
Lazarev et al. Journal of Inequalities and Applications  (2016) 2016:18 
DOI 10.1186/s13660-015-0954-3

R E S E A R C H Open Access

Existence of an optimal size of a rigid
inclusion for an equilibrium problem of a
Timoshenko plate with Signorini-type
boundary condition
Nyurgun Lazarev*, Tatiana Popova and Galina Semenova

*Correspondence: nyurgun@ngs.ru
North-Eastern Federal University, 58,
Belinsky str., Yakutsk, Russia

Abstract
We study the contact problems for elastic plates with a rigid inclusion. We consider
the case of frictionless contact between the rigid part of the plate and a rigid
obstacle. The contact is modeled with the Signorini-type nonpenetration condition.
The deformation of the transversely isotropic elastic part of the plate is described by
the Timoshenko model. We analyze the dependence of solutions to the contact
problems on the size of rigid inclusion. The existence of a solution to the optimal
control problem is proved. For that problem, the cost functional characterizes the
deviation of the displacement vector from a given function, whereas the size
parameter of rigid inclusion is chosen as the control function.
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1 Introduction
Applications of composite materials are growing vastly along with the development of re-
search interests concerning material behavior. A large variety of new materials represents
a challenge in mathematical modeling. In practice, the strengthening of the body is often
achieved by reinforcement constructions on the outer edge, so it is important to study
the mathematical models concerning the elastic bodies with rigid inclusions on the outer
boundary. In this regard, it is of interest to investigate the contact problems for plates that
are reinforced by rigid inclusions.

There are a number of works related to the modeling of contact problems for composites
(see, e.g., [–]. It is known that the classical approach to contact problems is character-
ized by a given contact area [, ]. In contrast to this, for the mathematical models with
unilateral boundary conditions of Signorini type, the contact area is not known a priori
[–]. The power and generality of variational methods make it possible to solve various
problems for elastic bodies and plates with inclusions; see, for example, [–]. In partic-
ular, a framework for two-dimensional elasticity problems with a thin delaminated rigid
inclusion and nonlinear Signorini-type conditions on a part of boundary is proposed in
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[]. The three-dimensional case is considered in []. The paper [] is devoted to the
analysis of the shapes of cracks and thin rigid inclusions in elastic bodies. The formula
for the shape derivative of the energy functional is obtained for the equilibrium problem
for an elastic body with a delaminated thin rigid inclusion []. For a Kirchhoff-Love plate
containing a thin rigid inclusion, the cases both with and without delamination of inclu-
sion are considered []. In that work, for the plate without delamination of inclusions, it
is established that by passing to the limit in the equilibrium problems for volume inclu-
sions embedded in an elastic plate as the size of the inclusions tends to zero we obtain the
equilibrium problem for the plate with a thin inclusion.

In this paper, we study the nonlinear equilibrium problem for a plate subject to the
Signorini condition on a part of the boundary. We consider volume inclusions defined
by three-dimensional domains and thin inclusions defined by cylindrical surfaces. The
present study investigates the effect of varying the inclusion size. We formulate an optimal
control problem with the cost functional characterizing the deviation of the displacement
vector from a given function. The control functions depend on the size parameter of the
rigid inclusion. We prove the existence of an optimal inclusion size.

Additionally, we establish a qualitative connection between the contact problems for
plates with rigid inclusions of varying size. In particular, we prove the strong convergence
of the solutions for problems with volume inclusions to the solution of the problem for
thin inclusion as the size parameter of the volume inclusion tends to zero.

2 Equilibrium problems for an elastic plate containing a rigid inclusion
Let us formulate the family of contact problems for an elastic inhomogeneous plate con-
taining a volume rigid inclusion. We suppose that the inhomogeneous clamped plate
may come into contact with a rigid obstacle. Let � ⊂ R be a bounded domain with a
smooth boundary �. Suppose that the smooth unclosed curves γ and γ lie on � such
that meas(γ ) > , meas(γ) > , and γ̄ ∩ γ̄ = ∅.

We consider the family of simply connected domains ωt ⊂ �, t ∈ (, t], with the follow-
ing properties:

(a) the boundaries ∂ωt are smooth such that ∂ωt ∈ C,;
(b) γ = ∂ωt ∩ � for all t ∈ (, t];
(c) ωt ⊂ ωt′ for all t, t′ ∈ (, t], t < t′;
(d) for any fixed t̂ ∈ (, t) and any neighborhood O of the domain ωt , there exists

tO > t̂ such that ωt ⊂O for all t ∈ [t̂, tO];
(e) for any neighborhood O of the curve γ , there exists tO >  such that ωt ⊂O for all

t ∈ (, tO];
(f )

⋃
t<t′ ωt = ωt′ for all t′ ∈ (, t];

(g) the sets �\ω̄t are Lipschitzian domains for all t ∈ (, t].
As an example of such a family, we give the following family of domains ωt , t ∈ (, t],

restricted by the closed curves ∂ωt = γ ∪ γt ∪ γ 
t ∪ γ 

t , where

γ =
{

(x, x) | –a < x < , x = g(x)
}

,

γt =
{

(x, x) | –a < x < , x = g(x) – t
}

, g ∈ C,[, ],

and γ 
t , γ 

t are axis-parallel line segments (see Figure ). For this example, the domain
thickness along the Ox axis is equal to t.
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Figure 1 Example of the domains ωt .

We define a three-dimensional Cartesian space {x, x, z} such that the set {�}×{} ⊂ R

corresponds to the middle plane of the plate. Fix the parameter t ∈ (, t]. According to
our arguments, the rigid inclusion is specified by the set ωt × [–h, h], that is, the boundary
of the rigid inclusion is given by the cylindrical surface ∂ωt × [–h, h]. The elastic part of
the plate corresponds to the domain �\ωt . The thickness of the plate is considered to be
constant and equal to h.

Denote by (W , w) the vector of mid-plane displacements (x ∈ �), where W = (w, w) are
the displacements in the plane, and {x, x} and w are the displacements along the axis z.
We denote the angles of rotation of a normal fiber by ψ = ψ(x) = (ψ,ψ) (x ∈ �).

Introduce the tensors describing the deformation of the transversely isotropic plate:

εij(ψ) =



(ψi,j + ψj,i), εij(W ) =



(wi,j + wj,i), i, j = , 
(

v,i =
∂v
∂xi

)

.

The tensors of moments m(ψ) = {mij(ψ)} and stresses σ (W ) = {σij(W )} are expressed by
the formulas (summation is performed over repeated indices) []

mij(ψ) = aijrlεkl(ψ), σij(W ) = h–aijklεkl(W ), i, j, k, l = , , ()

where the nonzero components of elasticity tensor A = {aijkl} are as follows:

aiiii = D, aiijj = Dæ, aijij = aijji = D( – æ)/, i �= j, i, j = , , ()

with constants D and æ: D is a cylindrical rigidity of the plate, and æ is the Poisson ra-
tio,  < æ < /. The transverse forces in the Timoshenko-type model are specified by the
expressions

qi(w,ψ) = 
(w,i +ψi), i = , , ()

where 
 = k′gh, k′ is the shear coefficient, g is the shear modulus in areas perpendicular
to the middle plane of the plate, and 
 is a constant []. Let B(G, ·, ·) be the bilinear form
defined by the equality

B(G,χ , χ̄ ) =
∫

G

{
mij(ψ)εij(ψ̄) + 
(w,i +ψi)(v̄,i +ψ̄i) + σij(W )εij(W̄ )

}
dG
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with some Lipschitzian subdomain G ⊂ �, χ = (W , w,ψ), χ̄ = (W̄ , w̄, ψ̄). The potential
energy functional of the plate occupying the region � has the form

�(χ ) =



B(�,χ ,χ ) –
∫

�

Fχ d�, χ = (W , w,ψ),

where F = (f, f, f,μ,μ) ∈ L(�) is the vector specifying the external loads [].
Introduce the Sobolev spaces

H,
γ (�) =

{
v ∈ H(�) | v =  a.e. on γ

}
, H(�) = H,

γ (�), ‖ · ‖ = ‖ · ‖H(�).

Due to presence of a rigid inclusion in the plate, restrictions of the functions describing
displacements (W , w) and angles of rotation ψ to the domain ωt satisfy a special kind of
relations. We introduce the space that allows us to characterize the properties of volume
rigid inclusion []:

R(ωt) =
{
ζ | ζ (x) = (bx + c, –bx + c, a + ax + ax, –a, –a); x ∈ ωt

}
, ()

where b, c, c, a, a, a ∈ R.
The displacements for the Timoshenko plates along the z-axis are independent of the

plate thickness, whereas the displacements W (x, z) = (w(x, z), w(x, z)) along the plane
(x, x) depend on z in the following way []:

wi(x, z) = wi(x) + zψ(x), i = , , |z| ≤ h.

Thus, the nonpenetration condition can be easily derived from the relation

(
w(x, z), w(x, z), w

) · (ν,ν, ) ≤ , x ∈ γ , |z| ≤ h.

Hence, in view of the arbitrariness of z ∈ [–h; h], we get

–Wν ≥ h|ψν| on γ . ()

We formulate the contact problem of the plate with a rigid inclusion

inf
χ∈Kt

�(χ ), ()

where

Kt =
{
χ = (W , w,ψ) ∈ H(�) | –Wν ≥ h|ψν| on γ ,χ |ωt ∈ R(ωt)

}

is the set of admissible functions. Note that the inclusion χ ∈ H(�) assumes that the fol-
lowing homogeneous boundary-value conditions hold:

w = , ψ = W = (, ) on γ. ()
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It can be shown that the set Kt is convex and closed in the Hilbert space H(�) []. Due
to the estimate

B(�,χ , χ̄ ) ≤ c‖χ‖‖χ̄‖,

where the constant c >  is independent of χ ∈ H(�) and χ̄ ∈ H(�), the symmetric bilin-
ear form of B(�,χ , χ̄ ) is continuous with respect to H(�). The coercivity of the functional
�(χ ) follows from the inequality

B(�,χ ,χ ) ≥ c‖χ‖, χ ∈ H(�), ()

where the constants c >  are independent of χ (see []).

Remark  It should be noted that, by property (g), for fixed t ∈ (, t], we have the in-
equalities

B(�\ω̄t ,χ ,χ ) ≥ ct‖χ‖
H

(�\ω̄t ) , χ ∈ H
(�\ω̄t),

with the constant ct >  independent of χ .

These properties of the energy functional �(χ ), bilinear form B(�, ·, ·), and set Kt allow
us to establish the existence of a unique solution ξt = (Ut , ut ,φt) ∈ Kt for problem () (see
[]). The symmetry and continuity of the bilinear form B(�, ·, ·) and the properties of the
set Kt provide (see []) the equivalence of problem () to the variational inequality

ξt ∈ Kt , B(�, ξt ,χ – ξt) ≥
∫

�

F(χ – ξt) d� ∀χ = (W , w,ψ) ∈ Kt . ()

In parallel with the contact problem for a plate with a volume rigid inclusion, we also
consider the contact problem for an elastic plate with a thin inclusion. Here we assume that
the thin rigid inclusion is described by the cylindrical surface x = (x, x) ∈ γ , –h ≤ z ≤ h.
Let us first introduce some notation:

R(γ ) =
{
ζ | ζ (x) = (bx + c, –bx + c, a + ax + ax, –a, –a); x ∈ γ

}
, ()

where b, c, c, a, a, a ∈ R; and

K =
{
χ = (W , w,ψ) ∈ H(�) | –Wν ≥ h|ψν| on γ ;χ |γ ∈ R(γ )

}
.

Consider a variational formulation of the problem. We want to find a function ξ =
(U, u,φ) ∈ K such that

�(ξ) = inf
χ∈K

�(χ ). ()

Bearing in mind the properties of the functional �(χ ) and due to the convexity and the
closeness of K, we can be established that problem () has a unique solution ξ that
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satisfies the variational inequality

ξ ∈ K, B(�, ξ,χ – ξ) ≥
∫

�

F(χ – ξ) d� ∀χ ∈ K. ()

A detailed proof of a similar result for Timoshenko plate containing a crack along a thin
rigid inclusion can be found in [].

3 An optimal control problem
Consider the cost functional

J(t) =
∥
∥ξt – ξ ∗∥∥

H(�), t ∈ [, t],

where ξ ∗ is a prescribed element, ξt is solution of problem () for t > , and ξ is a solution
of problem (). We seek a solution of the maximization problem

sup
t∈[,t]

J(t). ()

Theorem  There exists a solution of the optimal control problem ().

Proof Let {tn} be a minimizing sequence. By the boundedness of the segment [, t] we
can extract a convergent subsequence {tnk } ⊂ {tn} such that

tnk → t∗ as k → ∞, t∗ ∈ [, t].

Without loss of generality, we assume that tnk �= t∗ for sufficiently large k. Otherwise, there
would exist a sequence {tnl } such that tnl ≡ t∗, and therefore J(t∗) is a solution of (). Con-
sider the case of the subsequence {tnk } satisfying tnk �= t∗ for sufficiently large k. Now we
take into account Lemma  that will be proved further the solutions ξk of () correspond-
ing to the parameters tnk converge to the solution ξt∗ strongly in H(�) as k → ∞. This
allows us to obtain the convergence

J(tnk ) → J
(
t∗).

This means that

J
(
t∗) = sup

t∈[,t]
J(t).

The theorem is proved. �

Before proceeding further, we first prove the following lemma.

Lemma  Let t∗ ∈ [, t] be a fixed real number, and let {tn} ⊂ [t∗, t] be a sequence of real
numbers converging to t∗ as n → ∞. Then for an arbitrary function η ∈ Kt∗ , there exist a
subsequence {tk} = {tnk } ⊂ {tn} and a sequence of functions {ηk} such that ηk ∈ Ktk , k ∈ N,
and ηk → η weakly in H(�) as k → ∞.
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Proof If there exists a subsequence {tnk } such that tnk = t∗, then the assertion of the lemma
holds for the sequence ηk ≡ η, k ∈ N. Therefore, we further assume that tn > t∗ for suffi-
ciently large n. Denote by ζ ∗ the function describing the structure of η in ωt∗ for the case
t∗ > , that is, η = ζ ∗ = (bx + c, –bx + c, a∗

 + a∗
 x + a∗

x, –a∗
 , –a∗

) in ωt∗ . If t∗ =  and
the function η has the specified structure on γ –, then we adopt the same notation, that is,
ζ ∗ = η on γ –. We extend the definition of ζ ∗ to the whole domain � by the equality

ζ ∗(x) =
(
b∗x + c∗

 , –b∗x + c∗
, a∗

 + a∗
 x + a∗

x, –a∗
 , –a∗


)
, x ∈ �.

Fix an arbitrary value t ∈ (, t] and consider the following family of auxiliary problems:

find ηt ∈ K ′
t such that p(ηt) = inf

χ∈K ′
t
p(χ ), ()

where p(χ ) = B(�,χ – η,χ – η), and

K ′
t =

{
χ = (W , w,ψ) ∈ H(�) | χ = η on �\γ ,χ |ωt = ζ ∗}.

It is easy to see that the functional p(χ ) is coercive and weakly lower-semicontinuous on
the space H(�). It can be verified that the set K ′

t is convex and closed in H(�). These
properties guarantee the existence of a solution of problem (). Besides, the solution ηt

is unique [, ].
Since the functional p(χ ) is convex and differentiable on H(�), problem () can be

written in the equivalent form

ηt ∈ K ′
t , B(�,ηt – η,χ – ηt) ≥  ∀χ ∈ K ′

t . ()

By property (c) it is evident that the solution ηt of () for t = t belongs to the set K ′
t with

t′ ∈ (, t]. Substituting ηt as the test functions into (), we get

B(�,ηt – η,ηt ) + B(�,η,ηt) ≥ B(�,ηt ,ηt) ∀t ∈ (, t].

Using inequality (), we obtain from this relation the following uniform upper bound:

‖ηt‖ ≤ c ∀t ∈ (, t].

Therefore, we can extract from the sequence {ηtn} a subsequence {ηk}, which is defined
by the equalities ηk = ηtnk

, k ∈ N (henceforth, we define a sequence {tk} by the equality
tk = tnk ), and {ηk} weakly converges to some function η̃ in H(�).

We now show that η̃ = η. To this end, we must distinguish two cases for t∗, namely t∗ > 
and t∗ = . Let us first assume that t∗ > . Then, by construction (ηk – η) ∈ H

(�\ωt∗ ).
Consequently, by the weak closeness of H

(�\ωt∗ ) we have (̃η – η) ∈ H
(�\ωt∗ ). We

now consider the functions of the form χ±
k = ηk ± θ , where θ ∈ C∞

 (�\ωt∗ ) ∩ C∞
 (�).

Bearing in mind property (d), observe that χ±
k ∈ Ktk for sufficiently large k. We next sub-

stitute the elements of these sequences {χ+
k } and {χ–

k } as test functions into inequalities
() corresponding to tk . As a result, we obtain

ηk ∈ K ′
tk

, B(�,ηk – η, θ ) = . ()
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Fix the function θ . Passing to the limit in (), we deduce

B(�, η̃ – η, θ ) = B(�\ωt∗ , η̃ – η, θ ) =  ∀θ ∈ C∞
 (�\ωt∗ ) ∩ C∞

 (�).

Hence, by the denseness of C∞
 (�\ωt∗ ) in H

(�\ωt∗ ) (see []) and Remark  we infer
that η̃ – η =  in H

(�\ωt∗ ). Finally, by construction, the equality η̃ = η is fulfilled in ωt∗ .
Therefore, η̃ = η in H(�), and there is a sequence {ηk} such that ηk ∈ Ktk , k ∈ N, and ηk → η

weakly in H(�) as n → ∞.
Let us consider the second case. Suppose that t∗ = . By construction, we have (ηk –

η) ∈ H
(�) and, consequently, the relation (̃η – η) ∈ H

(�). We now consider functions
of the form χ±

k = ηk ± θ , where θ ∈ C∞
 (�). Observe that property (d) yields that for

sufficiently large k, we have the inclusion χ±
k ∈ Ktk . Substituting these functions into ()

corresponding to tk yields the equality

ηk ∈ K ′
tk

, B(�,ηk – η, θ ) = . ()

We fix the function θ in () and pass to the limit as k → ∞. As a result, we get

B(�, η̃ – η, θ ) =  ∀θ ∈ C∞
 (�). ()

The denseness of C∞
 (�) in H

(�) see [] allows us to obtain from () the equality η̃–η =
 in H(�). Thus, η̃ = η in H(�), and there exists a subsequence of functions {ηk} such that
ηk ∈ Ktk and ηk → η weakly in H(�). The lemma is proved. �

Now we can prove the following statement.

Lemma  Let t∗ ∈ [, t] be a fixed real number. Then ξt → ξt∗ strongly in H(�) as t → t∗,
where ξt is the solution of () corresponding to t ∈ (, t], whereas ξt∗ is the solution corre-
sponding to () for t∗ >  and to problem () for t∗ = .

Proof We will prove it by contradiction. Let us assume that there exist a number ε > 
and a sequence {tn} ⊂ (, t] such that tn → t∗, ‖ξn – ξt∗‖ ≥ ε, where ξn = ξtn , n ∈ N, are
the solutions of () corresponding to tn.

Since χ ≡  ∈ Kt for all t ∈ [, t], we can substitute χ = χ into () for all t ∈ (, t] and
into () for t = . This provides

ξt ∈ Kt , B(�, ξt , ξt) ≤
∫

�

Fξt d� ∀t ∈ [, t].

From here, using (), we can deduce that for all t ∈ [, t],

‖ξt‖ ≤ c

with some constant c >  independent of t. Consequently, replacing ξn with a subsequence
if necessary, we can assume that ξn converges to some ξ̃ weakly in H(�).

Now we show that ξ̃ ∈ Kt∗ . Indeed, we have ξn|ωtn = ζn ∈ R(ωtn ). By the Sobolev embed-
ding theorem [] we obtain that

ξn|ωt∗ → ξ̃ |ωt∗ strongly in L(ωt∗ ) as n → ∞, ()
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ξn| → ξ̃ |γ strongly in L(γ ) as n → ∞. ()

Choosing a subsequence, if necessary, we assume that ξn → ξ̃ a.e. in ωt∗ as n → ∞. This
allows us to conclude that each of the numerical sequences {bn}, {cn}, {cn}, {an}, {an},
{an} defining the structure of ζn in domains ωtn is bounded in absolute value. Thus, we
can extract subsequences (retain notation) such that

bn → b, an → a, cin → ci, ain → ai, i = , , as n → ∞.

Further, we must distinguish two different cases, t∗ =  and t∗ > . In the first case, for the
sequence {ξn} corresponding to the specified convergent number sequences {bn}, {cn},
{cn}, {an}, {an}, {an}, we have

ξn|γ → (bx + c, –bx + c, a + ax + ax, –a, –a) ()

strongly in L(γ ) as n → ∞. The last relation with () leads to the equality

ξ̃ = (bx + c, –bx + c, a + ax + ax, –a, –a) a.e. on γ .

This means that ξ̃ |γ ∈ R(γ ).
Consider the second case. If there exists a subsequence {tk} ⊂ {tn} such that tk ≥ t∗ for

all k ∈ N, then we can easily obtain the convergence

ξk|ωt∗ → (bx + c, –bx + c, a + ax + ax, –a, –a) ()

strongly in L(ωt∗ ) as k → ∞. Therefore, from () and () we obtain that ξ̃ |ωt∗ ∈ R(ωt∗ ).
Suppose that there exists a subsequence {tk} ⊂ {tn} satisfying tk < t∗ for all k ∈ N and

tk → t∗ as k → ∞. In this case, for an arbitrary fixed k′ ∈ N and the corresponding value
t′ = tk′ , by property (c) we have

ξk|ωt′ → (bx + c, –bx + c, a + ax + ax, –a, –a) ()

strongly in L(ωt′ ) as k → ∞. It is possible to define a function l = a + ax + ax in ωt∗ .
In view of the absolute continuity of the Lebesgue integral and properties (c) and (f ), for
any ε > , we can choose a number k′ ∈ N large enough such that

‖l‖L(ωt∗ \ωt′ ) <
√

ε, ‖ũ‖L(ωt∗ \ωt′ ) <
√

ε.

Further, by the triangle inequality from this it follows that

‖uk – l‖L(ωt∗ \ωt′ ) ≤ ‖uk‖L(ωt∗ \ωt′ ) + ‖l‖L(ωt∗ \ωt′ )

≤ ‖ũ‖L(ωt∗ \ωt′ ) + ‖uk – ũ‖L(ωt∗ \ωt′ ) + ‖l‖L(ωt∗ \ωt′ )

< 
√

ε + ‖uk – ũ‖L(ωt∗ ).
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Therefore, we have

‖uk – l‖
L(ωt∗ ) = ‖uk – l‖

L(ωt∗ \ωt′ ) + ‖uk – l‖
L(ωt′ )

<
(

√

ε + ‖uk – ũ‖L(ωt∗ )
) + ‖uk – l‖

L(ωt′ ). ()

We can see that for all sufficiently large numbers k, we have the estimates

‖uk – ũ‖L(ωt∗ ) <
√

ε, ‖uk – l‖L(ωt′ ) <
√

ε,

and the right-hand side of () is less than ε. Therefore, uk → l strongly in L(ωt∗ ).
Consequently, taking into account (), we get ũ|ωt∗ = l in ωt∗ .

It can be proved analogously that

Ũ|ωt∗ = b(x, –x) + (c, c) a.e. in ωt∗ ,

φ̃|ωt∗ = (–a, –a) a.e. in ωt∗ .

Thus, we conclude that ξ̃ |ωt∗ ∈ R(ωt∗ ). Therefore, in all possible cases, we have ξ̃ |ωt∗ ∈
R(ωt∗ ).

It remains to show that ξ̃ satisfies the inequality –Ũν ≥ h|φ̃ν| on γ . In view of (), we
can extract subsequences once again and obtain the convergence ξn|γ → ξ̃ |γ a.e. on γ .
Now, passing to the limit, as n → ∞, in the inequalities

–Unν ≥ h|φnν| on γ ,

we get that –Ũν ≥ h|φ̃ν| on γ and ξ̃ ∈ Kt∗ .
Observe that, as tn → t∗, there must exist either a subsequence {tnl } such that tnl ≤ t∗

for all l ∈ N or, if that is not the case, a subsequence {tnm}, tnm > t∗ for all m ∈ N.
For the first case, we have the subsequence {tnl } ⊂ (, t] such that tnl ≤ t∗ for all l ∈ N.

This implies that t∗ >  . For convenience, we denote this subsequence by {tn}. Since tn ≤
t∗, by property (b) the arbitrary test function χ ∈ Kt∗ also belongs to the set Ktn . This
property allows us to pass to the limit as n → ∞ in the following inequalities with the test
functions χ ∈ Kt∗ :

ξn ∈ Ktn , B(�, ξn,χ – ξn) ≥
∫

�

F(χ – ξn) d�, tn ∈ (
, t∗].

Taking into account the weak convergence of ξn to ξ̃ , the variational inequality in the limit
takes the form

B(�, ξ̃ ,χ – ξ̃ ) ≥
∫

�

F(χ – ξ̃ ) d� ∀χ ∈ Kt∗ .

This means that ξ̃ = ξt∗ . To complete the proof for the first case, we have to establish the
strong convergence ξn → ξt∗ . Substituting χ = ξt and χ =  into the variational inequali-
ties () for t ∈ (, t], we get

ξt ∈ Kt , B(�, ξt , ξt) =
∫

�

Fξt d� ∀t ∈ (, t]. ()
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In view of (), this means that the relation

ξt ∈ Kt , B(�, ξt ,χ ) ≥
∫

�

Fχ d� ∀χ ∈ Kt ()

holds for all t ∈ (, t]. Hence, by the weak convergence ξn → ξt∗ in H(�) as n → ∞ we
deduce

lim
n→∞ B(�, ξn, ξn) = lim

n→∞

∫

�

Fξn d� =
∫

�

Fξt∗ d� = B(�, ξt∗ , ξt∗ ).

Since we have the equivalence of norms (see Remark ), we can see that ξn → ξt∗ strongly
in H(�) as n → ∞. Thus, in the first case, we get a contradiction to the assumption ‖ξn –
ξt∗‖ ≥ ε for all n ∈ N.

Consider the second case, that is, we suppose that the elements of the subsequence {tnm}
satisfy tnm > t∗ for all m ∈ N. For convenience, we keep the same notation for the subse-
quence. Then we have tn → t∗ and tn > t∗. Taking into account the results at the beginning
of the proof, we have that ξn → ξ̃ weakly in H(�) as n → ∞. For instance, we will prove
that ξn → ξ̃ strongly in H(�) as n → ∞. In view of the weak convergence ξn → ξ̃ in H(�)
as n → ∞, from () we deduce

lim
n→∞ B(�, ξn, ξn) =

∫

�

F ξ̃ d�. ()

Next, substituting χ = ξt′ ∈ Kt′ ⊂ Kt for arbitrary fixed numbers t, t′ ∈ (, t] such that
t′ ≥ t into () as the test function, we arrive at the inequality

B(�, ξt , ξt′ ) ≥
∫

�

Fξt′ d�.

Therefore, we conclude that for all tn and tm satisfying tn ≤ tm,

B(�, ξn, ξm) ≥
∫

�

Fξm d�. ()

Fix an arbitrary value m in () and pass to the limit in the last relation as n → ∞. As a
result, we have

B(�, ξ̃ , ξm) ≥
∫

�

Fξm d�. ()

Passing to the limit in () as m → ∞, we find

B(�, ξ̃ , ξ̃ ) ≥
∫

�

F ξ̃ d�.

This inequality, the formula (), and the weak lower semicontinuity of the bilinear form
B(�, ·, ·) yield the chain of relations

B(�, ξ̃ , ξ̃ ) ≥
∫

�

F ξ̃ d� = lim
n→∞ B(�, ξn, ξn) ≥ B(�, ξ̃ , ξ̃ ).
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This means that

B(�, ξ̃ , ξ̃ ) = lim
n→∞ B(�, ξn, ξn).

Again, by the equivalence of norms (see Remark ) we deduce that ξn → ξ̃ strongly in
H(�) as n → ∞.

By Lemma , for any η ∈ Kt∗ there exist a subsequence {tk} = {tnk } ⊂ {tn} and a sequence
of functions {ηk} such that ηk ∈ Ktk and ηk → η weakly in H(�) as k → ∞.

The properties established for the convergent sequences {ηk} and {ξn} allow us to pass to
the limit as k → ∞ in following inequalities derived from () for tk and with test functions
ηk :

B(�, ξk ,ηk – ξk) ≥
∫

�

F(ηk – ξk) d�.

As a result, we have

B(�, ξ̃ ,η – ξ̃ ) ≥
∫

�

F(η – ξ̃ ) d� ∀η ∈ Kt∗ .

The unique solvability of this variational inequality implies that ξ̃ = ξt∗ . Therefore, in either
case, there exists a subsequence {tnk } ⊂ {tn} such that tk → t∗, ξk → ξt∗ strongly in H(�),
which is a contradiction. The lemma is proved. �

4 Conclusion
The existence of a solution to the optimal control problem () is proved. For that problem,
the cost functional J(t) characterizes the deviation of the displacement vector from a given
function ξ∗, whereas the size parameter t of the rigid inclusion is chosen as the control
function.

Lemmas  and  establish a qualitative connection between the contact problems for
plates with rigid inclusions of varying size. In particular, it is shown that as the size pa-
rameter of volume rigid inclusion tends to zero, the solutions of the contact problems
converge to the solution of the contact problem for a plate containing a thin rigid inclu-
sion.

In contrast to the classical Kirchhoff-Love theory of plates, the Timoshenko-type plate
theories take into account the transversal shear deformation and rotation inertia. There-
fore, this model is more accurate, particularly, for moderately thin plates and when trans-
verse shear plays a significant role; see [, ]. The reference [] is devoted to the con-
struction of the Timoshenko-Reissner theories by the asymptotic method. In this work,
for the dynamic case, a method is suggested for the extension of the range of applicability
of the Timoshenko-Reissner theory.
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