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1 Introduction
The aim of this paper is to investigate the weighted inequalities of commutators generated
by BMO-functions and the fractional integral operator on Morrey spaces. The main re-
sults particularly is related to [] and []. The authors introduced the condition of weights
in []. Under a certain condition of the weights, we investigate the weighted estimates of
commutators generated by BMO-functions and the fractional integral operator on Morrey
spaces. The results recover the inequality in [].

For  < p < ∞, we define p′ := p
p– . In this paper, a symbol C is a positive constant. When-

ever we evaluate the operator, the constant C may be change from one constant to another.
Let |E| denote the Lebesgue measure of E. Let D(Rn) be the collection of all dyadic cubes
on R

n. All cubes are assumed to have their sides parallel to the coordinate axes. For a cube
Q ⊂ R

n, we use l(Q) to denote the side-length l(Q) and cQ to denote the cube with the
same center as Q but with side-length cl(Q). The integral average of a measurable func-
tion f over Q is written

mQ(f ) =
 

Q
f (x) dx =


|Q|

ˆ
Q

f (x) dx.

By a ‘weight’ we will mean a non-negative function w that is positive measure a.e. on R
n.

Given a weight w and a measurable set E, let

w(E) :=
ˆ

E
w(x) dx.
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First we define the Morrey spaces.

Definition  Let  < p ≤ p < ∞. We define the Morrey space Mp
p (Rn) by

Mp
p

(
R

n) :=
{

f ∈ Lp
loc

(
R

n);‖f ‖Mp
p

< ∞}
,

where for all measurable functions f , we define

‖f ‖Mp
p

:= sup
Q∈D(Rn)

|Q| 
p

( 
Q

∣∣f (x)
∣∣p dx

) 
p

.

Remark 
(a) The ordinary Morrey norm is equivalent to the Morrey norm in this paper (see []):

sup
Q⊂R

n ,
Q: cubes

|Q| 
p

( 
Q

∣∣f (x)
∣∣p dx

) 
p ∼= ‖f ‖Mp

p (Rn).

(b) Hölder’s inequality gives us the following inequality: If  < p ≤ q ≤ p < ∞, then we
have

‖f ‖Mp
p

≤ ‖f ‖Mp
q

.

We define the BMO space (see [, ]) as follows.

Definition  For an L
loc(Rn)-function b, define

‖b‖BMO := sup
Q⊂Rn

 
Q

∣
∣b(x) – mQ(b)

∣
∣dx,

where the supremum is taken over all cubes Q ⊂R
n. Define

BMO
(
R

n) :=
{

b ∈ L
loc

(
R

n) : ‖b‖BMO < ∞}
.

We define the fractional maximal and integral operators.

Definition 
() Let  ≤ α < n,

Mαf (x) := sup
Q	x

l(Q)α
 

Q

∣∣f (y)
∣∣dy,

where the supremum is taken over all cubes Q ⊂R
n such that x ∈ Q.

() Let  < α < n,

Iαf (x) :=
ˆ
Rn

f (y)
|x – y|n–α

dy.
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The point-wise inequality holds:

Mαf (x) ≤ CIαf (x),

for all positive measurable function f .
It is well known that the following inequality holds (see []). The celebrated result is

called the Adams inequality.

Theorem A Let  < α < n,  < p ≤ p < ∞ and  < q ≤ q < ∞. Assume that


q

=


p
–

α

n
and

q
q

=
p
p

.

Then we have

‖Iαf ‖Mq
q

≤ C‖f ‖Mp
p

,

for all f ∈Mp
p (Rn).

Let m ∈ Z+. The m-fold commutator [b, Iα](m) is given by the following definition.

Definition  Let  < α < n and b ∈ L
loc(Rn). Then we define

[b, Iα](m)f (x) :=
ˆ
Rn

(b(x) – b(y))m

|x – y|n–α
f (y) dy,

as long as the integral in the right-hand side makes sense.

Remark  The following inequality holds:

∣∣[b, Iα](m)f (x)
∣∣ ≤

ˆ
Rn

|b(x) – b(y)|m
|x – y|n–α

∣∣f (y)
∣∣dy. ()

As shall be verified in the proof of Theorem , we virtually consider the operator

x 
→
ˆ
Rn

|b(x) – b(y)|m
|x – y|n–α

f (y) dy

and hence we may assume that the integral defining [b, Iα](m)f (x) converges for a.e. x ∈R
n.

Di-Fazio and Ragusa [] obtained the next theorem.

Theorem B Let  < α < n,  < p ≤ p < ∞ and  < q ≤ q < ∞. Assume that


q

=


p
–

α

n
and

q
q

=
p
p

.

If b ∈ BMO(Rn), then we have

∥∥[b, Iα]()f
∥∥
Mq

q
≤ C‖f ‖Mp

p
.
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Conversely if n – α is an even integer and

∥
∥[b, Iα]()f

∥
∥
Mq

q
≤ C‖f ‖Mp

p
,

then b ∈ BMO(Rn).

Komori and Mizuhara [] removed the restriction ‘n – α is an even integer’.

Theorem C Let  < α < n,  < p ≤ p < ∞ and  < q ≤ q < ∞. Assume that


q

=


p
–

α

n
and

q
q

=
p
p

.

If b ∈ BMO(Rn), then we have

∥∥[b, Iα]()f
∥∥
Mq

q
≤ C‖f ‖Mp

p
.

Conversely if

∥
∥[b, Iα]()f

∥
∥
Mq

q
≤ C‖f ‖Mp

p
,

then b ∈ BMO(Rn).

Sawano et al. [] proved the following inequality.

Theorem D Let  < α < n,  < p ≤ p < ∞,  < q ≤ q < ∞ and  < r ≤ r < ∞. Assume
that

q < r,


p
>

α

n
≥ 

r
,


q

=


p
+


r

–
α

n
and

q
q

=
p
p

.

Suppose that v ∈Mr
r (Rn). Then, for b ∈ BMO(Rn), we have

∥∥(
[b, Iα](m)f

)
v
∥∥
Mq

q
≤ C‖b‖m

BMO‖v‖Mr
r

‖f ‖Mp
p

.

In the case of m = , we refer to [, , ]. In this paper, we generalize Theorem D to a
weighted setting. On the other hand, in [], the following theorem is proved.

Theorem E Let  < α < n,  < p ≤ p < ∞ and  < q ≤ q < r < ∞. Assume that


p

>
α

n
≥ 

r
,


q

=


p
+


r

–
α

n
,

q
q

=
p
p

and  < a < r
q

. Suppose that the weights v and w satisfy the following condition:

[v, w]aq,r,aq,p/a := sup
Q⊂Q′

( |Q|
|Q′|

) 
aq ∣

∣Q′∣∣ 
r

( 
Q

v(x)aq dx
) 

aq
( 

Q′
w(x)–(p/a)′ dx

) 
(p/a)′

< ∞. ()
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Then we have

∥
∥(Iαf )v

∥
∥
Mq

q
≤ C[v, w]aq,r,aq,p/a‖fw‖Mp

p
.

In this paper, we investigate the boundedness of higher order commutators generated
by BMO-functions and the fractional integral operator on Morrey spaces corresponding
to Theorem E.

2 Main results and their corollaries
In this paper, we obtain two main theorems.

2.1 One of the main results
Theorem  Let  < α < n,  < p ≤ p < ∞ and  < q ≤ q < r < ∞. Assume that


p

>
α

n
≥ 

r
,


q

=


p
+


r

–
α

n
,

q
q

=
p
p

and  < a < r
q

. Suppose that the weights v and w satisfy the condition (). Then, for b ∈
BMO(Rn), we have

∥∥(
[b, Iα](m)f

)
v
∥∥
Mq

q
≤ C‖b‖m

BMO[v, w]aq,r,aq,p/a‖fw‖Mp
p

.

Remark  The condition of Theorem  corresponds with the condition of Theorem E.
This implies that Theorem  gives us the same type of corollaries as in Theorem E.

Taking w(x) = M aq
r

n(vaq)(x)


aq , we have the following corollary.

Corollary  Let  < α < n,  < p ≤ p < ∞ and  < q ≤ q < r < ∞. Assume that


p

>
α

n
≥ 

r
,


q

=


p
+


r

–
α

n
,

q
q

=
p
p

and  < a < r
q

. Let v be a weight. Suppose that b ∈ BMO(Rn), then we have

∥∥(
[b, Iα](m)f

)
v
∥∥
Mq

q
≤ C‖b‖m

BMO

∥∥fM aq
r

n
(
vaq) 

aq
∥∥
Mp

p
.

Taking w(x) ≡ , we obtain the following corollary.

Corollary  Let  < α < n,  < p ≤ p < ∞ and  < q ≤ q < r < ∞. Assume that


p

>
α

n
≥ 

r
,


q

=


p
+


r

–
α

n
,

q
q

=
p
p

and  < a < r
q

. Suppose that v ∈Mr
aq(Rn). Then, for b ∈ BMO(Rn), we have

∥∥(
[b, Iα](m)f

)
v
∥∥
Mq

q
≤ C‖b‖m

BMO‖v‖Mr
aq

‖f ‖Mp
p

.

On the other hand, letting r → ∞, we obtain the weighted Adams type inequality for
the m-fold commutator [b, Iα](m).
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Corollary  Let  < α < n,  < p ≤ p < ∞ and  < q ≤ q < ∞. Assume that


q

=


p
–

α

n
,

q
q

=
p
p

and  < a < r
q

. Suppose that the weights v and w satisfy the following condition:

[v, w]aq,aq,p/a := sup
Q⊂Q′

( |Q|
|Q′|

) 
aq

( 
Q

v(x)aq dx
) 

aq
( 

Q′
w(x)–(p/a)′ dx

) 
(p/a)′

< ∞. ()

Then, for b ∈ BMO(Rn), we have

∥
∥(

[b, Iα](m)f
)
v
∥
∥
Mq

q
≤ C‖b‖m

BMO[v, w]aq,aq,p/a‖fw‖Mp
p

.

Corollary  gives us the following inequality in letting p = p, q = q and v = w.

Corollary  Let  < α < n,  < p < n
α

and  < q < ∞. Assume that


q

=

p

–
α

n
.

Suppose that w ∈ Ap,q(Rn), i.e.

[w]Ap,q(Rn) := sup
Q⊂Rn

( 
Q

w(x)q dx
) 

q
( 

Q
w(x)–p′

dx
) 

p′
< ∞. ()

Then, for b ∈ BMO(Rn), we have

∥∥(
[b, Iα](m)f

)∥∥
Lq(wq) ≤ C‖b‖m

BMO[w]Ap,q(Rn)‖f ‖Lp(wp) (m = , , , . . .).

Corollary  and Theorem C give us the following corollary.

Corollary  Let  < α < n,  < p ≤ p < ∞ and  < q ≤ q < ∞. Assume that


q

=


p
–

α

n
,

q
q

=
p
p

and a > . Suppose that the weights v and w satisfy the condition (). If

∥
∥[b, Iα]()f

∥
∥
Mq

q
≤ C‖f ‖Mp

p

holds, then we have for b ∈ BMO(Rn),

∥
∥(

[b, Iα](m)f
)
v
∥
∥
Mq

q
≤ C‖b‖m

BMO[v, w]aq,aq,p/a‖fw‖Mp
p

.

According to Theorem . in [], we can pass our result to the operator given by

[�b, Iα]f (x) :=
ˆ
Rn

f (y)
|x – y|n–α

m∏

j=

(
bj(x) – bj(y)

)
dy,
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where �b = (b, . . . , bm). By a similar argument to [], as a consequence of Theorem  in this
paper, we can obtain the following estimate.

Corollary  Let  < α < n,  < p ≤ p < ∞ and  < q ≤ q < r < ∞. Assume that


p

>
α

n
≥ 

r
,


q

=


p
+


r

–
α

n
,

q
q

=
p
p

and  < a < r
q

. Suppose that the weights v and w satisfy the condition (). Then, for �b =
(b, . . . , bm) ∈ BMO(Rn) × · · · × BMO(Rn), we have

∥
∥(

[�b, Iα]f
)
v
∥
∥
Mq

q
≤ C

( m∏

j=

‖bj‖BMO

)

[v, w]aq,r,aq,p/a‖fw‖Mp
p

.

2.2 Fractional integral operators having rough kernel
We define the following operators (see [–] and []).

Definition  Let  < α < n, a measurable function � on R
n\{} and a measurable func-

tion b. Then we define

I�,αf (x) :=
ˆ
Rn

�(x – y)f (y)
|x – y|n–α

dy

and

[b, I�,α](m)f (x) :=
ˆ
Rn

�(x – y)(b(x) – b(y))mf (y)
|x – y|n–α

dy.

Remark  The following inequality holds:

∣
∣[b, I�,α](m)f (x)

∣
∣ ≤

ˆ
Rn

|�(x – y)||b(x) – b(y)|m
|x – y|n–α

∣
∣f (y)

∣
∣dy. ()

As shall be verified in the proof of Theorem , we consider the operator

x 
→
ˆ
Rn

|�(x – y)||b(x) – b(y)|m
|x – y|n–α

f (y) dy

and hence we may assume that the integral defining [b, I�,α](m)f (x) converges for a.e.
x ∈R

n.

By a similar argument to the proof of Theorem , we have the following estimate.

Theorem  Let  < s ≤ ∞,  < α < n,  ≤ s′ < p ≤ p < ∞,  < q ≤ q < ∞ and  < r ≤
r < ∞. Assume that


p

>
α

n
≥ 

r
,


q

=


p
+


r

–
α

n
,

q
q

=
p
p

and  < a < r
q

. Suppose that the weights v and w satisfy [vs′ , ws′ ]

s′
aq

s′ , r
s′ , aq

s′ , p
s′a

< ∞. Moreover,

suppose that � ∈ Ls(Sn–) is homogeneous of order : For any λ > , �(λx) = �(x). Then, for
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b ∈ BMO(Rn), we have

∥∥(
[b, I�,α](m)f

)
v
∥∥
Mq

q
≤ C‖b‖m

BMO‖�‖Ls(Sn–)
[
vs′ , ws′]


s′
aq

s′ , r
s′ , aq

s′ , p
s′a

‖fw‖Mp
p

.

Since [b, I�,α]() = I�,α , we refer to []. Theorem  recovers the following result (see
[, ]).

Corollary  Let  < s ≤ ∞,  < α < n,  ≤ s′ < p < n
α

and  < q < ∞. Assume that


q

=

p

–
α

n

and ws′ ∈ A p
s′ , q

s′
(Rn). Suppose that � ∈ Ls(Sn–) is homogeneous of order : For any λ > ,

�(λx) = �(x). Then we have, for b ∈ BMO(Rn),

∥∥(
[b, I�,α](m)f

)∥∥
Lq(wq) ≤ C

[
ws′]


s′
A p

s′ , q
s′

(Rn)‖b‖m
BMO‖�‖Ls(Sn–)‖f ‖Lp(wp).

3 Some lemmas
In this section, we prepare some lemmas for proving main results. We recall the following
inequalities (see [, ] and []).

Lemma  (The John-Nirenberg inequality) Let  ≤ p < ∞ and let Q be a cube. Then there
exists a constant C >  such that

( 
Q

∣
∣b(x) – mQ(b)

∣
∣p dx

) 
p

≤ C‖b‖BMO,

for all b ∈ BMO(Rn).

We invoke the following decomposition which is derived in [–]. We omit the details;
see [, ] for the proof.

Let D(Q) be the collection of all dyadic subcubes of Q, that is, all those cubes obtained
by dividing Q into n congruent cubes of half its length, dividing each of those into n

congruent cubes. By convention Q itself to D(Q), and so on.

Lemma  Let γ := mQ (f ) and A >  · n. For k = , , . . . we take

Dk :=
⋃{

Q ∈D(Q) : mQ(f ) > γ Ak}.

For θ > , let

γ ′ :=
( 

Q

∣
∣f (y)

∣
∣θ dy

) 
θ

and A′ > ( · n)

θ . For k = , , . . . we take

D′
k :=

⋃{
Q ∈D(Q) :

( 
Q

∣∣f (y)
∣∣θ dy

) 
θ

> γ ′A′k
}

.
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Considering the maximality cube, we have

Dk =
⋃

j

Qk,j and D′
k =

⋃

j

Q′
k,j.

Then we have

γ Ak < mQk,j (f ) ≤ nγ Ak and γ ′A′k <
( 

Q′
k,j

∣
∣f (y)

∣
∣θ dy

) 
θ ≤ 

n
θ γ ′Ak .

Let Ek,j := Qk,j\Dk+ and E′
k,j := Q′

k,j\D′
k+. Moreover we obtain

|Qk,j| ≤ |Ek,j| and
∣
∣Q′

k,j
∣
∣ ≤ 

∣
∣E′

k,j
∣
∣.

Lemma  Under the condition of Theorem , we can choose auxiliary indices θ, θ, θ, θ

and θ so that the following conditions hold:
. θ, θ, θ, θ and θ ∈ (, p).
. L >  and s ∈ (q, r) such that sθ < Lq and s′θ < q′.
. For the index θ ∈ (, p), we can choose a∗ >  such that a∗θ < p.

Assume in addition that, for these indices,

a ≥ max

{
θ, L,

p
(θ( p

θ
)′)′

,
p

(θ( p
θa∗ )′)′

, θ

}
> .

Then we obtain

max

{
θ

(
p
θ

)′
, θ

(
p

θa∗

)′}
≤

(
p
a

)′
.

Proof We examine the second item; sθ < Lq and s′θ < q′. For  < ε < , we take δ = ε

q < ε.
If s = q + ε and θ =  + δ, then we have the following estimate:

sθ = (q + ε)( + δ) = q + qδ + ε + εδ

≤ q + q max{ε, δ} + max{ε, δ} + max{ε, δ}

< q + q max{ε, δ} +  max{ε, δ}
< q + q max{ε, δ} + q max{ε, δ}
= q

(
 +  max{ε, δ}) = q( + ε) = Lq.

On the other hand, we check s′θ < q′:

q′ – s′θ =
ε

q + ε
q ( – ε)

(q – )(q + ε – )
> .

Next we check p
(θ( p

θ
)′)′ > . Since θ > , we obtain

θ

(
p
θ

)′
>

(
p
θ

)′
> p′.
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Therefore we have

(
θ

(
p
θ

)′)′
<

(
p′)′ = p.

This gives us

p
(θ( p

θ
)′)′

> .

By a similar argument, we obtain

p
(θ( p

θa∗ )′)′
> . �

Remark  The index θ in Lemma  corresponds with the index θ in Lemma .

4 Proof of Theorem 1
Proof of Theorem  Fix a dyadic cube Q ∈D(Rn). LetDν be the collection of dyadic cubes.
The volume of the elements of Dν is nν . For x ∈ Q, we have

∣
∣[b, Iα](m)f (x)

∣
∣ ≤ C

∑

ν∈Z

∑

Q∈Dν ,
|Q|=νn

–ν(n–α)χQ(x)
ˆ

Q

∣
∣b(x) – b(y)

∣
∣m∣

∣f (y)
∣
∣dy

= C
∑

ν∈Z

( ∑

Q∈Dν ,
Q⊆Q

+
∑

Q∈Dν ,
Q�Q

)
–ν(n–α)χQ(x)

ˆ
Q

∣
∣b(x) – b(y)

∣
∣m∣

∣f (y)
∣
∣dy

=: C(A + B).

We evaluate A and B in Sections . and ., respectively.

4.1 The estimate of A
By |b(x) – b(y)|m ≤ m–(|b(x) – mQ(b)|m + |mQ(b) – b(y)|m), we obtain

A =
∑

Q∈D(Q)

l(Q)α–nχQ(x)
ˆ

Q

∣
∣b(x) – b(y)

∣
∣m∣

∣f (y)
∣
∣dy

≤ C
∑

Q∈D(Q)

l(Q)αχQ(x)
∣
∣b(x) – mQ(b)

∣
∣m
 

Q

∣
∣f (y)

∣
∣dy

+ C
∑

Q∈D(Q)

l(Q)αχQ(x)
 

Q

∣
∣mQ(b) – b(y)

∣
∣m∣

∣f (y)
∣
∣dy.

We take θ >  as in Lemma . By Hölder’s inequality for θ > , we have

A ≤ C
∑

Q∈D(Q)

l(Q)αχQ(x)
∣∣b(x) – mQ(b)

∣∣m
 

Q

∣∣f (y)
∣∣dy

+ C
∑

Q∈D(Q)

l(Q)αχQ(x)
( 

Q

∣
∣mQ(b) – b(y)

∣
∣mθ ′

 dy
) 

θ ′

( 

Q

∣
∣f (y)

∣
∣θ dy

) 
θ

.
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By Lemma , we have

A ≤ C
∑

Q∈D(Q)

l(Q)αχQ(x)
∣
∣b(x) – mQ(b)

∣
∣m
 

Q

∣
∣f (y)

∣
∣dy

+ C‖b‖m
BMO

∑

Q∈D(Q)

l(Q)αχQ(x)
( 

Q

∣∣f (y)
∣∣θ dy

) 
θ

= C
(
I + ‖b‖m

BMOII
)
.

We evaluate I . Let

D(Q) :=
{

Q ∈D(Q);
( 

Q

∣∣f (y)
∣∣dy

)
≤ γ A

}

and

Dk,j(Q) :=
{

Q ∈D(Q); Q ⊂ Qk,j,γ Ak <
( 

Q

∣
∣f (y)

∣
∣dy

)
≤ γ Ak+

}
,

where Qk,j is in Lemma . Then we have

D(Q) = D(Q) ∪
(⋃

k,j

Dk,j(Q)
)

.

By the duality argument, we have

(ˆ
Q

Iq · v(x)q dx
) 

q
= sup

‖g‖
Lq′ (Q)

=

(ˆ
Q

I · v(x)
∣∣g(x)

∣∣dx
)

.

Let g ≥ , supp(g) ⊂ Q, ‖g‖Lq′ (Q) = . Then we have

ˆ
Q

I · v(x)
∣∣g(x)

∣∣dx ≤ C
∑

Q∈D(Q)

l(Q)α
( 

Q

∣∣f (y)
∣∣dy

)

×
ˆ

Q

∣∣b(x) – mQ(b)
∣∣mv(x)g(x) dx

= C
( ∑

Q∈D(Q)

+
∑

k,j

∑

Q∈Dk,j(Q)

)
l(Q)α

( 
Q

∣∣f (y)
∣∣dy

)

×
ˆ

Q

∣∣b(x) – mQ(b)
∣∣mv(x)g(x) dx

= I +
∑

k,j

Ik,j.

We evaluate Ik,j. If Q ∈Dk,j(Q), then we have

 
Q

∣∣f (y)
∣∣dy ≤ γ Ak+.
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Hence we obtain

Ik,j ≤
∑

Q∈Dk,j(Q)

l(Q)αγ Ak+
ˆ

Q

∣∣b(x) – mQ(b)
∣∣mv(x)g(x) dx

≤ A
∑

Q∈Dk,j(Q)

l(Qk,j)αγ Ak
ˆ

Q

∣∣b(x) – mQ(b)
∣∣mv(x)g(x) dx.

Since

γ Ak <
 

Qk,j

∣∣f (y)
∣∣dy,

we obtain

Ik,j ≤ A
∑

Q∈Dk,j(Q)

l(Qk,j)α
 

Qk,j

∣∣f (y)
∣∣dy

ˆ
Q

∣∣b(x) – mQ(b)
∣∣mv(x)g(x) dx.

By Hölder’s inequality for θ >  as in Lemma , we obtain

Ik,j ≤ Al(Qk,j)αmQk,j

(|f |)
∑

Q∈Dk,j(Q)

(ˆ
Q

∣
∣b(x) – mQ(b)

∣
∣mv(x)g(x) dx

)

≤ Al(Qk,j)αmQk,j

(|f |)
∑

Q∈Dk,j(Q)

|Q|
( 

Q

∣∣b(x) – mQ(b)
∣∣mθ ′

 dx
) 

θ ′


×
( 

Q
v(x)θ g(x)θ dx

) 
θ

.

By Lemma , we obtain

Ik,j ≤ A‖b‖m
BMOl(Qk,j)αmQk,j

(|f |)
∑

Q∈Dk,j(Q)

ˆ
Q

( 
Q

(
v(y)g(y)

)θ dy
) 

θ
dx

≤ A‖b‖m
BMOl(Qk,j)αmQk,j

(|f |)
∑

Q∈Dk,j(Q)

ˆ
Q

M
[
(vk,jg)θ

]
(x)


θ dx,

where vk,j = vχQk,j and the symbol M is the ordinary Hardy-Littlewood maximal operator.
By Lemma , we have

Ik,j ≤ A‖b‖m
BMO|Qk,j|l(Qk,j)αmQk,j

(|f |)
( 

Qk,j

M
[
(vk,jg)θ

]
(x)


θ dx

)

≤ A‖b‖m
BMO|Ek,j|l(Qk,j)αmQk,j

(|f |)
( 

Qk,j

M
[
(vk,jg)θ

]
(x)


θ dx

)

= A‖b‖m
BMO

ˆ
Ek,j

l(Qk,j)αmQk,j

(|f |)
( 

Qk,j

M
[
(vk,jg)θ

]
(x)


θ dx

)
dy.

We take s ∈ (q, r) and L >  as in Lemma . By Hölder’s inequality for s > , we have

M
[
(vk,jg)θ

]
(x)


θ ≤ M

[
vsθ

k,j
]
(x)


sθ M

[
gs′θ

]
(x)


s′θ .
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By Hölder’s inequality for Lq > , we obtain the following inequality:
( 

Qk,j

M
[
(vk,jg)θ

]
(x)


θ dx

)

≤
( 

Qk,j

M
[
vsθ

k,j
]
(x)

Lq
sθ dx

) 
Lq

( 
Qk,j

M
[
gs′θ

]
(x)

(Lq)′
s′θ dx

) 
(Lq)′

.

Since sθ < Lq, the boundedness of M : L
Lq
sθ (Rn) → L

Lq
sθ (Rn) gives us the following inequal-

ity:
( 

Qk,j

M
[
(vk,jg)θ

]
(x)


θ dx

)

≤ C
(


|Qk,j|

ˆ
Rn

vk,j(x)Lq dx
) 

Lq
( 

Qk,j

M
[
gs′θ

]
(x)

(Lq)′
s′θ dx

) 
(Lq)′

.

Since a ≥ L > , by Hölder’s inequality for a
L ≥ ,

( 
Qk,j

M
[
(vk,jg)θ

]
(x)


θ dx

)

≤ C
( 

Qk,j

v(x)aq dx
) 

aq
( 

Qk,j

M
[
gs′θ

]
(x)

(Lq)′
s′θ dx

) 
(Lq)′

.

By Lemma , this implies that

Ik,j ≤ A‖b‖m
BMO

ˆ
Ek,j

Mα,aq(f , v)(x) · M
[
M

[
gs′θ

] (Lq)′
s′θ

]
(x)


(Lq)′ dx,

where

Mα,aq(f , v)(x) := sup
Q	x

l(Q)αmQ(f )
( 

Q
v(x)aq dx

) 
aq

.

A similar argument gives us the following estimate:

I ≤ A‖b‖m
BMO

ˆ
E

Mα,aq(f , v)(x) · M
[
M

[
gs′θ

] (Lq)′
s′θ

]
(x)


(Lq)′ dx.

By summing up I and Ik,j, we obtain

I +
∑

k,j

Ik,j ≤ A‖b‖m
BMO

ˆ
Q

Mα,aq(f , v)(x) · M
[
M

[
gs′θ

] (Lq)′
s′θ

]
(x)


(Lq)′ dx.

By Hölder’s inequality for q > , we have

ˆ
Q

Mα,aq(f , v)(x) · M
[
M

[
gs′θ

] (Lq)′
s′θ

]
(x)


(Lq)′ dx

≤
(ˆ

Q

Mα,aq(f , v)(x)q dx
) 

q
(ˆ

Q

M
[
M

[
gs′θ

] (Lq)′
s′θ

]
(x)

q′
(Lq)′ dx

) 
q′

.
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Since (Lq)′ < q′, the boundedness of M : L
q′

(Lq)′ (Rn) → L
q′

(Lq)′ (Rn) gives us the following in-
equality:

(ˆ
Q

M
[
M

[
gs′θ

] (Lq)′
s′θ

]
(x)

q′
(Lq)′ dx

) 
q′

≤ C
(ˆ

Rn
M

[
gs′θ

]
(x)

(Lq)′
s′θ

· q′
(Lq)′ dx

) 
q′

= C
(ˆ

Rn
M

[
gs′θ

]
(x)

q′
s′θ dx

) 
q′

.

Since s′θ < q′, the boundedness of M : L
q′

s′θ (Rn) → L
q′

s′θ (Rn) gives us the following in-
equality:

(ˆ
Rn

M
[
gs′θ

]
(x)

q′
s′θ dx

) 
q′

≤ C
(ˆ

Q

∣∣g(x)
∣∣s′θ· q′

s′θ dx
) 

q′

= C
(ˆ

Q

∣
∣g(x)

∣
∣q′

dx
) 

q′
= C.

By Hölder’s inequality for p
a > , we obtain

Mα,aq(f , v)(x) ≤ sup
Q	x

l(Q)αmQ
(|fw| p

a
) a

p

( 
Q

v(y)aq dy
) 

aq
( 

Q
w(y)–(p/a)′ dy

) 
(p/a)′

.

By the condition (), we obtain

Mα,aq(f , v)(z) ≤ C[v, w]aq,r,aq,p/a sup
Q	z

l(Q)α– n
r mQ

(|fw| p
a
) a

p

≤ C[v, w]aq,r,aq,p/aM(α– n
r

) p
a

(
(fw)

p
a
)
(z)

a
p .

This implies that

|Q|


q

( 
Q

Mα,aq(f , v)(z)q dz
) 

q
≤ C[v, w]aq,r,aq,p/a

∥∥M(α– n
r

) p
a

(
(fw)

p
a
)∥∥

a
p

M
aq

p
aq
p

.

Since


q

· p
a

=


p
· p

a
–

(α – n
r

) · p
a

n
and

ap
p

aq
p

=
a
aq
p

,

by Theorem A, we have

|Q|


q

( 
Q

Mα,aq(f , v)(z)q dz
) 

q

≤ C[v, w]aq,r,aq,p/a
∥∥(fw)

p
a
∥∥

a
p

M
ap

p
a

= C[v, w]aq,r,aq,p/a

(
sup

Q
|Q| p

ap

( 
Q

∣
∣f (x)w(x)

∣
∣

p
a ·a dx

) 
a
) a

p
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= C[v, w]aq,r,aq,p/a sup
Q

|Q| 
p

( 
Q

∣∣f (x)
∣∣pw(x)p dx

) 
p

= C[v, w]aq,r,aq,p/a‖fw‖Mp
p

.

We evaluate II . Let

D′
(Q) :=

{
Q ∈D(Q);

( 
Q

∣∣f (y)
∣∣θ dy

) 
θ ≤ γ ′A′

}

and

D′
k,j(Q) :=

{
Q ∈D(Q); Q ⊂ Q′

k,j,γ
′A′k <

( 
Q

∣∣f (y)
∣∣θ dy

) 
θ ≤ γ ′A′k+

}
,

where Q′
k,j is found in Lemma . Then we have

D(Q) = D′
(Q) ∪

(⋃

k,j

D′
k,j(Q)

)
.

By the duality argument, we have

(ˆ
Q

IIq · v(x)q dx
) 

q
= sup

‖g‖
Lq′ (Q)

=

(ˆ
Q

II · v(x)
∣∣g(x)

∣∣dx
)

.

Let g ≥  be such that supp(g) ⊂ Q and ‖g‖Lq′ (Q) = . We have

ˆ
Q

II · v(x)g(x) dx ≤
∑

Q∈D(Q)

l(Q)α
( 

Q

∣
∣f (y)

∣
∣θ dy

) 
θ ‖vg‖L(Q)

≤
( ∑

Q∈D′
(Q)

+
∑

k,j

∑

Q∈D′
k,j(Q)

)
l(Q)α

( 
Q

∣∣f (y)
∣∣θ dy

) 
θ ‖vg‖L(Q)

≤
(

II +
∑

k,j

IIk,j

)
.

We evaluate IIk,j. If Q ∈D′
k,j(Q), then we have

( 
Q

∣∣f (y)
∣∣θ dy

) 
θ ≤ γ ′A′k+.

Therefore we obtain

IIk,j ≤
∑

Q∈D′
k,j(Q)

l(Q)α
( 

Q

∣
∣f (y)

∣
∣θ dy

) 
θ
ˆ

Q
v(x)g(x) dx

≤ γ ′A′k+
∑

Q∈D′
k,j(Q)

l(Q)α
ˆ

Q
v(x)g(x) dx.
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Since

γ ′A′k ≤
( 

Q′
k,j

∣∣f (y)
∣∣θ dy

) 
θ

,

we obtain

IIk,j ≤ A′
( 

Q′
k,j

∣∣f (y)
∣∣θ dy

) 
θ

l
(
Q′

k,j
)α

( 
Q′

k,j

v(x)g(x) dx
)∣∣Q′

k,j
∣∣.

By Hölder’s inequality for θ >  as in Lemma , we have

IIk,j ≤ A′
( 

Q′
k,j

∣∣f (y)
∣∣θ dy

) 
θ

l
(
Q′

k,j
)α

( 
Q′

k,j

v(x)θq dx
) 

θq

×
( 

Q′
k,j

g(x)(θq)′ dx
) 

(θq)′ ∣∣Q′
k,j

∣∣.

By Lemma , we obtain

IIk,j ≤ A′
( 

Q′
k,j

∣∣f (y)
∣∣θ dy

) 
θ

l
(
Q′

k,j
)α

( 
Q′

k,j

v(x)θq dx
) 

θq

×
( 

Q′
k,j

g(x)(θq)′ dx
) 

(θq)′ ∣∣E′
k,j

∣
∣

= A′
ˆ

E′
k,j

l
(
Q′

k,j
)α

( 
Q′

k,j

∣∣f (x)
∣∣θ dx

) 
θ

( 
Q′

k,j

v(x)θq dx
) 

θq

×
( 

Q′
k,j

g(x)(θq)′ dx
) 

(θq)′
dy

≤ A′
ˆ

E′
k,j

M̃α,θ,θq
(
f θ , v

)
(y) · M

[
g(θq)′](y)


(θq)′ dy,

where

M̃α,θ,θq
(
f θ , v

)
(y) := sup

Q	y
l(Q)α

( 
Q

∣
∣f (x)

∣
∣θ dx

) 
θ

( 
Q

v(x)θq dx
) 

θq
.

A similar argument gives us the following estimate:

II ≤ A′
ˆ

E′


M̃α,θ,θq
(
f θ , v

)
(y) · M

[
g(θq)′](y)


(θq)′ dy.

By summing up II and IIk,j, we obtain

II +
∑

k,j

IIk,j ≤ A′
ˆ

Q

M̃α,θ,θq
(
f θ , v

)
(y) · M

[
g(θq)′](y)


(θq)′ dy.
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By Hölder’s inequality for q > , we have

ˆ
Q

M̃α,θ,θq
(
f θ , v

)
(y) · M

[
g(θq)′](y)


(θq)′ dy

≤
(ˆ

Q

M̃α,θ,θq
(
f θ , v

)
(y)q dy

) 
q

·
(ˆ

Q

M
[
g(θq)′](y)

q′
(θq)′ dy

) 
q′

.

Since (θq)′ < q′ and supp(g) ⊂ Q, by the boundedness of M : L
q′

(θq)′ (Rn) → L
q′

(θq)′ (Rn), we
have

(ˆ
Q

M
[
g(θq)′](y)

q′
(θq)′ dy

) 
q′

≤ C
(ˆ

Q

g(x)(θq)′· q′
(θq)′ dx

) 
q′

= C.

Therefore we have

ˆ
Q

M̃α,θ,θq
(
f θ , v

)
(y) · M

[
g(θq)′](y)


(θq)′ dy ≤ C

(ˆ
Q

M̃α,θ,θq
(
f θ , v

)
(y)q dy

) 
q

.

By Hölder’s inequality for p
a∗θ

>  as in Lemma , we have

M̃α,θ,θq
(
f θ , v

)
(x) ≤ C sup

Q	x
l(Q)αmQ

(|fw| p
a∗

) a∗
p

×
( 

Q
w(y)–θ( p

θa∗ )′ dy
) 

θ


( p
θa∗ )′

( 
Q

v(y)θq dy
) 

θq
.

By Lemma , we have θ( p
θa∗ )′ ≤ ( p

a )′. By Hölder’s inequality, we have

M̃α,θ,θq
(
f θ , v

)
(x) ≤ C sup

Q	x

(
l(Q)α· p

a∗ mQ
(|fw| p

a∗
)) a∗

p

( |Q|
|Q|

) 
aq |Q|– 

r

×
( |Q|

|Q|
) 

aq |Q| 
r

( 
Q

v(y)θq dy
) 

θq
( 

Q
w(y)–(p/a)′ dy

) 
(p/a)′

.

By the condition (), we obtain

M̃α,θ,θq
(
f θ , v

)
(x) ≤ C[v, w]aq,r,aq,p/a sup

Q	x

(
l(Q)α· p

a∗ – n
r

· p
a∗ mQ

(|fw| p
a∗

)) a∗
p

= C[v, w]aq,r,aq,p/a · M(α– n
r

) p
a∗

(|fw| p
a∗

)
(x)

a∗
p .

This implies that

|Q|


q

( 
Q

M̃α,θ,θq
(
f θ , v

)
(x)q dx

) 
q

≤ C[v, w]aq,r,aq,p/a
∥
∥M(α– n

r
) p

a∗

(|fw| p
a∗

)∥∥
a∗
p

M
a∗q

p
a∗q

p

.

Since


q

· p
a∗

=


p
· p

a∗
–

(α – n
r

) · p
a∗

n
and

a∗p
p

a∗q
p

=
a∗
a∗q

p
,
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by Theorem A, we have

∥∥M(α– n
r

) p
a∗

(|fw| p
a∗

)∥∥
a∗
p

M
a∗q

p
a∗q

p

≤ ∥∥|fw| p
a∗

∥∥
a∗
p

M
a∗p

p
a∗

= ‖fw‖Mp
p

.

Therefore we have

‖II · v‖Mq
q

≤ C[v, w]aq,r,aq,p/a‖fw‖Mp
p

.

4.2 The estimate of B
Since |b(x) – b(y)|m ≤ m–(|b(x) – mQ(b)|m + |mQ(b) – b(y)|m), we have

ˆ
Q

∣∣b(x) – b(y)
∣∣m∣∣f (y)

∣∣dy

≤ C
ˆ

Q

∣∣b(x) – mQ(b)
∣∣m∣∣f (y)

∣∣dy + C
ˆ

Q

∣∣mQ(b) – b(y)
∣∣m∣∣f (y)

∣∣dy.

Therefore we obtain

v(x)B ≤ Cv(x)
∑

Q�Q,
Q∈D(Rn)

|Q|( α
n –)χQ(x)

ˆ
Q

∣∣b(x) – mQ(b)
∣∣m∣∣f (y)

∣∣dy

+ Cv(x)
∑

Q�Q,
Q∈D(Rn)

|Q|( α
n –)χQ(x)

ˆ
Q

∣∣mQ(b) – b(y)
∣∣m∣∣f (y)

∣∣dy

=: CC[f , v](x) + CC[f , v](x).

By Hölder’s inequality and the definition of the Morrey norm we obtain

C[f , v](x) = v(x)
∑

Q�Q,
Q∈D(Rn)

|Q|( α
n –)χQ(x)

∣
∣b(x) – mQ(b)

∣
∣m
ˆ

Q

∣
∣f (y)

∣
∣dy

≤ v(x)
∑

Q�Q,
Q∈D(Rn)

|Q|( α
n –)χQ(x)

∣
∣b(x) – mQ(b)

∣
∣m|Q| 

p

( 
Q

∣
∣f (y)

∣
∣pw(y)p dy

) 
p

× |Q|– 
p

( 
Q

w(y)–p′
dy

) 
p′

≤ C‖fw‖Mp
p

v(x)
∑

Q�Q,
Q∈D(Rn)

|Q| α
n – 

p

( 
Q

w(y)–p′
dy

) 
p′ ∣∣b(x) – mQ(b)

∣∣m.

Since 
q

= 
p

+ 
r

– α
n , the integral of C[f , v](x)q on Q is evaluated as follows:

|Q|


q

( 
Q

C[f , v](x)q dx
) 

q

≤ C‖fw‖Mp
p

∑

Q�Q,
Q∈D(Rn)

|Q|


q |Q| 
r

– 
q

( 
Q

w(y)–p′
dy

) 
p′
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×
( 

Q

v(x)q∣∣b(x) – mQ(b)
∣∣mq dx

) 
q

= C‖fw‖Mp
p

∑

Q�Q,
Q∈D(Rn)

( |Q|
|Q|

) 
q |Q| 

r

( 
Q

w(y)–p′
dy

) 
p′

×
( 

Q

v(x)q∣∣b(x) – mQ(b)
∣∣mq dx

) 
q

.

By Hölder’s inequality for θ >  as in Lemma , we have

( 
Q

v(x)q∣∣b(x) – mQ(b)
∣
∣mq dx

) 
q

≤
( 

Q

v(x)qθ dx
) 

qθ
( 

Q

∣∣b(x) – mQ(b)
∣∣mqθ ′

 dx
) 

qθ ′
 . ()

We evaluate |b(x) – mQ(b)|. If Q � Q and Q ∈ D(Rn), then there exists k = , , . . . , such
that Qk := Q, Qj ∈ D(Rn), Qj � Qj– and |Qj| = n|Qj–| (j = , , . . . , k). By the triangle in-
equality, we obtain

∣∣b(x) – mQ(b)
∣∣ ≤ ∣∣b(x) – mQ (b)

∣∣ +
∣∣mQ (b) – mQ(b)

∣∣

=
∣∣b(x) – mQ (b)

∣∣ +

∣∣
∣∣
∣

k∑

j=

(
mQj– (b) – mQj (b)

)
∣∣
∣∣
∣

≤ ∣
∣b(x) – mQ (b)

∣
∣ +

k∑

j=

∣
∣mQj– (b) – mQj (b)

∣
∣.

Moreover, we have

∣∣mQj– (b) – mQj (b)
∣∣ =

∣
∣∣∣

 
Qj–

b(y) dy – mQj (b)
∣
∣∣∣

=
∣∣
∣∣

 
Qj–

(
b(y) – mQj (b)

)
dy

∣∣
∣∣

≤
 

Qj–

∣∣b(y) – mQj (b)
∣∣dy

≤ n

|Qj|
ˆ

Qj

∣∣b(y) – mQj (b)
∣∣dy

≤ n‖b‖BMO (j = , , . . .),

where we invoke Definition  for the last line. By the inequality (a + b)m ≤ m–(am + bm):

∣∣b(x) – mQ(b)
∣∣m ≤ (∣∣b(x) – mQ (b)

∣∣ + nk‖b‖BMO
)m

≤ C
(∣∣b(x) – mQ (b)

∣∣m + mnkm‖b‖m
BMO

)
. ()
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By the estimates (), (), and Hölder’s inequality for (p/a)′ > p′, we obtain

∑

Q�Q,
Q∈D(Rn)

( |Q|
|Q|

) 
q |Q| 

r

( 
Q

w(y)–p′
dy

) 
p′ ( 

Q

v(x)q∣∣b(x) – mQ(b)
∣
∣mq dx

) 
q

≤ C
∞∑

k=

∑

Qk∈D(Rn),
Qk⊃Q,|Qk |=kn|Q|

( |Q|
|Qk|

) 
q |Qk|


r

( 
Qk

w(y)–(p/a)′ dy
) 

(p/a)′

×
( 

Q

v(x)qθ dx
) 

qθ
( 

Q

(∣∣b(x) – mQ (b)
∣∣m + mnkm‖b‖m

BMO

)qθ ′
 dx

) 
qθ ′

 .

By the triangle inequality on Lqθ ′
 (Rn), we obtain

( 
Q

(∣∣b(x) – mQ (b)
∣∣m + mnkm‖b‖m

BMO

)qθ ′
 dx

) 
qθ ′



≤
( 

Q

∣∣b(x) – mQ (b)
∣∣mqθ ′

 dx
) 

qθ ′
 +

( 
Q

(
mnkm‖b‖m

BMO

)qθ ′
 dx

) 
qθ ′

 . ()

By the estimate (), we obtain

∞∑

k=

∑

Qk∈D(Rn),
Qk⊃Q,|Qk |=kn|Q|

( |Q|
|Qk|

) 
q |Qk|


r

( 
Qk

w(y)–(p/a)′ dy
) 

(p/a)′
( 

Q

v(x)qθ dx
) 

qθ

×
( 

Q

(∣∣b(x) – mQ (b)
∣∣m + mnkm‖b‖m

BMO

)qθ ′
 dx

) 
qθ ′



≤
∞∑

k=

∑

Qk∈D(Rn),
Qk⊃Q,|Qk |=kn|Q|

( |Q|
|Qk|

) 
q |Qk|


r

×
( 

Qk

w(y)–(p/a)′ dy
) 

(p/a)′
( 

Q

v(x)qθ dx
) 

qθ

×
{( 

Q

∣
∣b(x) – mQ (b)

∣
∣mqθ ′

 dx
) 

qθ ′
 +

( 
Q

(
mnkm‖b‖m

BMO

)qθ ′
 dx

) 
qθ ′


}

.

By Lemma , we have

( 
Q

∣∣b(x) – mQ (b)
∣∣mqθ ′

 dx
) 

qθ ′
 ≤ C‖b‖m

BMO. ()

The estimate () gives us the following:

( 
Q

∣
∣b(x) – mQ (b)

∣
∣mqθ ′

 dx
) 

qθ ′
 +

( 
Q

(
mnkm‖b‖m

BMO

)qθ ′
 dx

) 
qθ ′



≤ C‖b‖m
BMO

(
 + mnkm)

. ()



Iida Journal of Inequalities and Applications  (2016) 2016:4 Page 21 of 23

As a consequence of (), we obtain the following inequality:

∑

Q�Q,
Q∈D(Rn)

( |Q|
|Q|

) 
q |Q| 

r

( 
Q

w(y)–p′
dy

) 
p′ ( 

Q

v(x)q∣∣b(x) – mQ(b)
∣∣mq dx

) 
q

≤ C‖b‖m
BMO

∞∑

k=

∑

Qk∈D(Rn),
Qk⊃Q,|Qk |=kn|Q|

( |Q|
|Qk|

) 
aq |Qk|


r

( 
Qk

w(y)–(p/a)′ dy
) 

(p/a)′

×
( 

Q

v(x)qθ dx
) 

qθ (
 + mnkm)( |Q|

|Qk|
) 

q
(– 

a )

.

By the condition (), we have

∑

Q�Q,
Q∈D(Rn)

( |Q|
|Q|

) 
q |Q| 

r

( 
Q

w(y)–p′
dy

) 
p′ ( 

Q

v(x)q∣∣b(x) – mQ(b)
∣∣mq dx

) 
q

≤ C‖b‖m
BMO[v, w]aq,r,aq,p/a

∞∑

k=

∑

Qk∈D(Rn),
Qk⊃Q,|Qk |=kn|Q|

(
 + mnkm)

– kn
q

(– 
a )

= C‖b‖m
BMO[v, w]aq,r,aq,p/a

∞∑

k=

(
 + mnkm)

– kn
q

(– 
a )

≤ C‖b‖m
BMO[v, w]aq,r,aq,p/a.

Therefore we obtain

∥∥C[f , v]
∥∥
Mq

q
≤ C[v, w]aq,r,aq,p/a‖b‖m

BMO‖fw‖Mp
p

. ()

Next, we evaluate C[f , v](x). By Hölder’s inequality for θ ∈ (, p) in Lemma , we have

C[f , v](x) = v(x)
∑

Q�Q,
Q∈D(Rn)

l(Q)α–nχQ(x)
(ˆ

Q

∣
∣mQ(b) – b(y)

∣
∣mf (y) dy

)

≤ v(x)
∑

Q�Q,
Q∈D(Rn)

l(Q)α–nχQ(x)
(ˆ

Q

∣
∣mQ(b) – b(y)

∣
∣mθ ′

 dy
) 

θ ′


×
(ˆ

Q

∣
∣f (y)

∣
∣θ dy

) 
θ

.

By Hölder’s inequality for p
θ

> , we obtain

C[f , v](x) ≤ v(x)
∑

Q�Q,
Q∈D(Rn)

l(Q)α– n
p χQ(x)

( 
Q

∣∣mQ(b) – b(y)
∣∣mθ ′

 dy
) 

θ ′
 |Q| 

p

×
( 

Q
w(y)–θ( p

θ
)′ dy

) 
θ( p

θ
)′
( 

Q

∣∣f (y)
∣∣pw(y)p dy

) 
p

.
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Taking the Morrey norm, we obtain

C[f , v](x) ≤ ‖fw‖Mp
p

v(x)
∑

Q�Q,
Q∈D(Rn)

l(Q)α– n
p χQ(x)

( 
Q

∣
∣mQ(b) – b(y)

∣
∣mθ ′

 dy
) 

θ ′


×
( 

Q
w(y)–θ( p

θ
)′ dy

) 
θ( p

θ
)′

.

Using Lemma , we have

C[f , v](x) ≤ ‖b‖m
BMO‖fw‖Mp

p
v(x)

∑

Q�Q,
Q∈D(Rn)

l(Q)α– n
p χQ(x)

( 
Q

w(y)–θ( p
θ

)′ dy
) 

θ( p
θ

)′
.

Since we have the assumption that a � p
(θ( p

θ
)′)′ > , using Hölder’s inequality, we obtain

C[f , v](x) ≤ C‖b‖m
BMO‖fw‖Mp

p
v(x)

∑

Q�Q,
Q∈D(Rn)

l(Q)α– n
p χQ(x)

( 
Q

w(y)–(p/a)′ dy
) 

(p/a)′
.

The integral of C[f , v](x)q on Q is evaluated as follows:

|Q|


q

( 
Q

C[f , v](x)q dx
) 

q

≤ C‖b‖m
BMO‖fw‖Mp

p

∑

Q�Q,
Q∈D(Rn)

l(Q)α– n
p |Q|


q

×
( 

Q

v(x)q dx
) 

q
( 

Q
w(y)–(p/a)′ dy

) 
(p/a)′

≤ C‖b‖m
BMO‖fw‖Mp

p

∑

Q�Q,
Q∈D(Rn)

( |Q|
|Q|

) 
aq |Q| 

r

×
( 

Q

v(x)aq dx
) 

aq
( 

Q
w(y)–(p/a)′ dy

) 
(p/a)′

( |Q|
|Q|

) 
q

(– 
a )

.

By the condition (), we have

|Q|


q

( 
Q

C[f , v](x)q dx
) 

q

≤ C[v, w]aq,r,aq,p/a‖b‖m
BMO‖fw‖Mp

p

∑

Q�Q,
Q∈D(Rn)

( |Q|
|Q|

) 
q

(– 
a )

≤ C[v, w]aq,r,aq,p/a‖b‖m
BMO‖fw‖Mp

p
.

We obtain the desired result. �
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