
) ∈ Z. Let (x, y), . . . , (xr , yr) be the distinct vertices

of Z. Since any point in Z can be written as a convex combination of these vertices, let
(x∗

η, t∗η
η

) =
∑r̂

i= αi(xi, yi), where
∑r̂

i= αi = , αi > , i = , . . . , r̂, and r̂ ≤ r. Then we have

(
x∗

η, t∗
η

)
=

r̂∑
i=

αi(xi,ηyi). ()

Note that (xi,ηyi) ∈ Z. Hence, () implies that r̂ = . Because (x∗
η, t∗

η) is a vertex of Z, a
contradiction results unless r̂ = .

Therefore, there exists a point (x∗, y∗) ∈ V (Z), such that x∗ = x∗
η and t∗

η = ηy∗. This com-
pletes the proof. �

Next, the following result relates the solution between problems Pρ and P̃ρ .

Theorem . Under Assumption (A), for a fixed value of ρ > , if (xρ , tρ
 , tρ

 , tρ
 , tρ

 , tρ

 ) is
a solution of problem Pρ , xρ solves problem P̃ρ . Furthermore, xρ ∈ Q := {x : (x, y, y, z) ∈
V (Q†)} where

Q† :=
{

(x, y, y, z) : x ∈ X, Aix + Biyi + Ciz ≤ bi, yi, z ≥ , i = , 
}

.

Proof Denote the objective function of problem Pρ by F(x, t, t, t, t, t). Suppose that x∗
ρ

solves problem P̃ρ . Then there exist (t∗
 , t∗

 , t∗
) ∈ Z(ρ, x∗

ρ) and (t∗
, t∗

 ) ∈ Z(ρ), such that

fρ
(
x∗

ρ

)
= uT

 t∗
 + uT

 t∗
 + vT

 t∗
 + vT

 t∗
 +

(
b – Ax∗

ρ

)T t∗
 +

(
b – Ax∗

ρ

)T t∗
 . ()

Moreover, (x∗
ρ , t∗

 , t∗
 , t∗

 , t∗
, t∗

 ) is a feasible point of problem Pρ .
Then we have

cT xρ + fρ(xρ) ≤ F
(
xρ , tρ

 , tρ
 , tρ

 , tρ
 , tρ


)

()

≤ F
(
x∗

ρ , t∗
 , t∗

 , t∗
 , t∗

, t∗

)

()

= cT x∗
ρ + fρ

(
x∗

ρ

)
, ()

where () holds due to the definition of fρ(xρ), () holds because of the optimality of
(xρ , tρ

 , tρ
 , tρ

 , tρ
 , tρ

 ) and () follows from ().
Thus, ()-() implies that xρ is a solution of problem P̃ρ .
Using the result of Lemma ., we can obtain

(
xρ , tρ

 , tρ
 , tρ


) ∈ V

(
Z(ρ)

)
.
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Furthermore, by the result of Lemma ., the definitions of Z(ρ) and Q†, we find that
xρ ∈ Q. This completes the proof. �

Note that Q† can be referred to as the constraint region of problem () based on Defini-
tion (a).

Finally, we provide the following result which demonstrates that our penalty method is
exact, and also presents the relationships between problems P̃ρ and P.

Theorem . Let Assumption (A) hold, and {xρ} be a sequence of solutions of problem P̃ρ .
Then there exists ρ∗ > , such that for all ρ > ρ∗, xρ is a solution of problem P.

Proof Let (y(x), y(x), z(x), w(x), w(x)) ∈ V (Z(x))×V (Z
)×V (Z

) be a solution of prob-
lem Pρ(x). For any (ŷ, ŷ, ẑ, ŵ, ŵ) ∈ V (Z(x)) × V (Z

) × V (Z
), we have

fρ(x) = dT
 y(x) + dT

 y(x) + sT z(x) – ρ

∑
i=

πi
(
x, yi(x), wi(x), z(x)

)

≥ dT
 ŷ + dT

 ŷ + sT ẑ – ρ

∑
i=

πi(x, ŷi, ŵi, ẑ). ()

In particular, choose (ŷi, ẑ) and ŵi (i = , ), such that they are solutions of problem ()
and its dual problem respectively. Then we obtain

∑
i=

πi(x, ŷi, ŵi, ẑ) = .

Hence, we have

 ≤
∑

i=

πi
(
x, yi(x), wi(x), z(x)

)

≤ dT
 y(x) + dT

 y(x) + sT z(x) – dT
 ŷ – dT

 ŷ – sT ẑ
ρ

≤ ‖dT
 y(x) + dT

 y(x) + sT z(x) – dT
 ŷ – dT

 ŷ – sT ẑ‖

ρ
,

where ‖ · ‖ denotes the Euclidean norm. Moreover, it follows from Assumption (A) that
there exists a constant δ > , such that

∥∥dT
 y(x) + dT

 y(x) + sT z(x) – dT
 ŷ – dT

 ŷ – sT ẑ
∥∥

 ≤ δ.

We then find that

 ≤
∑

i=

πi
(
x, yi(x), wi(x), z(x)

) ≤ δ

ρ
.
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For each x ∈ S(X), the number of elements of the set V (Z(x)) × V (Z
) × V (Z

) is finite,
and then there exists  < ρ∗(x) < +∞, such that

∑
i=

πi
(
x, yi(x), wi(x), z(x)

)
= , ∀ρ ≥ ρ∗(x). ()

Since S(X) is a bounded non-empty polyhedron, there exists a constant ρ∗ > , such that

∑
i=

πi
(
x, yi(x), wi(x), z(x)

)
= , ∀ρ ≥ ρ∗, x ∈ S(X),

and then (y(x), y(x), z(x)) is a feasible point of problem P(x). Hence, for any x ∈ S(X), we
have

dT
 y(x) + dT

 y(x) + sT z(x) ≤ f (x). ()

Moreover, for any x ∈ S(X) and ρ > , it follows from the definitions of fρ(x) and f (x)
that

f (x) ≤ fρ(x). ()

Combining ()-(), we have

f (x) = fρ(x), ∀ρ ≥ ρ∗, x ∈ S(X). ()

Therefore, for all ρ > ρ∗, we find

cT xρ + f (xρ) ≤ cT xρ + fρ(xρ) ()

≤ cT x + fρ(x) ()

= cT x + f (x), ()

where () and () follow from (), and () holds because of the optimality of xρ . Equa-
tions ()-() imply that xρ is a solution for problem P for all ρ > ρ∗. This concludes the
proof. �

Combining the results of Theorems . and ., we can characterize problem () as a
particular kind of nonlinear programming problem whose solution is related to a vertex
of the constraint region.

Theorem . Under Assumption (A), there exists a solution (x∗, y∗
 , y∗

, z∗) of problem ()
such that x∗ ∈ Q.

From the result of Theorem ., we know that a solution of problem () may be related
to a vertex of Q+. Hence one possible way to find the solution would be to generate all
vertices of Q+ and test each one as a possible solution by maximizing P(x) in (y, y, z) for
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fixed x. That is, solving problem () is equivalent to finding x∗ with (y∗
 , z∗) ∈ �(x∗) and

(y∗
, z∗) ∈ �(x∗) such that

cT x∗ + dT
 y∗

 + dT
 y∗

 + sT z∗ = min
≤i≤N

{
cT x[j] + max

(yi ,z)∈�i(x[j])

[
dT

 y + dT
 y + sT z

]}
,

where for x[j] (j = , , . . . , N ) there exists a point (x[j], y[j]
 , y[j]

 , z[j]), such that (x[j], y[j]
 , y[j]

 , z[j])
are the N ordered basic feasible points for the following linear programming problem:

min
x,y,y,z

cT x + dT
 y + dT

 y + sT z

s.t. Ax + By + Cz ≤ b,

Ax + By + Cz ≤ b,

x ∈ X, y, y, z ≥ .

Rather than enumerate all vertices of the set Q+ explicitly, we present the following al-
gorithm which finds a solution to problem ().

Algorithm
Step . Choose ρ >  and γ > .
Step . Solve problem Pρ , and denote the solution by (xρ , tρ

 , tρ
 , tρ

 , tρ
 , tρ

 ).
Step . Solve problem Pρ(xρ), and denote the solution by (yρ

 , yρ
 , wρ

 , wρ
 , zρ).

Step . If
∑

i= πi(xρ , yρ
i , wρ

i , zρ) = , then stop, (xρ , yρ
 , yρ

 , zρ) is a solution of problem ().
Otherwise, set ρ = γρ and proceed to Step .

4 An application
In this section, we apply the proposed partially-shared PBLMF decision making model
to a company making venture investments. Consider the investments with a CEO and
the selected two departments of the company. All decision entities have individual objec-
tives, constraints, and variables and do not cooperate with one another. The departments
within the company are also in an uncooperative situation, but they need to use the same
warehouse in this company. The CEO’s decision takes the responses of the selected de-
partments into consideration and aims to maximize the company’s profit. At the same
time, the departments fully consider the CEO’s decision, and make a rational response
to maximize their own profit. Under incomplete and asymmetric information, the CEO
cannot directly observe both departments’ effort and the inventory expense. Then it is
difficult for the CEO to design an investment planning model that aims to maximize the
company’s profit (or minimize the company’s cost). In this case, the CEO may want to cre-
ate a safety margin to bound the damage resulting from undesirable selections of the two
departments.

To model the above venture investment problem, the notations are introduced as fol-
lows:

() The CEO (Leader)

• Objective G:
The aim is to maximize the company’s profit.

• Variables (x, x):
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x: How much is used for the CEO’s investment in product .
x: How much is used for the CEO’s investment in product .

• Constraint:

H ≤ : The total investment cost for products  and .

() Two selected departments (Followers) Suppose that both department  (for
product ) and department  (for product ) share the same warehouse.


 Department :

• Objective G:
The aim is to maximize his total profit which includes his own profit in
product  and a fraction of the company’s revenue.

• Variables (y, z):

y: The effort for completing product .
z: The inventory expense for product .

• Constraints:

H ≤ : The effort and cost of department  that links with the CEO’s invest-
ments.

H ≤ : The maximum effort of department .
H ≤ : The maximum inventory expense in product .


 Department :

• Objective G:
The aim is to maximize his total profit which includes his own profit in
product  and a fraction of the company’s revenue.

• Variables (y, z):

y: The effort for completing product .
z: The inventory expense for product .

• Constraints:

H ≤ : The effort and cost of department  that links with the CEO’s invest-
ments.

H ≤ : The maximum effort of department .
H ≤ : The maximum inventory expense in product .

Then a partially-shared linear PBLMF model of the company making venture invest-
ments is given as follows:

max
x,x

min
y,y,z

[x + .x – y – y + z + ]

s.t. x + x ≤ ,

x, x ≥ ,

max
y,z

[
.(x + .x – y – y + z + ) + .y – .z

]
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s.t. x + x – y + z ≥ ,

 ≤ y ≤ , ()

 ≤ z ≤ ,

max
y,z

[
.(x + .x – y – y + z + ) + .y – .z

]
s.t. x – y + z ≥ ,

 ≤ y ≤ ,

 ≤ z ≤ .

To use the proposed algorithm, we can equivalently transform problem () into the
following problem:

min
x,x

max
y,y,z

[–x – .x + y + y – z – ]

s.t. x + x ≤ ,

x, x ≥ ,

min
y,z

[
.(–x – .x + y + y – z – ) – .y + .z

]
s.t. x + x – y + z ≥ ,

 ≤ y ≤ , ()

 ≤ z ≤ ,

min
y,z

[
.(–x – .x + y + y – z – ) – .y + .z

]
s.t. x – y + z ≥ ,

 ≤ y ≤ ,

 ≤ z ≤ .

Note that both () and () have the same solutions, and their optimal values are negatives
of each other.

Choose ρ =  and γ = . The disjoint bilinear programming problems at Step  are
solved by a commercial optimization software package BARON [, ]. By using the
proposed algorithm, it is easy to see that (x∗

 , x∗
, y∗

 , y∗
, z∗)T = (, , ., , )T is a solution

of problem (), and the optimal value is .

5 Conclusions
This study addresses a partially-shared linear PBLMF programming problem in which
there is a partially-shared variable among followers. Furthermore, the study presents the
concept and a solution algorithm for such a problem. Finally, the partially-shared PBLMF
model is applied to a company making venture investments. For future research, it will be
interesting to propose the modified intelligent algorithms for the partially-shared PBLMF
model, to apply the model in various areas, and to explore the concept, algorithms, and
applications of a PBLMF model in the referential-uncooperative situation.
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