Weighted estimates of higher order commutators generated by BMO-functions and the fractional integral operator on Morrey spaces

Takeshi lida*

"Correspondence:
tiida@fukushima-nct.ac.jp Department of General Education, National Institute of Technology, Fukushima College, Fukushima, 970-8034, Japan

Abstract

The purpose of this paper is to investigate the weighted estimates of commutators generated by BMO-functions and the fractional integral operator on Morrey spaces. The main result generalizes the Sawano, Sugano, and Tanaka result to a weighted setting.

MSC: 26A33; 42B25; 42B35
Keywords: commutator; fractional integral operator; Morrey space; BMO space; weight

1 Introduction

The aim of this paper is to investigate the weighted inequalities of commutators generated by BMO-functions and the fractional integral operator on Morrey spaces. The main results particularly is related to [1] and [2]. The authors introduced the condition of weights in [1]. Under a certain condition of the weights, we investigate the weighted estimates of commutators generated by BMO-functions and the fractional integral operator on Morrey spaces. The results recover the inequality in [2].

For $1<p<\infty$, we define $p^{\prime}:=\frac{p}{p-1}$. In this paper, a symbol C is a positive constant. Whenever we evaluate the operator, the constant C may be change from one constant to another. Let $|E|$ denote the Lebesgue measure of E. Let $\mathcal{D}\left(\mathbb{R}^{n}\right)$ be the collection of all dyadic cubes on \mathbb{R}^{n}. All cubes are assumed to have their sides parallel to the coordinate axes. For a cube $Q \subset \mathbb{R}^{n}$, we use $l(Q)$ to denote the side-length $l(Q)$ and $c Q$ to denote the cube with the same center as Q but with side-length $c l(Q)$. The integral average of a measurable function f over Q is written

$$
m_{Q}(f)=f_{Q} f(x) d x=\frac{1}{|Q|} \int_{Q} f(x) d x
$$

By a 'weight' we will mean a non-negative function w that is positive measure a.e. on \mathbb{R}^{n}. Given a weight w and a measurable set E, let

$$
w(E):=\int_{E} w(x) d x .
$$

First we define the Morrey spaces.

Definition 1 Let $1<p \leq p_{0}<\infty$. We define the Morrey space $\mathcal{M}_{p}^{p_{0}}\left(\mathbb{R}^{n}\right)$ by

$$
\mathcal{M}_{p}^{p_{0}}\left(\mathbb{R}^{n}\right):=\left\{f \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right) ;\|f\|_{\mathcal{M}_{p}^{p_{0}}}<\infty\right\}
$$

where for all measurable functions f, we define

$$
\|f\|_{\mathcal{M}_{p}^{p_{0}}}:=\sup _{Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}|Q|^{\frac{1}{p_{0}}}\left(f_{Q}|f(x)|^{p} d x\right)^{\frac{1}{p}} .
$$

Remark 1

(a) The ordinary Morrey norm is equivalent to the Morrey norm in this paper (see [1]):

$$
\sup _{\substack{Q \subset \mathbb{R}^{n}, Q: \text { cubes }}}|Q|^{\frac{1}{p_{0}}}\left(f_{Q}|f(x)|^{p} d x\right)^{\frac{1}{p}} \cong\|f\|_{\mathcal{M}_{p}^{p_{0}}\left(\mathbb{R}^{n}\right)} .
$$

(b) Hölder's inequality gives us the following inequality: If $1<p \leq q \leq p_{0}<\infty$, then we have

$$
\|f\|_{\mathcal{M}_{p}^{p_{0}}} \leq\|f\|_{\mathcal{M}_{q}^{p_{0}}} .
$$

We define the BMO space (see $[3,4]$) as follows.

Definition 2 For an $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$-function b, define

$$
\|b\|_{\mathrm{BMO}}:=\sup _{Q \subset \mathbb{R}^{n}} f_{Q}\left|b(x)-m_{Q}(b)\right| d x,
$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^{n}$. Define

$$
\operatorname{BMO}\left(\mathbb{R}^{n}\right):=\left\{b \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right):\|b\|_{\mathrm{BMO}}<\infty\right\} .
$$

We define the fractional maximal and integral operators.

Definition 3

(1) Let $0 \leq \alpha<n$,

$$
M_{\alpha} f(x):=\sup _{Q \ni x} l(Q)^{\alpha} f_{Q}|f(y)| d y,
$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^{n}$ such that $x \in Q$.
(2) Let $0<\alpha<n$,

$$
I_{\alpha} f(x):=\int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y .
$$

The point-wise inequality holds:

$$
M_{\alpha} f(x) \leq C I_{\alpha} f(x)
$$

for all positive measurable function f.
It is well known that the following inequality holds (see [5]). The celebrated result is called the Adams inequality.

Theorem A Let $0<\alpha<n, 1<p \leq p_{0}<\infty$ and $1<q \leq q_{0}<\infty$. Assume that

$$
\frac{1}{q_{0}}=\frac{1}{p_{0}}-\frac{\alpha}{n} \quad \text { and } \quad \frac{q}{q_{0}}=\frac{p}{p_{0}} .
$$

Then we have

$$
\left\|I_{\alpha} f\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|f\|_{\mathcal{M}_{p}^{p_{0}}},
$$

for all $f \in \mathcal{M}_{p}^{p_{0}}\left(\mathbb{R}^{n}\right)$.
Let $m \in \mathbb{Z}_{+}$. The m-fold commutator $\left[b, I_{\alpha}\right]^{(m)}$ is given by the following definition.

Definition 4 Let $0<\alpha<n$ and $b \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$. Then we define

$$
\left[b, I_{\alpha}\right]^{(m)} f(x):=\int_{\mathbb{R}^{n}} \frac{(b(x)-b(y))^{m}}{|x-y|^{n-\alpha}} f(y) d y,
$$

as long as the integral in the right-hand side makes sense.

Remark 2 The following inequality holds:

$$
\begin{equation*}
\left|\left[b, I_{\alpha}\right]^{(m)} f(x)\right| \leq \int_{\mathbb{R}^{n}} \frac{|b(x)-b(y)|^{m}}{|x-y|^{n-\alpha}}|f(y)| d y . \tag{1}
\end{equation*}
$$

As shall be verified in the proof of Theorem 1, we virtually consider the operator

$$
x \mapsto \int_{\mathbb{R}^{n}} \frac{|b(x)-b(y)|^{m}}{|x-y|^{n-\alpha}} f(y) d y
$$

and hence we may assume that the integral defining $\left[b, I_{\alpha}\right]^{(m)} f(x)$ converges for a.e. $x \in \mathbb{R}^{n}$.

Di-Fazio and Ragusa [6] obtained the next theorem.

Theorem B Let $0<\alpha<n, 1<p \leq p_{0}<\infty$ and $1<q \leq q_{0}<\infty$. Assume that

$$
\frac{1}{q_{0}}=\frac{1}{p_{0}}-\frac{\alpha}{n} \quad \text { and } \quad \frac{q}{q_{0}}=\frac{p}{p_{0}} .
$$

If $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, then we have

$$
\left\|\left[b, I_{\alpha}\right]^{(1)} f\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|f\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

Conversely if $n-\alpha$ is an even integer and

$$
\left\|\left[b, I_{\alpha}\right]^{(1)} f\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|f\|_{\mathcal{M}_{p}^{p_{0}}}
$$

then $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$.

Komori and Mizuhara [7] removed the restriction ' $n-\alpha$ is an even integer'.

Theorem C Let $0<\alpha<n, 1<p \leq p_{0}<\infty$ and $0<q \leq q_{0}<\infty$. Assume that

$$
\frac{1}{q_{0}}=\frac{1}{p_{0}}-\frac{\alpha}{n} \quad \text { and } \quad \frac{q}{q_{0}}=\frac{p}{p_{0}} .
$$

If $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, then we have

$$
\left\|\left[b, I_{\alpha}\right]^{(1)} f\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|f\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

Conversely if

$$
\left\|\left[b, I_{\alpha}\right]^{(1)} f\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|f\|_{\mathcal{M}_{p}^{p_{0}}}
$$

then $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$.

Sawano et al. [2] proved the following inequality.

Theorem D Let $0<\alpha<n, 1<p \leq p_{0}<\infty, 1<q \leq q_{0}<\infty$ and $1<r \leq r_{0}<\infty$. Assume that

$$
q<r, \quad \frac{1}{p_{0}}>\frac{\alpha}{n} \geq \frac{1}{r_{0}}, \quad \frac{1}{q_{0}}=\frac{1}{p_{0}}+\frac{1}{r_{0}}-\frac{\alpha}{n} \quad \text { and } \quad \frac{q}{q_{0}}=\frac{p}{p_{0}} .
$$

Suppose that $v \in \mathcal{M}_{r}^{r_{0}}\left(\mathbb{R}^{n}\right)$. Then, for $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, we have

$$
\left\|\left(\left[b, I_{\alpha}\right]^{(m)} f\right) v\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|b\|_{\mathrm{BMO}}^{m}\|v\|_{\mathcal{M}_{r}^{r_{0}}}\|f\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

In the case of $m=0$, we refer to $[1,8,9]$. In this paper, we generalize Theorem D to a weighted setting. On the other hand, in [1], the following theorem is proved.

Theorem E Let $0<\alpha<n, 1<p \leq p_{0}<\infty$ and $1<q \leq q_{0}<r_{0}<\infty$. Assume that

$$
\frac{1}{p_{0}}>\frac{\alpha}{n} \geq \frac{1}{r_{0}}, \quad \frac{1}{q_{0}}=\frac{1}{p_{0}}+\frac{1}{r_{0}}-\frac{\alpha}{n}, \quad \frac{q}{q_{0}}=\frac{p}{p_{0}}
$$

and $1<a<\frac{r_{0}}{q_{0}}$. Suppose that the weights v and w satisfy the following condition:

$$
\begin{align*}
{[v, w]_{a q_{0}, r_{0}, a q, p / a} } & :=\sup _{Q \subset Q^{\prime}}\left(\frac{|Q|}{\left|Q^{\prime}\right|}\right)^{\frac{1}{a q_{0}}}\left|Q^{\prime}\right|^{\frac{1}{r_{0}}}\left(f_{Q} v(x)^{a q} d x\right)^{\frac{1}{a q}}\left(f_{Q^{\prime}} w(x)^{-(p / a)^{\prime}} d x\right)^{\frac{1}{(p / a)^{\prime}}} \\
& <\infty . \tag{2}
\end{align*}
$$

Then we have

$$
\left\|\left(I_{\alpha} f\right) v\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

In this paper, we investigate the boundedness of higher order commutators generated by BMO-functions and the fractional integral operator on Morrey spaces corresponding to Theorem E.

2 Main results and their corollaries

In this paper, we obtain two main theorems.

2.1 One of the main results

Theorem 1 Let $0<\alpha<n, 1<p \leq p_{0}<\infty$ and $1<q \leq q_{0}<r_{0}<\infty$. Assume that

$$
\frac{1}{p_{0}}>\frac{\alpha}{n} \geq \frac{1}{r_{0}}, \quad \frac{1}{q_{0}}=\frac{1}{p_{0}}+\frac{1}{r_{0}}-\frac{\alpha}{n}, \quad \frac{q}{q_{0}}=\frac{p}{p_{0}}
$$

and $1<a<\frac{r_{0}}{q_{0}}$. Suppose that the weights v and w satisfy the condition (2). Then, for $b \in$ $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$, we have

$$
\left\|\left(\left[b, I_{\alpha}\right]^{(m)} f\right) v\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|b\|_{\mathrm{BMO}}^{m}[v, w]_{a q_{0}, r_{0}, a q, p / a}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

Remark 3 The condition of Theorem 1 corresponds with the condition of Theorem E. This implies that Theorem 1 gives us the same type of corollaries as in Theorem E.

Taking $w(x)=M_{\frac{a q}{}}^{r_{0}} n^{a q}\left(v^{a q}\right)(x)^{\frac{1}{a q}}$, we have the following corollary.
Corollary 1 Let $0<\alpha<n, 1<p \leq p_{0}<\infty$ and $1<q \leq q_{0}<r_{0}<\infty$. Assume that

$$
\frac{1}{p_{0}}>\frac{\alpha}{n} \geq \frac{1}{r_{0}}, \quad \frac{1}{q_{0}}=\frac{1}{p_{0}}+\frac{1}{r_{0}}-\frac{\alpha}{n}, \quad \frac{q}{q_{0}}=\frac{p}{p_{0}}
$$

and $1<a<\frac{r_{0}}{q_{0}}$. Let v be a weight. Suppose that $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, then we have

$$
\left\|\left(\left[b, I_{\alpha}\right]^{(m)} f\right) v\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|b\|_{\mathrm{BMO}}^{m}\left\|f M_{\frac{a q}{r_{0}}{ }_{n}}\left(v^{a q}\right)^{\frac{1}{a q}}\right\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

Taking $w(x) \equiv 1$, we obtain the following corollary.

Corollary 2 Let $0<\alpha<n, 1<p \leq p_{0}<\infty$ and $1<q \leq q_{0}<r_{0}<\infty$. Assume that

$$
\frac{1}{p_{0}}>\frac{\alpha}{n} \geq \frac{1}{r_{0}}, \quad \frac{1}{q_{0}}=\frac{1}{p_{0}}+\frac{1}{r_{0}}-\frac{\alpha}{n}, \quad \frac{q}{q_{0}}=\frac{p}{p_{0}}
$$

and $1<a<\frac{r_{0}}{q_{0}}$. Suppose that $v \in \mathcal{M}_{a q}^{r_{0}}\left(\mathbb{R}^{n}\right)$. Then, for $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, we have

$$
\left\|\left(\left[b, I_{\alpha}\right]^{(m)} f\right) v\right\|_{\mathcal{M}_{q}^{q_{0}} \leq C\|b\|_{\mathrm{BMO}}^{m}\|v\|_{\mathcal{M}_{a q}^{r}}^{r_{0}}\|f\|_{\mathcal{M}_{p}^{p_{0}}} .}
$$

On the other hand, letting $r_{0} \rightarrow \infty$, we obtain the weighted Adams type inequality for the m-fold commutator $\left[b, I_{\alpha}\right]^{(m)}$.

Corollary 3 Let $0<\alpha<n, 1<p \leq p_{0}<\infty$ and $1<q \leq q_{0}<\infty$. Assume that

$$
\frac{1}{q_{0}}=\frac{1}{p_{0}}-\frac{\alpha}{n}, \quad \frac{q}{q_{0}}=\frac{p}{p_{0}}
$$

and $1<a<\frac{r_{0}}{q_{0}}$. Suppose that the weights v and w satisfy the following condition:

$$
\begin{equation*}
[v, w]_{a q_{0}, a q, p / a}:=\sup _{Q \subset Q^{\prime}}\left(\frac{|Q|}{\left|Q^{\prime}\right|}\right)^{\frac{1}{a q_{0}}}\left(f_{Q} v(x)^{a q} d x\right)^{\frac{1}{a q}}\left(f_{Q^{\prime}} w(x)^{-(p / a)^{\prime}} d x\right)^{\frac{1}{(p / a)^{\prime}}}<\infty . \tag{3}
\end{equation*}
$$

Then, for $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, we have

$$
\left\|\left(\left[b, I_{\alpha}\right]^{(m)} f\right) \nu\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|b\|_{\mathrm{BMO}}^{m}[v, w]_{a q_{0}, a q, p / a}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

Corollary 3 gives us the following inequality in letting $p=p_{0}, q=q_{0}$ and $v=w$.

Corollary 4 Let $0<\alpha<n, 1<p<\frac{n}{\alpha}$ and $1<q<\infty$. Assume that

$$
\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{n} .
$$

Suppose that $w \in A_{p, q}\left(\mathbb{R}^{n}\right)$, i.e.

$$
\begin{equation*}
[w]_{A_{p, q}\left(\mathbb{R}^{n}\right)}:=\sup _{Q \subset \mathbb{R}^{n}}\left(f_{Q} w(x)^{q} d x\right)^{\frac{1}{q}}\left(f_{Q} w(x)^{-p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}}<\infty . \tag{4}
\end{equation*}
$$

Then, for $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, we have

$$
\left\|\left(\left[b, I_{\alpha}\right]^{(m)} f\right)\right\|_{L^{q}\left(w^{q}\right)} \leq C\|b\|_{\mathrm{BMO}}^{m}[w]_{A_{p, q}\left(\mathbb{R}^{n}\right)}\|f\|_{L^{p}\left(w^{p}\right)} \quad(m=0,1,2, \ldots) .
$$

Corollary 3 and Theorem C give us the following corollary.
Corollary 5 Let $0<\alpha<n, 1<p \leq p_{0}<\infty$ and $1<q \leq q_{0}<\infty$. Assume that

$$
\frac{1}{q_{0}}=\frac{1}{p_{0}}-\frac{\alpha}{n}, \quad \frac{q}{q_{0}}=\frac{p}{p_{0}}
$$

and $a>1$. Suppose that the weights v and w satisfy the condition (3). If

$$
\left\|\left[b, I_{\alpha}\right]^{(1)} f\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|f\|_{\mathcal{M}_{p}^{p_{0}}}
$$

holds, then we have for $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$,

$$
\left\|\left(\left[b, I_{\alpha}\right]^{(m)} f\right) v\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|b\|_{\mathrm{BMO}}^{m}[v, w]_{a q_{0}, a q, p / a}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

According to Theorem 1.8 in [2], we can pass our result to the operator given by

$$
\left[\vec{b}, I_{\alpha}\right] f(x):=\int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} \prod_{j=1}^{m}\left(b_{j}(x)-b_{j}(y)\right) d y
$$

where $\vec{b}=\left(b_{1}, \ldots, b_{m}\right)$. By a similar argument to [2], as a consequence of Theorem 1 in this paper, we can obtain the following estimate.

Corollary 6 Let $0<\alpha<n, 1<p \leq p_{0}<\infty$ and $1<q \leq q_{0}<r_{0}<\infty$. Assume that

$$
\frac{1}{p_{0}}>\frac{\alpha}{n} \geq \frac{1}{r_{0}}, \quad \frac{1}{q_{0}}=\frac{1}{p_{0}}+\frac{1}{r_{0}}-\frac{\alpha}{n}, \quad \frac{q}{q_{0}}=\frac{p}{p_{0}}
$$

and $1<a<\frac{r_{0}}{q_{0}}$. Suppose that the weights v and w satisfy the condition (2). Then, for $\vec{b}=$ $\left(b_{1}, \ldots, b_{m}\right) \in \operatorname{BMO}\left(\mathbb{R}^{n}\right) \times \cdots \times \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, we have

$$
\left\|\left(\left[\vec{b}, I_{\alpha}\right] f\right) v\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\left(\prod_{j=1}^{m}\left\|b_{j}\right\|_{\mathrm{BMO}}\right)[v, w]_{a q_{0}, r_{0}, a q, p / a}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

2.2 Fractional integral operators having rough kernel

We define the following operators (see [10-12] and [4]).
Definition 5 Let $0<\alpha<n$, a measurable function Ω on $\mathbb{R}^{n} \backslash\{0\}$ and a measurable function b. Then we define

$$
I_{\Omega, \alpha} f(x):=\int_{\mathbb{R}^{n}} \frac{\Omega(x-y) f(y)}{|x-y|^{n-\alpha}} d y
$$

and

$$
\left[b, I_{\Omega, \alpha}\right]^{(m)} f(x):=\int_{\mathbb{R}^{n}} \frac{\Omega(x-y)(b(x)-b(y))^{m} f(y)}{|x-y|^{n-\alpha}} d y
$$

Remark 4 The following inequality holds:

$$
\begin{equation*}
\left|\left[b, I_{\Omega, \alpha}\right]^{(m)} f(x)\right| \leq \int_{\mathbb{R}^{n}} \frac{|\Omega(x-y)||b(x)-b(y)|^{m}}{|x-y|^{n-\alpha}}|f(y)| d y . \tag{5}
\end{equation*}
$$

As shall be verified in the proof of Theorem 2, we consider the operator

$$
x \mapsto \int_{\mathbb{R}^{n}} \frac{|\Omega(x-y)||b(x)-b(y)|^{m}}{|x-y|^{n-\alpha}} f(y) d y
$$

and hence we may assume that the integral defining $\left[b, I_{\Omega, \alpha}\right]^{(m)} f(x)$ converges for a.e. $x \in \mathbb{R}^{n}$.

By a similar argument to the proof of Theorem 1, we have the following estimate.

Theorem 2 Let $1<s \leq \infty, 0<\alpha<n, 1 \leq s^{\prime}<p \leq p_{0}<\infty, 1<q \leq q_{0}<\infty$ and $1<r \leq$ $r_{0}<\infty$. Assume that

$$
\frac{1}{p_{0}}>\frac{\alpha}{n} \geq \frac{1}{r_{0}}, \quad \frac{1}{q_{0}}=\frac{1}{p_{0}}+\frac{1}{r_{0}}-\frac{\alpha}{n}, \quad \frac{q}{q_{0}}=\frac{p}{p_{0}}
$$

and $1<a<\frac{r_{0}}{q_{0}}$. Suppose that the weights v and w satisfy $\left[v^{s^{\prime}}, w^{w^{\prime}}\right]_{\frac{a q_{0}}{s^{s}}, \frac{r_{0}}{s^{\prime}}, \frac{a q}{s^{\prime}}, \frac{p}{s^{\prime} a}}^{\frac{a}{4}}<\infty$. Moreover, suppose that $\Omega \in L^{s}\left(\mathbb{S}^{n-1}\right)$ is homogeneous of order 0 : For any $\lambda>0, \Omega(\lambda x)=\Omega(x)$. Then, for
$b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, we have

$$
\left\|\left(\left[b, I_{\Omega, \alpha}\right]^{(m)} f\right) v\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C\|b\|_{\mathrm{BMO}}^{m}\|\Omega\|_{L^{s}\left(S^{n-1}\right)}\left[v^{s^{\prime}}, w^{s^{s}}\right]_{\frac{a q_{0}}{s^{\prime}}, \frac{r_{0}}{s^{\prime}}, \frac{a q}{s^{\prime}}, \frac{p}{s^{\prime} a}}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

Since $\left[b, I_{\Omega, \alpha}\right]^{(0)}=I_{\Omega, \alpha}$, we refer to [12]. Theorem 2 recovers the following result (see $[4,11])$.

Corollary 7 Let $1<s \leq \infty, 0<\alpha<n, 1 \leq s^{\prime}<p<\frac{n}{\alpha}$ and $1<q<\infty$. Assume that

$$
\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{n}
$$

and $\left.w^{s^{\prime}} \in A_{\frac{p}{s}, ~, ~}^{s^{\prime}}, \mathbb{R}^{n}\right)$. Suppose that $\Omega \in L^{s}\left(\mathbb{S}^{n-1}\right)$ is homogeneous of order 0 : For any $\lambda>0$, $\Omega(\lambda x)=\Omega(x)$. Then we have, for $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$,

$$
\left.\left\|\left(\left[b, I_{\Omega, \alpha}\right]^{(m)} f\right)\right\|_{L^{q}\left(w^{q}\right)} \leq C\left[w^{s^{\prime}}\right]_{A \frac{p}{s^{\prime}}, \frac{q}{s^{\prime}}}^{\frac{1}{s}} \mathbb{R}^{n}\right)\|b\|_{\mathrm{BMO}}^{m}\|\Omega\|_{L^{s}\left(S^{n-1}\right)}\|f\|_{L^{p}\left(w^{p}\right)} .
$$

3 Some lemmas

In this section, we prepare some lemmas for proving main results. We recall the following inequalities (see [3,13] and [4]).

Lemma 1 (The John-Nirenberg inequality) Let $1 \leq p<\infty$ and let Q be a cube. Then there exists a constant $C>0$ such that

$$
\left(f_{Q}\left|b(x)-m_{Q}(b)\right|^{p} d x\right)^{\frac{1}{p}} \leq C\|b\|_{\mathrm{BMO}},
$$

for all $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$.

We invoke the following decomposition which is derived in [14-16]. We omit the details; see $[1,12]$ for the proof.
Let $\mathcal{D}\left(Q_{0}\right)$ be the collection of all dyadic subcubes of Q_{0}, that is, all those cubes obtained by dividing Q_{0} into 2^{n} congruent cubes of half its length, dividing each of those into 2^{n} congruent cubes. By convention Q_{0} itself to $\mathcal{D}\left(Q_{0}\right)$, and so on.

Lemma 2 Let $\gamma:=m_{3 Q_{0}}(f)$ and $A>2 \cdot 18^{n}$. For $k=1,2, \ldots$ we take

$$
D_{k}:=\bigcup\left\{Q \in \mathcal{D}\left(Q_{0}\right): m_{3 Q}(f)>\gamma A^{k}\right\} .
$$

For $\theta_{1}>1$, let

$$
\gamma^{\prime}:=\left(f_{3 Q_{0}}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}}
$$

and $A^{\prime}>\left(2 \cdot 18^{n}\right)^{\frac{1}{\theta_{1}}}$. For $k=1,2, \ldots$ we take

$$
D_{k}^{\prime}:=\bigcup\left\{Q \in \mathcal{D}\left(Q_{0}\right):\left(f_{3 Q}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}}>\gamma^{\prime} A^{\prime k}\right\} .
$$

Considering the maximality cube, we have

$$
D_{k}=\bigcup_{j} Q_{k, j} \quad \text { and } \quad D_{k}^{\prime}=\bigcup_{j} Q_{k, j}^{\prime} .
$$

Then we have

$$
\gamma A^{k}<m_{3 Q_{k, j}}(f) \leq 2^{n} \gamma A^{k} \quad \text { and } \quad \gamma^{\prime} A^{\prime k}<\left(f_{3 Q_{k, j}^{\prime}}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}} \leq 2^{\frac{n}{\theta_{1}}} \gamma^{\prime} A^{k} .
$$

Let $E_{k, j}:=Q_{k, j} \backslash D_{k+1}$ and $E_{k, j}^{\prime}:=Q_{k, j}^{\prime} \backslash D_{k+1}^{\prime}$. Moreover we obtain

$$
\left|Q_{k, j}\right| \leq 2\left|E_{k, j}\right| \quad \text { and } \quad\left|Q_{k, j}^{\prime}\right| \leq 2\left|E_{k, j}^{\prime}\right| .
$$

Lemma 3 Under the condition of Theorem 1 , we can choose auxiliary indices $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ and θ_{5} so that the following conditions hold:

1. $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ and $\theta_{5} \in(1, p)$.
2. $L>1$ and $s \in(q, r)$ such that $s \theta_{2}<L q$ and $s^{\prime} \theta_{2}<q^{\prime}$.
3. For the index $\theta_{1} \in(1, p)$, we can choose $a_{*}>1$ such that $a_{*} \theta_{1}<p$.

Assume in addition that, for these indices,

$$
a \geq \max \left\{\theta_{4}, L, \frac{p}{\left(\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}\right)^{\prime}}, \frac{p}{\left(\theta_{1}\left(\frac{p}{\theta_{1} a_{*}}\right)^{\prime}\right)^{\prime}}, \theta_{3}\right\}>1 .
$$

Then we obtain

$$
\max \left\{\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}, \theta_{1}\left(\frac{p}{\theta_{1} a_{*}}\right)^{\prime}\right\} \leq\left(\frac{p}{a}\right)^{\prime} .
$$

Proof We examine the second item; $s \theta_{2}<L q$ and $s^{\prime} \theta_{2}<q^{\prime}$. For $0<\varepsilon<1$, we take $\delta=\frac{\varepsilon}{q^{2}}<\varepsilon$. If $s=q+\varepsilon$ and $\theta_{2}=1+\delta$, then we have the following estimate:

$$
\begin{aligned}
s \theta_{2} & =(q+\varepsilon)(1+\delta)=q+q \delta+\varepsilon+\varepsilon \delta \\
& \leq q+q \max \{\varepsilon, \delta\}+\max \{\varepsilon, \delta\}+\max \{\varepsilon, \delta\}^{2} \\
& <q+q \max \{\varepsilon, \delta\}+2 \max \{\varepsilon, \delta\} \\
& <q+q \max \{\varepsilon, \delta\}+2 q \max \{\varepsilon, \delta\} \\
& =q(1+3 \max \{\varepsilon, \delta\})=q(1+3 \varepsilon)=L q .
\end{aligned}
$$

On the other hand, we check $s^{\prime} \theta_{2}<q^{\prime}$:

$$
q^{\prime}-s^{\prime} \theta_{2}=\frac{\frac{\varepsilon^{2}}{q^{2}}+\frac{\varepsilon}{q}(1-\varepsilon)}{(q-1)(q+\varepsilon-1)}>0
$$

Next we check $\frac{p}{\left(\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}\right)^{\prime}}>1$. Since $\theta_{5}>1$, we obtain

$$
\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}>\left(\frac{p}{\theta_{5}}\right)^{\prime}>p^{\prime}
$$

Therefore we have

$$
\left(\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}\right)^{\prime}<\left(p^{\prime}\right)^{\prime}=p .
$$

This gives us

$$
\frac{p}{\left(\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}\right)^{\prime}}>1
$$

By a similar argument, we obtain

$$
\frac{p}{\left(\theta_{1}\left(\frac{p}{\theta_{1} a_{*}}\right)^{\prime}\right)^{\prime}}>1
$$

Remark 5 The index θ_{1} in Lemma 2 corresponds with the index θ_{1} in Lemma 3.

4 Proof of Theorem 1

Proof of Theorem 1 Fix a dyadic cube $Q_{0} \in \mathcal{D}\left(\mathbb{R}^{n}\right)$. Let \mathcal{D}_{ν}, be the collection of dyadic cubes. The volume of the elements of \mathcal{D}_{v} is $2^{n v}$. For $x \in Q_{0}$, we have

$$
\begin{aligned}
\left|\left[b, I_{\alpha}\right]^{(m)} f(x)\right| & \leq C \sum_{v \in \mathbb{Z}} \sum_{\substack{Q \in \mathcal{D}_{v},|Q|=2^{2 n}}} 2^{-v(n-\alpha)} \chi_{Q}(x) \int_{3 Q}|b(x)-b(y)|^{m}|f(y)| d y \\
& =C \sum_{v \in \mathbb{Z}}\left(\sum_{\substack{Q \in \mathcal{D}_{v}, Q \subseteq Q_{0}}}+\sum_{\substack{Q \in \mathcal{D}_{v}, Q \supsetneq Q_{0}}}\right) 2^{-v(n-\alpha)} \chi_{Q}(x) \int_{3 Q}|b(x)-b(y)|^{m}|f(y)| d y \\
& =C(A+B) .
\end{aligned}
$$

We evaluate A and B in Sections 4.1 and 4.2, respectively.

4.1 The estimate of A

By $|b(x)-b(y)|^{m} \leq 2^{m-1}\left(\left|b(x)-m_{Q}(b)\right|^{m}+\left|m_{Q}(b)-b(y)\right|^{m}\right)$, we obtain

$$
\begin{aligned}
A= & \sum_{Q \in \mathcal{D}\left(Q_{0}\right)} l(Q)^{\alpha-n} \chi_{Q}(x) \int_{3 Q}|b(x)-b(y)|^{m}|f(y)| d y \\
\leq & C \sum_{Q \in \mathcal{D}\left(Q_{0}\right)} l(Q)^{\alpha} \chi_{Q}(x)\left|b(x)-m_{Q}(b)\right|^{m} f_{3 Q}|f(y)| d y \\
& +C \sum_{Q \in \mathcal{D}\left(Q_{0}\right)} l(Q)^{\alpha} \chi_{Q}(x) f_{3 Q}\left|m_{Q}(b)-b(y)\right|^{m}|f(y)| d y .
\end{aligned}
$$

We take $\theta_{1}>1$ as in Lemma 2. By Hölder's inequality for $\theta_{1}>1$, we have

$$
\begin{aligned}
A \leq & C \sum_{Q \in \mathcal{D}\left(Q_{0}\right)} l(Q)^{\alpha} \chi_{Q}(x)\left|b(x)-m_{Q}(b)\right|^{m} f_{3 Q}|f(y)| d y \\
& +C \sum_{Q \in \mathcal{D}\left(Q_{0}\right)} l(Q)^{\alpha} \chi_{Q}(x)\left(f_{3 Q}\left|m_{Q}(b)-b(y)\right|^{m \theta_{1}^{\prime}} d y\right)^{\frac{1}{\theta_{1}^{\prime}}}\left(f_{3 Q}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}} .
\end{aligned}
$$

By Lemma 1, we have

$$
\begin{aligned}
A \leq & C \sum_{Q \in \mathcal{D}\left(Q_{0}\right)} l(Q)^{\alpha} \chi_{Q}(x)\left|b(x)-m_{Q}(b)\right|^{m} f_{3 Q}|f(y)| d y \\
& +C\|b\|_{\mathrm{BMO}}^{m} \sum_{Q \in \mathcal{D}\left(Q_{0}\right)} l(Q)^{\alpha} \chi_{Q}(x)\left(f_{3 Q}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}} \\
= & C\left(I+\|b\|_{\mathrm{BMO}}^{m} I I\right) .
\end{aligned}
$$

We evaluate I. Let

$$
\mathcal{D}_{0}\left(Q_{0}\right):=\left\{Q \in \mathcal{D}\left(Q_{0}\right) ;\left(f_{3 Q}|f(y)| d y\right) \leq \gamma A\right\}
$$

and

$$
\mathcal{D}_{k, j}\left(Q_{0}\right):=\left\{Q \in \mathcal{D}\left(Q_{0}\right) ; Q \subset Q_{k, j}, \gamma A^{k}<\left(f_{3 Q}|f(y)| d y\right) \leq \gamma A^{k+1}\right\}
$$

where $Q_{k, j}$ is in Lemma 2. Then we have

$$
\mathcal{D}\left(Q_{0}\right)=\mathcal{D}_{0}\left(Q_{0}\right) \cup\left(\bigcup_{k, j} \mathcal{D}_{k, j}\left(Q_{0}\right)\right)
$$

By the duality argument, we have

$$
\left(\int_{Q_{0}} I^{q} \cdot v(x)^{q} d x\right)^{\frac{1}{q}}=\sup _{\|g\|_{L^{q^{\prime}}\left(Q_{0}\right)}=1}\left(\int_{Q_{0}} I \cdot v(x)|g(x)| d x\right)
$$

Let $g \geq 0, \operatorname{supp}(g) \subset Q_{0},\|g\|_{L^{q^{\prime}}\left(Q_{0}\right)}=1$. Then we have

$$
\begin{aligned}
\int_{Q_{0}} I \cdot v(x)|g(x)| d x \leq & C \sum_{Q \in \mathcal{D}\left(Q_{0}\right)} l(Q)^{\alpha}\left(f_{3 Q}|f(y)| d y\right) \\
& \times \int_{Q}\left|b(x)-m_{Q}(b)\right|^{m} v(x) g(x) d x \\
= & C\left(\sum_{Q \in \mathcal{D}_{0}\left(Q_{0}\right)}+\sum_{k, j} \sum_{Q \in \mathcal{D}_{k, j}\left(Q_{0}\right)}\right) l(Q)^{\alpha}\left(f_{3 Q}|f(y)| d y\right) \\
& \times \int_{Q}\left|b(x)-m_{Q}(b)\right|^{m} v(x) g(x) d x \\
= & I_{0}+\sum_{k, j} I_{k, j} .
\end{aligned}
$$

We evaluate $I_{k, j}$. If $Q \in \mathcal{D}_{k, j}\left(Q_{0}\right)$, then we have

$$
f_{3 Q}|f(y)| d y \leq \gamma A^{k+1} .
$$

Hence we obtain

$$
\begin{aligned}
I_{k, j} & \leq \sum_{Q \in \mathcal{D}_{k, j}\left(Q_{0}\right)} l(Q)^{\alpha} \gamma A^{k+1} \int_{Q}\left|b(x)-m_{Q}(b)\right|^{m} v(x) g(x) d x \\
& \leq A \sum_{Q \in \mathcal{D}_{k, j}\left(Q_{0}\right)} l\left(Q_{k, j}\right)^{\alpha} \gamma A^{k} \int_{Q}\left|b(x)-m_{Q}(b)\right|^{m} v(x) g(x) d x .
\end{aligned}
$$

Since

$$
\gamma A^{k}<f_{3 Q_{k, j}}|f(y)| d y
$$

we obtain

$$
I_{k, j} \leq A \sum_{Q \in \mathcal{D}_{k, j}\left(Q_{0}\right)} l\left(Q_{k, j}\right)^{\alpha} f_{3 Q_{k, j}}|f(y)| d y \int_{Q}\left|b(x)-m_{Q}(b)\right|^{m} v(x) g(x) d x .
$$

By Hölder's inequality for $\theta_{2}>1$ as in Lemma 3, we obtain

$$
\begin{aligned}
I_{k, j} \leq & A l\left(Q_{k, j}\right)^{\alpha} m_{3 Q_{k, j}}(|f|) \sum_{Q \in \mathcal{D}_{k, j}\left(Q_{0}\right)}\left(\int_{Q}\left|b(x)-m_{Q}(b)\right|^{m} v(x) g(x) d x\right) \\
\leq & A l\left(Q_{k, j}\right)^{\alpha} m_{3 Q_{k, j}}(|f|) \sum_{Q \in \mathcal{D}_{k, j}\left(Q_{0}\right)}|Q|\left(f_{Q}\left|b(x)-m_{Q}(b)\right|^{m \theta_{2}^{\prime}} d x\right)^{\frac{1}{\theta_{2}^{\prime}}} \\
& \times\left(f_{Q} v(x)^{\theta_{2}} g(x)^{\theta_{2}} d x\right)^{\frac{1}{\theta_{2}}} .
\end{aligned}
$$

By Lemma 1, we obtain

$$
\begin{aligned}
I_{k, j} & \leq A\|b\|_{\mathrm{BMO}}^{m} l\left(Q_{k, j}\right)^{\alpha} m_{3 Q_{k, j}}(|f|) \sum_{Q \in \mathcal{D}_{k, j}\left(Q_{0}\right)} \int_{Q}\left(f_{Q}(v(y) g(y))^{\theta_{2}} d y\right)^{\frac{1}{\theta_{2}}} d x \\
& \leq A\|b\|_{\mathrm{BMO}}^{m} l\left(Q_{k, j}\right)^{\alpha} m_{3 Q_{k, j}}(|f|) \sum_{Q \in \mathcal{D}_{k, j}\left(Q_{0}\right)} \int_{Q} M\left[\left(v_{k, j} g\right)^{\theta_{2}}\right](x)^{\frac{1}{\theta_{2}}} d x,
\end{aligned}
$$

where $v_{k, j}=v \chi_{Q_{k, j}}$ and the symbol M is the ordinary Hardy-Littlewood maximal operator. By Lemma 2, we have

$$
\begin{aligned}
I_{k, j} & \leq A\|b\|_{\mathrm{BMO}}^{m}\left|Q_{k, j}\right| l\left(Q_{k, j}\right)^{\alpha} m_{3 Q_{k, j}}(|f|)\left(f_{Q_{k, j}} M\left[\left(v_{k, j} g\right)^{\theta_{2}}\right](x)^{\frac{1}{\theta_{2}}} d x\right) \\
& \left.\leq 2 A\|b\|_{\mathrm{BMO}}^{m}\left|E_{k, j}\right| l\left(Q_{k, j}\right)^{\alpha} m_{3 Q_{k, j}}|f|\right)\left(f_{Q_{k, j}} M\left[\left(v_{k, j} g\right)^{\theta_{2}}\right](x)^{\frac{1}{\theta_{2}}} d x\right) \\
& =2 A\|b\|_{\mathrm{BMO}}^{m} \int_{E_{k, j}} l\left(Q_{k, j}\right)^{\alpha} m_{3 Q_{k, j}}(|f|)\left(f_{Q_{k, j}} M\left[\left(v_{k, j} g\right)^{\theta_{2}}\right](x)^{\frac{1}{\theta_{2}}} d x\right) d y .
\end{aligned}
$$

We take $s \in(q, r)$ and $L>1$ as in Lemma 3. By Hölder's inequality for $s>1$, we have

$$
M\left[\left(v_{k, j} g\right)^{\theta_{2}}\right](x)^{\frac{1}{\theta_{2}}} \leq M\left[v_{k, j}^{s \theta_{2}}\right](x)^{\frac{1}{s \theta_{2}}} M\left[g^{s^{\prime} \theta_{2}}\right](x)^{\frac{1}{s^{\prime} \theta_{2}}} .
$$

By Hölder's inequality for $L q>1$, we obtain the following inequality:

$$
\begin{aligned}
& \left(f_{Q_{k, j}} M\left[\left(v_{k, j} g\right)^{\theta_{2}}\right](x)^{\frac{1}{\theta_{2}}} d x\right) \\
& \leq\left(f_{Q_{k, j}} M\left[v_{k, j}^{s \theta_{2}}\right](x)^{\frac{L q}{s \theta_{2}}} d x\right)^{\frac{1}{L q}}\left(f_{Q_{k, j}} M\left[g^{s^{\prime} \theta_{2}}\right](x)^{\frac{(L q)^{\prime}}{s^{\prime} \theta_{2}}} d x\right)^{\frac{1}{(L q)^{\prime}}} .
\end{aligned}
$$

Since $s \theta_{2}<L q$, the boundedness of $M: L^{\frac{L q}{s \sigma_{2}}}\left(\mathbb{R}^{n}\right) \rightarrow L^{\frac{L q}{t_{2}}}\left(\mathbb{R}^{n}\right)$ gives us the following inequality:

$$
\begin{aligned}
& \left(f_{Q_{k, j}} M\left[\left(v_{k, j} g\right)^{\theta_{2}}\right](x)^{\frac{1}{\theta_{2}}} d x\right) \\
& \quad \leq C\left(\frac{1}{\left|Q_{k, j}\right|} \int_{\mathbb{R}^{n}} v_{k, j}(x)^{L q} d x\right)^{\frac{1}{L q}}\left(f_{Q_{k, j}} M\left[g^{s^{\prime} \theta_{2}}\right](x)^{\frac{(L q)^{\prime}}{s^{\prime} \theta_{2}}} d x\right)^{\frac{1}{(L q)^{\prime}}} .
\end{aligned}
$$

Since $a \geq L>1$, by Hölder's inequality for $\frac{a}{L} \geq 1$,

$$
\begin{aligned}
& \left(f_{Q_{k, j}} M\left[\left(v_{k, j} g\right)^{\theta_{2}}\right](x)^{\frac{1}{\theta_{2}}} d x\right) \\
& \quad \leq C\left(f_{Q_{k, j}} v(x)^{a q} d x\right)^{\frac{1}{a q}}\left(f_{Q_{k, j}} M\left[g^{s^{\prime} \theta_{2}}\right](x)^{\frac{(L q)^{\prime}}{s^{\prime} \theta_{2}}} d x\right)^{\frac{1}{(L q)^{\prime}}} .
\end{aligned}
$$

By Lemma 2, this implies that

$$
I_{k, j} \leq 2 A\|b\|_{\mathrm{BMO}}^{m} \int_{E_{k, j}} M_{\alpha, a q}(f, v)(x) \cdot M\left[M\left[g^{g^{\prime} \theta_{2}}\right]^{\frac{(L q)^{\prime}}{s^{\prime} \theta_{2}}}\right](x)^{\frac{1}{(L q)^{\prime}}} d x,
$$

where

$$
M_{\alpha, a q}(f, v)(x):=\sup _{Q \ni x} l(Q)^{\alpha} m_{3 Q}(f)\left(f_{Q} v(x)^{a q} d x\right)^{\frac{1}{a q}}
$$

A similar argument gives us the following estimate:

$$
I_{0} \leq 2 A\|b\|_{\mathrm{BMO}}^{m} \int_{E_{0}} M_{\alpha, a q}(f, v)(x) \cdot M\left[M\left[g^{s^{\prime} \theta_{2}}\right]^{\frac{(L q)^{\prime}}{s^{\prime} \theta_{2}}}\right](x)^{\frac{1}{(L q)^{\prime}}} d x .
$$

By summing up I_{0} and $I_{k, j}$, we obtain

$$
I_{0}+\sum_{k, j} I_{k, j} \leq 2 A\|b\|_{\mathrm{BMO}}^{m} \int_{\mathrm{Q}_{0}} M_{\alpha, a q}(f, v)(x) \cdot M\left[M\left[g^{s^{\prime} \theta_{2}}\right]^{\frac{(L q)^{\prime}}{s^{\prime} \theta_{2}}}\right](x)^{\frac{1}{(L q)^{\prime}}} d x .
$$

By Hölder's inequality for $q>1$, we have

$$
\begin{aligned}
& \int_{Q_{0}} M_{\alpha, a q}(f, v)(x) \cdot M\left[M\left[g^{g^{\prime} \theta_{2}}\right]^{\frac{(L q)^{\prime}}{s^{\prime} \theta_{2}}}\right](x)^{\frac{1}{(L q)^{\prime}}} d x \\
& \quad \leq\left(\int_{Q_{0}} M_{\alpha, a q}(f, v)(x)^{q} d x\right)^{\frac{1}{q}}\left(\int_{Q_{0}} M\left[M\left[g^{g^{\prime} \theta_{2}}\right]^{\frac{(L q)^{\prime}}{s^{\prime} \theta_{2}}}\right](x)^{\frac{q^{\prime}}{(L q)^{\prime}}} d x\right)^{\frac{1}{q^{\prime}}} .
\end{aligned}
$$

Since $(L q)^{\prime}<q^{\prime}$, the boundedness of $M: L^{\frac{q^{\prime}}{(L q)^{\prime}}}\left(\mathbb{R}^{n}\right) \rightarrow L^{\frac{q^{\prime}}{(L q)^{\prime}}}\left(\mathbb{R}^{n}\right)$ gives us the following inequality:

$$
\begin{aligned}
\left(\int_{Q_{0}} M\left[M\left[g^{s^{\prime} \theta_{2}}\right]^{\frac{(L q)^{\prime}}{s^{\prime} \theta_{2}}}\right](x)^{\frac{q^{\prime}}{(L q)^{\prime}}} d x\right)^{\frac{1}{q^{\prime}}} & \leq C\left(\int_{\mathbb{R}^{n}} M\left[g^{s^{\prime} \theta_{2}}\right](x)^{\frac{(L q)^{\prime}}{s^{\prime} \theta_{2}} \cdot \frac{q^{\prime}}{(L q)^{\prime}}} d x\right)^{\frac{1}{q^{\prime}}} \\
& =C\left(\int_{\mathbb{R}^{n}} M\left[g^{s^{\prime} \theta_{2}}\right](x)^{\frac{q^{\prime}}{s^{\prime} \theta_{2}}} d x\right)^{\frac{1}{q^{\prime}}}
\end{aligned}
$$

Since $s^{\prime} \theta_{2}<q^{\prime}$, the boundedness of $M: L^{\frac{q^{\prime}}{s^{\prime} \theta_{2}}}\left(\mathbb{R}^{n}\right) \rightarrow L^{\frac{q^{\prime}}{s^{\prime} \theta_{2}}}\left(\mathbb{R}^{n}\right)$ gives us the following inequality:

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{n}} M\left[g^{s^{\prime} \theta_{2}}\right](x)^{\frac{q^{\prime}}{s^{\prime} \theta_{2}}} d x\right)^{\frac{1}{q^{\prime}}} & \leq C\left(\int_{Q_{0}}|g(x)|^{s^{\prime} \theta_{2} \cdot \frac{q^{\prime}}{s^{\prime} \theta_{2}}} d x\right)^{\frac{1}{q^{\prime}}} \\
& =C\left(\int_{Q_{0}}|g(x)|^{q^{\prime}} d x\right)^{\frac{1}{q^{\prime}}}=C .
\end{aligned}
$$

By Hölder's inequality for $\frac{p}{a}>1$, we obtain

$$
M_{\alpha, a q}(f, v)(x) \leq \sup _{Q \ni x} l(Q)^{\alpha} m_{3 Q}\left(|f w|^{\frac{p}{a}}\right)^{\frac{a}{p}}\left(f_{Q} v(y)^{a q} d y\right)^{\frac{1}{a q}}\left(f_{3 Q} w(y)^{-(p / a)^{\prime}} d y\right)^{\frac{1}{(p / a)^{\prime}}}
$$

By the condition (2), we obtain

$$
\begin{aligned}
M_{\alpha, a q}(f, v)(z) & \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a} \sup _{Q \ni z} l(Q)^{\alpha-\frac{n}{r_{0}}} m_{3 Q}\left(|f w|^{\frac{p}{a}}\right)^{\frac{a}{p}} \\
& \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a} M_{\left(\alpha-\frac{n}{r_{0}}\right) \frac{p}{a}}\left((f w)^{\frac{p}{a}}\right)(z)^{\frac{a}{p}} .
\end{aligned}
$$

This implies that

$$
\left|Q_{0}\right|^{\frac{1}{q_{0}}}\left(f_{Q_{0}} M_{\alpha, a q}(f, v)(z)^{q} d z\right)^{\frac{1}{q}} \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a}\left\|M_{\left(\alpha-\frac{n}{r_{0}}\right) \frac{p}{a}}\left((f w)^{\frac{p}{a}}\right)\right\|_{\mathcal{M}_{\frac{a q}{p}}^{\frac{a}{p}}}^{\frac{a q_{0}}{p}} .
$$

Since

$$
\frac{1}{q_{0}} \cdot \frac{p}{a}=\frac{1}{p_{0}} \cdot \frac{p}{a}-\frac{\left(\alpha-\frac{n}{r_{0}}\right) \cdot \frac{p}{a}}{n} \text { and } \frac{\frac{a p_{0}}{p}}{\frac{a q_{0}}{p}}=\frac{a}{\frac{a q}{p}},
$$

by Theorem A , we have

$$
\begin{aligned}
& \left|Q_{0}\right|^{\frac{1}{q_{0}}}\left(f_{Q_{0}} M_{\alpha, a q}(f, v)(z)^{q} d z\right)^{\frac{1}{q}} \\
& \quad \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a}\left\|(f w)^{\frac{p}{a}}\right\|_{\mathcal{M}_{a}^{\frac{a}{p}}}^{\frac{a p_{0}}{p}} \\
& \quad=C[v, w]_{a q_{0}, r_{0}, a q, p / a}\left(\sup _{Q}|Q|^{\frac{p}{a p_{0}}}\left(f_{Q}|f(x) w(x)|^{\frac{p}{a} \cdot a} d x\right)^{\frac{1}{a}}\right)^{\frac{a}{p}}
\end{aligned}
$$

$$
\begin{aligned}
& =C[v, w]_{a q_{0}, r_{0}, a q, p / a} \sup _{Q}|Q|^{\frac{1}{p_{0}}}\left(f_{Q}|f(x)|^{p} w(x)^{p} d x\right)^{\frac{1}{p}} \\
& =C[v, w]_{a q_{0}, r_{0}, a q, p / a}\|f w\|_{\mathcal{M}_{p}^{p_{0}}}
\end{aligned}
$$

We evaluate $I I$. Let

$$
\mathcal{D}_{0}^{\prime}\left(Q_{0}\right):=\left\{Q \in \mathcal{D}\left(Q_{0}\right) ;\left(f_{3 Q}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}} \leq \gamma^{\prime} A^{\prime}\right\}
$$

and

$$
\mathcal{D}_{k, j}^{\prime}\left(Q_{0}\right):=\left\{Q \in \mathcal{D}\left(Q_{0}\right) ; Q \subset Q_{k, j}^{\prime}, \gamma^{\prime} A^{\prime k}<\left(f_{3 Q}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}} \leq \gamma^{\prime} A^{\prime k+1}\right\}
$$

where $Q_{k, j}^{\prime}$ is found in Lemma 2. Then we have

$$
\mathcal{D}\left(Q_{0}\right)=\mathcal{D}_{0}^{\prime}\left(Q_{0}\right) \cup\left(\bigcup_{k, j} \mathcal{D}_{k, j}^{\prime}\left(Q_{0}\right)\right)
$$

By the duality argument, we have

$$
\left(\int_{Q_{0}} I I^{q} \cdot v(x)^{q} d x\right)^{\frac{1}{q}}=\sup _{\|g\|_{L^{q^{\prime}}\left(Q_{0}\right)}=1}\left(\int_{Q_{0}} I I \cdot v(x)|g(x)| d x\right) .
$$

Let $g \geq 0$ be such that $\operatorname{supp}(g) \subset Q_{0}$ and $\|g\|_{L^{q^{\prime}}\left(Q_{0}\right)}=1$. We have

$$
\begin{aligned}
\int_{Q_{0}} I I \cdot v(x) g(x) d x & \leq \sum_{Q \in \mathcal{D}\left(Q_{0}\right)} l(Q)^{\alpha}\left(f_{3 Q}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}}\|v g\|_{L^{1}(Q)} \\
& \leq\left(\sum_{Q \in \mathcal{D}_{0}^{\prime}\left(Q_{0}\right)}+\sum_{k, j} \sum_{Q \in \mathcal{D}_{k, j}^{\prime}\left(Q_{0}\right)}\right) l(Q)^{\alpha}\left(f_{3 Q}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}}\|v g\|_{L^{1}(Q)} \\
& \leq\left(I I_{0}+\sum_{k, j} I I_{k, j}\right) .
\end{aligned}
$$

We evaluate $I I_{k, j}$. If $Q \in \mathcal{D}_{k, j}^{\prime}\left(Q_{0}\right)$, then we have

$$
\left(f_{3 Q}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}} \leq \gamma^{\prime} A^{\prime k+1}
$$

Therefore we obtain

$$
\begin{aligned}
I I_{k, j} & \leq \sum_{Q \in \mathcal{D}_{k, j}^{\prime}\left(Q_{0}\right)} l(Q)^{\alpha}\left(f_{3 Q}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}} \int_{Q} v(x) g(x) d x \\
& \leq \gamma^{\prime} A^{\prime k+1} \sum_{Q \in \mathcal{D}_{k, j}^{\prime}\left(Q_{0}\right)} l(Q)^{\alpha} \int_{Q} v(x) g(x) d x .
\end{aligned}
$$

Since

$$
\gamma^{\prime} A^{\prime k} \leq\left(f_{3 Q_{k, j}^{\prime}}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}}
$$

we obtain

$$
I I_{k, j} \leq A^{\prime}\left(f_{3 Q_{k, j}^{\prime}}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}} l\left(Q_{k, j}^{\prime}\right)^{\alpha}\left(f_{Q_{k, j}^{\prime}} v(x) g(x) d x\right)\left|Q_{k, j}^{\prime}\right| .
$$

By Hölder's inequality for $\theta_{3}>1$ as in Lemma 3, we have

$$
\begin{aligned}
I I_{k, j} \leq & A^{\prime}\left(f_{3 Q_{k, j}^{\prime}}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}} l\left(Q_{k, j}^{\prime}\right)^{\alpha}\left(f_{Q_{k, j}^{\prime}} v(x)^{\theta_{3} q} d x\right)^{\frac{1}{\theta_{3} q}} \\
& \times\left(f_{Q_{k, j}^{\prime}} g(x)^{\left(\theta_{3} q\right)^{\prime}} d x\right)^{\frac{1}{\left.\theta_{3} q\right)^{\prime}}}\left|Q_{k, j}^{\prime}\right| .
\end{aligned}
$$

By Lemma 2, we obtain

$$
\begin{aligned}
I I_{k, j} \leq & 2 A^{\prime}\left(f_{3 Q_{k, j}^{\prime}}|f(y)|^{\theta_{1}} d y\right)^{\frac{1}{\theta_{1}}} l\left(Q_{k, j}^{\prime}\right)^{\alpha}\left(f_{Q_{k, j}^{\prime}} v(x)^{\theta_{3} q} d x\right)^{\frac{1}{\theta_{3} q}} \\
& \times\left(f_{Q_{k, j}^{\prime}} g(x)^{\left(\theta_{3} q\right)^{\prime}} d x\right)^{\frac{1}{\left(\theta_{3} q\right)^{\prime}}}\left|E_{k, j}^{\prime}\right| \\
= & 2 A^{\prime} \int_{E_{k, j}^{\prime}} l\left(Q_{k, j}^{\prime}\right)^{\alpha}\left(f_{3 Q_{k, j}^{\prime}}|f(x)|^{\theta_{1}} d x\right)^{\frac{1}{\theta_{1}}}\left(f_{Q_{k, j}^{\prime}} v(x)^{\theta_{3} q} d x\right)^{\frac{1}{\theta_{3} q}} \\
& \times\left(f_{Q_{k, j}^{\prime}} g(x)^{\left(\theta_{3} q\right)^{\prime}} d x\right)^{\frac{1}{\left(\theta_{3} q\right)^{\prime}}} d y \\
\leq & 2 A^{\prime} \int_{E_{k, j}^{\prime}} \tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(y) \cdot M\left[g^{\left(\theta_{3} q\right)^{\prime}}\right](y)^{\frac{1}{\left.\theta_{3} q\right)^{\prime}}} d y,
\end{aligned}
$$

where

$$
\tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(y):=\sup _{Q \ni y} l(Q)^{\alpha}\left(f_{3 Q}|f(x)|^{\theta_{1}} d x\right)^{\frac{1}{\theta_{1}}}\left(f_{Q} v(x)^{\theta_{3} q} d x\right)^{\frac{1}{\theta_{3} q}} .
$$

A similar argument gives us the following estimate:

$$
I I_{0} \leq 2 A^{\prime} \int_{E_{0}^{\prime}} \tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(y) \cdot M\left[g^{\left(\theta_{3} q\right)^{\prime}}\right](y)^{\frac{1}{\left.\theta_{3} q\right)^{\prime}}} d y .
$$

By summing up $I I_{0}$ and $I I_{k, j}$, we obtain

$$
I I_{0}+\sum_{k, j} I I_{k, j} \leq 2 A^{\prime} \int_{Q_{0}} \tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(y) \cdot M\left[g^{\left(\theta_{3} q\right)^{\prime}}\right](y)^{\frac{1}{\left(\theta_{3} q\right)^{\prime}}} d y
$$

By Hölder's inequality for $q>1$, we have

$$
\begin{aligned}
& \int_{Q_{0}} \tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(y) \cdot M\left[g^{\left(\theta_{3} q\right)^{\prime}}\right](y)^{\frac{1}{\left(\theta_{3} q\right)^{\prime}}} d y \\
& \quad \leq\left(\int_{Q_{0}} \tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(y)^{q} d y\right)^{\frac{1}{q}} \cdot\left(\int_{Q_{0}} M\left[g^{\left(\theta_{3} q\right)^{\prime}}\right](y)^{\frac{q^{\prime}}{\left(\theta_{3} q\right)^{\prime}}} d y\right)^{\frac{1}{q^{\prime}}} .
\end{aligned}
$$

Since $\left(\theta_{3} q\right)^{\prime}<q^{\prime}$ and $\operatorname{supp}(g) \subset Q_{0}$, by the boundedness of $M: L^{\frac{q^{\prime}}{\left(\theta_{3} q\right)^{\prime}}}\left(\mathbb{R}^{n}\right) \rightarrow L^{\frac{q^{\prime}}{\left(\theta_{3} q\right)^{\prime}}}\left(\mathbb{R}^{n}\right)$, we have

$$
\left(\int_{Q_{0}} M\left[g^{\left(\theta_{3} q\right)^{\prime}}\right](y)^{\frac{q^{\prime}}{\left(\theta_{3} q\right)^{\prime}}} d y\right)^{\frac{1}{q^{\prime}}} \leq C\left(\int_{Q_{0}} g(x)^{\left(\theta_{3} q\right)^{\prime} \cdot \frac{q^{\prime}}{\left(\theta_{3} q\right)^{\prime}}} d x\right)^{\frac{1}{q^{\prime}}}=C .
$$

Therefore we have

$$
\int_{Q_{0}} \tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(y) \cdot M\left[g^{\left(\theta_{3} q\right)^{\prime}}\right](y)^{\frac{1}{\left(\theta_{3} q\right)^{\prime}}} d y \leq C\left(\int_{Q_{0}} \tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(y)^{q} d y\right)^{\frac{1}{q}}
$$

By Hölder's inequality for $\frac{p}{a_{*} \theta_{1}}>1$ as in Lemma 3, we have

$$
\begin{aligned}
\tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(x) \leq & C \sup _{Q \exists x} l(Q)^{\alpha} m_{3 Q}\left(|f w|^{\frac{p}{a_{*}}}\right)^{\frac{a_{*}}{p}} \\
& \times\left(f_{3 Q} w(y)^{-\theta_{1}\left(\frac{p}{\theta_{1} a_{*}}\right)^{\prime}} d y\right)^{\frac{1}{\theta_{1}} \frac{1}{\left(\frac{p}{\theta_{1} a_{*}}\right)^{\prime}}}\left(f_{Q} v(y)^{\theta_{3} q} d y\right)^{\frac{1}{\theta_{3} q}} .
\end{aligned}
$$

By Lemma 3, we have $\theta_{1}\left(\frac{p}{\theta_{1} a_{*}}\right)^{\prime} \leq\left(\frac{p}{a}\right)^{\prime}$. By Hölder's inequality, we have

$$
\begin{aligned}
\tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(x) \leq & C \sup _{Q \ni x}\left(l(Q)^{\alpha \cdot \frac{p}{a_{*}}} m_{3 Q}\left(|f w|^{\frac{p}{a_{*}}}\right)\right)^{\frac{a_{*}}{p}}\left(\frac{|3 Q|}{|Q|}\right)^{\frac{1}{a_{0}}}|3 Q|^{-\frac{1}{r_{0}}} \\
& \times\left(\frac{|Q|}{|3 Q|}\right)^{\frac{1}{a_{0}}}|3 Q|^{\frac{1}{r_{0}}}\left(f_{Q} v(y)^{\theta_{3} q} d y\right)^{\frac{1}{\theta_{3 q}}}\left(f_{3 Q} w(y)^{-(p / a)^{\prime}} d y\right)^{\frac{1}{(p / a)^{\prime}}} .
\end{aligned}
$$

By the condition (2), we obtain

$$
\begin{aligned}
\tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(x) & \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a} \sup _{Q \ni x}\left(l(Q)^{\alpha \cdot \frac{p}{a_{*}}-\frac{n}{r_{0}} \cdot \frac{p}{a_{*}}} m_{3 Q}\left(|f w|^{\frac{p}{a_{*}}}\right)\right)^{\frac{a_{*}}{p}} \\
& =C[v, w]_{a q_{0}, r_{0}, a q, p / a} \cdot M_{\left(\alpha-\frac{n}{r_{0}}\right) \frac{p}{a_{*}}}\left(|f w|^{\frac{p}{a_{*}}}\right)(x)^{\frac{a_{*}}{p}} .
\end{aligned}
$$

This implies that

$$
\left|Q_{0}\right|^{\frac{1}{q_{0}}}\left(f_{Q_{0}} \tilde{M}_{\alpha, \theta_{1}, \theta_{3} q}\left(f^{\theta_{1}}, v\right)(x)^{q} d x\right)^{\frac{1}{q}} \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a}\left\|M_{\left(\alpha-\frac{n}{r_{0}}\right) \frac{p}{a_{*}}}\left(|f w|^{\frac{p}{a_{*}}}\right)\right\|_{\mathcal{M}_{\frac{\mathcal{M}^{\frac{a}{*}}}{\frac{a_{*} q_{0}}{p}}}^{\frac{a_{*}}{p}}} .
$$

Since

$$
\frac{1}{q_{0}} \cdot \frac{p}{a_{*}}=\frac{1}{p_{0}} \cdot \frac{p}{a_{*}}-\frac{\left(\alpha-\frac{n}{r_{0}}\right) \cdot \frac{p}{a_{*}}}{n} \text { and } \frac{\frac{a_{*} p_{0}}{p}}{\frac{p}{a_{*} q_{0}}}=\frac{a_{*}}{\frac{a_{*} q}{p}},
$$

by Theorem A, we have

$$
\left\|M_{\left(\alpha-\frac{n}{r_{0}}\right) \frac{p}{a_{*}}}\left(|f w|^{\frac{p}{a_{*}}}\right)\right\|_{\mathcal{M}_{\frac{a}{\frac{a_{* q}}{p}}}^{\frac{a_{*} q_{0}}{p}}}^{\frac{a_{*}}{p}} \leq\left\||f w|^{\frac{p}{a_{*}}}\right\|_{\mathcal{M}_{a_{*}}^{\frac{a_{*}}{p}}}^{\frac{a_{*}}{p}}=\|f w\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

Therefore we have

$$
\|I I \cdot v\|_{\mathcal{M}_{q}^{q_{0}}} \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} .
$$

4.2 The estimate of B

Since $|b(x)-b(y)|^{m} \leq 2^{m-1}\left(\left|b(x)-m_{Q}(b)\right|^{m}+\left|m_{Q}(b)-b(y)\right|^{m}\right)$, we have

$$
\begin{aligned}
& \int_{3 Q}|b(x)-b(y)|^{m}|f(y)| d y \\
& \quad \leq C \int_{3 Q}\left|b(x)-m_{Q}(b)\right|^{m}|f(y)| d y+C \int_{3 Q}\left|m_{Q}(b)-b(y)\right|^{m}|f(y)| d y
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
v(x) B \leq & C v(x) \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}|Q|^{\left(\frac{\alpha}{n}-1\right)} \chi_{Q}(x) \int_{3 Q}\left|b(x)-m_{Q}(b)\right|^{m}|f(y)| d y \\
& +C v(x) \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}|Q|^{\left(\frac{\alpha}{n}-1\right)} \chi_{Q}(x) \int_{3 Q}\left|m_{Q}(b)-b(y)\right|^{m}|f(y)| d y \\
= & C C_{1}[f, v](x)+C C_{2}[f, v](x) .
\end{aligned}
$$

By Hölder's inequality and the definition of the Morrey norm we obtain

$$
\begin{aligned}
C_{1}[f, v](x)= & v(x) \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}|Q|^{\left(\frac{\alpha}{n}-1\right)} \chi_{Q}(x)\left|b(x)-m_{Q}(b)\right|^{m} \int_{3 Q}|f(y)| d y \\
\leq & v(x) \sum_{\substack{Q \supsetneq Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}|Q|^{\left(\frac{\alpha}{n}-1\right)} \chi_{Q}(x)\left|b(x)-m_{Q}(b)\right|^{m}|3 Q|^{\frac{1}{p_{0}}}\left(f_{3 Q}|f(y)|^{p} w(y)^{p} d y\right)^{\frac{1}{p}} \\
& \times|3 Q|^{1-\frac{1}{p_{0}}}\left(f_{3 Q} w(y)^{-p^{\prime}} d y\right)^{\frac{1}{p^{\prime}}} \\
\leq & C\|f w\|_{\mathcal{M}_{p}^{p_{0}}} v(x) \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}|3 Q|^{\frac{\alpha}{n}-\frac{1}{p_{0}}}\left(f_{3 Q} w(y)^{-p^{\prime}} d y\right)^{\frac{1}{p^{\prime}}}\left|b(x)-m_{Q}(b)\right|^{m} .
\end{aligned}
$$

Since $\frac{1}{q_{0}}=\frac{1}{p_{0}}+\frac{1}{r_{0}}-\frac{\alpha}{n}$, the integral of $C_{1}[f, v](x)^{q}$ on Q_{0} is evaluated as follows:

$$
\begin{aligned}
& \left|Q_{0}\right|^{\frac{1}{q_{0}}}\left(f_{Q_{0}} C_{1}[f, v](x)^{q} d x\right)^{\frac{1}{q}} \\
& \quad \leq C\|f w\|_{\mathcal{M}_{p}^{p_{0}}} \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}\left|Q_{0}\right|^{\frac{1}{q_{0}}}|3 Q|^{\frac{1}{r_{0}}-\frac{1}{q_{0}}}\left(f_{3 Q} w(y)^{-p^{\prime}} d y\right)^{\frac{1}{p^{\prime}}}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(f_{Q_{0}} v(x)^{q}\left|b(x)-m_{Q}(b)\right|^{m q} d x\right)^{\frac{1}{q}} \\
= & C\|f w\|_{\mathcal{M}_{p}^{p_{0}}} \sum_{\substack{Q \neq Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}\left(\frac{\left|Q_{0}\right|}{|3 Q|}\right)^{\frac{1}{q_{0}}}|3 Q|^{\frac{1}{r_{0}}}\left(f_{3 Q} w(y)^{-p^{\prime}} d y\right)^{\frac{1}{p^{\prime}}} \\
& \times\left(f_{Q_{0}} v(x)^{q}\left|b(x)-m_{Q}(b)\right|^{m q} d x\right)^{\frac{1}{q}} .
\end{aligned}
$$

By Hölder's inequality for $\theta_{4}>1$ as in Lemma 3, we have

$$
\begin{align*}
& \left(f_{Q_{0}} v(x)^{q}\left|b(x)-m_{Q}(b)\right|^{m q} d x\right)^{\frac{1}{q}} \\
& \quad \leq\left(f_{Q_{0}} v(x)^{q \theta_{4}} d x\right)^{\frac{1}{q \theta_{4}}}\left(f_{Q_{0}}\left|b(x)-m_{Q}(b)\right|^{m q \theta_{4}^{\prime}} d x\right)^{\frac{1}{q \theta_{4}^{\prime}}} \tag{6}
\end{align*}
$$

We evaluate $\left|b(x)-m_{Q}(b)\right|$. If $Q \supsetneqq Q_{0}$ and $Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)$, then there exists $k=1,2, \ldots$, such that $Q_{k}:=Q, Q_{j} \in \mathcal{D}\left(\mathbb{R}^{n}\right), Q_{j} \supsetneqq Q_{j-1}$ and $\left|Q_{j}\right|=2^{n}\left|Q_{j-1}\right|(j=1,2, \ldots, k)$. By the triangle inequality, we obtain

$$
\begin{aligned}
\left|b(x)-m_{Q}(b)\right| & \leq\left|b(x)-m_{Q_{0}}(b)\right|+\left|m_{Q_{0}}(b)-m_{Q}(b)\right| \\
& =\left|b(x)-m_{Q_{0}}(b)\right|+\left|\sum_{j=1}^{k}\left(m_{Q_{j-1}}(b)-m_{Q_{j}}(b)\right)\right| \\
& \leq\left|b(x)-m_{Q_{0}}(b)\right|+\sum_{j=1}^{k}\left|m_{Q_{j-1}}(b)-m_{Q_{j}}(b)\right| .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
\left|m_{Q_{j-1}}(b)-m_{Q_{j}}(b)\right| & =\left|f_{Q_{j-1}} b(y) d y-m_{Q_{j}}(b)\right| \\
& =\left|f_{Q_{j-1}}\left(b(y)-m_{Q_{j}}(b)\right) d y\right| \\
& \leq f_{Q_{j-1}}\left|b(y)-m_{Q_{j}}(b)\right| d y \\
& \leq \frac{2^{n}}{\left|Q_{j}\right|} \int_{Q_{j}}\left|b(y)-m_{Q_{j}}(b)\right| d y \\
& \leq 2^{n}\|b\|_{\text {BMO }} \quad(j=1,2, \ldots),
\end{aligned}
$$

where we invoke Definition 2 for the last line. By the inequality $(a+b)^{m} \leq 2^{m-1}\left(a^{m}+b^{m}\right)$:

$$
\begin{align*}
\left|b(x)-m_{Q}(b)\right|^{m} & \leq\left(\left|b(x)-m_{Q_{0}}(b)\right|+2^{n} k\|b\|_{\mathrm{BMO}}\right)^{m} \\
& \leq C\left(\left|b(x)-m_{\mathrm{Q}_{0}}(b)\right|^{m}+2^{m n} k^{m}\|b\|_{\mathrm{BMO}}^{m}\right) . \tag{7}
\end{align*}
$$

By the estimates (6), (7), and Hölder's inequality for $(p / a)^{\prime}>p^{\prime}$, we obtain

$$
\begin{aligned}
& \sum_{\substack{Q \not Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}\left(\frac{\left|Q_{0}\right|}{|3 Q|}\right)^{\frac{1}{q_{0}}}|3 Q|^{\frac{1}{r_{0}}}\left(f_{3 Q} w(y)^{-p^{\prime}} d y\right)^{\frac{1}{p^{\prime}}}\left(f_{Q_{0}} v(x)^{q}\left|b(x)-m_{Q}(b)\right|^{m q} d x\right)^{\frac{1}{q}} \\
& \leq C \sum_{k=1}^{\infty} \sum_{\substack{Q_{k} \in \mathcal{D}\left(\mathbb{R}^{n}\right), Q_{k} \supset Q_{0},\left|Q_{k}\right|=2^{k n}\left|Q_{0}\right|}}\left(\frac{\left|Q_{0}\right|}{\left|3 Q_{k}\right|}\right)^{\frac{1}{q_{0}}}\left|3 Q_{k}\right|^{\frac{1}{r_{0}}}\left(f_{3 Q_{k}} w(y)^{-(p / a)^{\prime}} d y\right)^{\frac{1}{(p / a)^{\prime}}} \\
& \quad \times\left(f_{Q_{0}} v(x)^{q \theta_{4}} d x\right)^{\frac{1}{q \theta_{4}}}\left(f_{Q_{0}}\left(\left|b(x)-m_{Q_{0}}(b)\right|^{m}+2^{m n} k^{m}\|b\|_{\mathrm{BMO}}^{m}\right)^{q \theta_{4}^{\prime}} d x\right)^{\frac{1}{q \theta_{4}^{\prime}}}
\end{aligned}
$$

By the triangle inequality on $L^{q \theta_{4}^{\prime}}\left(\mathbb{R}^{n}\right)$, we obtain

$$
\begin{align*}
& \left(f_{Q_{0}}\left(\left|b(x)-m_{Q_{0}}(b)\right|^{m}+2^{m n} k^{m}\|b\|_{\mathrm{BMO}}^{m}\right)^{q \theta_{4}^{\prime}} d x\right)^{\frac{1}{q \theta_{4}^{\prime}}} \\
& \quad \leq\left(f_{Q_{0}}\left|b(x)-m_{Q_{0}}(b)\right|^{m q \theta_{4}^{\prime}} d x\right)^{\frac{1}{q \theta_{4}^{\prime}}}+\left(f_{Q_{0}}\left(2^{m n} k^{m}\|b\|_{\mathrm{BMO}}^{m}\right)^{q \theta_{4}^{\prime}} d x\right)^{\frac{1}{q \theta_{4}^{\prime}}} \tag{8}
\end{align*}
$$

By the estimate (8), we obtain

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \sum_{\substack{Q_{k} \in \mathcal{D}\left(\mathbb{R}^{n}\right), Q_{k} \supset Q_{0}, Q_{k} \mid=2^{k n}}}\left(\left.\frac{\left|Q_{0}\right|}{\left|3 Q_{0}\right|} \right\rvert\,\right)^{\frac{1}{q_{0}}}\left|3 Q_{k}\right|^{\frac{1}{\gamma_{0}}}\left(f_{3 Q_{k}} w(y)^{-(p / a)^{\prime}} d y\right)^{\frac{1}{(p / a)^{\prime}}}\left(f_{Q_{0}} v(x)^{q \theta_{4}} d x\right)^{\frac{1}{q_{4}}} \\
& \times\left(f_{Q_{0}}\left(\left|b(x)-m_{Q_{0}}(b)\right|^{m}+2^{m n} k^{m}\|b\|_{\mathrm{BMO}}^{m}\right)^{q \theta_{4}^{\prime}} d x\right)^{\frac{1}{\theta_{4}^{\prime}}} \\
& \leq \sum_{k=1}^{\infty} \sum_{\substack{Q_{k} \mathcal{D}\left(\mathbb{R}^{n}\right), Q_{k} \supset \mathrm{Q}_{0},\left|Q_{k}\right|=2^{n}\left| \\
Q_{0}\right|}}\left(\frac{\left|Q_{0}\right|}{\left|3 Q_{k}\right|}\right)^{\frac{1}{q_{0}}}\left|3 Q_{k}\right|^{\frac{1}{r_{0}}} \\
& \times\left(f_{3 \mathrm{Q}_{k}} w(y)^{-(p / a)^{\prime}} d y\right)^{\frac{1}{(p / a)^{\prime}}}\left(f_{\mathrm{Q}_{0}} v(x)^{q \theta_{4}} d x\right)^{\frac{1}{q_{\varphi}}} \\
& \times\left\{\left(f_{Q_{0}}\left|b(x)-m_{Q_{0}}(b)\right|^{m q \theta_{4}^{\prime}} d x\right)^{\frac{1}{\theta_{4}^{\prime}}}+\left(f_{\mathrm{Q}_{0}}\left(2^{m n} k^{m}\|b\|_{\mathrm{BMO}}^{m}\right)^{q \theta_{4}^{\prime}} d x\right)^{\frac{1}{\theta_{4}^{\theta_{4}}}}\right\} \text {. }
\end{aligned}
$$

By Lemma 1, we have

$$
\begin{equation*}
\left(f_{\mathrm{Q}_{0}}\left|b(x)-m_{\mathrm{Q}_{0}}(b)\right|^{m q \theta_{4}^{\prime}} d x\right)^{\frac{1}{q \theta_{4}^{\prime}}} \leq C\|b\|_{\mathrm{BMO}}^{m} \tag{9}
\end{equation*}
$$

The estimate (9) gives us the following:

$$
\begin{align*}
& \left(f_{Q_{0}}\left|b(x)-m_{Q_{0}}(b)\right|^{m q \theta_{4}^{\prime}} d x\right)^{\frac{1}{q \theta_{4}^{\prime}}}+\left(f_{Q_{0}}\left(2^{m n} k^{m}\|b\|_{\mathrm{BMO}}^{m}\right)^{q \theta_{4}^{\prime}} d x\right)^{\frac{1}{q \theta_{4}^{\prime}}} \\
& \quad \leq C\|b\|_{\mathrm{BMO}}^{m}\left(1+2^{m n} k^{m}\right) . \tag{10}
\end{align*}
$$

As a consequence of (10), we obtain the following inequality:

$$
\begin{aligned}
& \sum_{\substack{Q \not Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}\left(\frac{\left|Q_{0}\right|}{|3 Q|}\right)^{\frac{1}{q_{0}}}|3 Q|^{\frac{1}{r_{0}}}\left(f_{3 Q} w(y)^{-p^{\prime}} d y\right)^{\frac{1}{p^{\prime}}}\left(f_{Q_{0}} v(x)^{q}\left|b(x)-m_{Q}(b)\right|^{m q} d x\right)^{\frac{1}{q}} \\
& \leq C\|b\|_{\mathrm{BMO}}^{m} \sum_{k=1}^{\infty} \sum_{\substack{Q_{k} \in \mathcal{D}\left(\mathbb{R}^{n}\right), Q_{k} \supset Q_{0},\left|Q_{k}\right|=2^{k n}\left|Q_{0}\right|}}\left(\frac{\left|Q_{0}\right|}{\left|3 Q_{k}\right|}\right)^{\frac{1}{a q_{0}}}\left|3 Q_{k}\right|^{\frac{1}{r_{0}}}\left(f_{3 Q_{k}} w(y)^{-(p / a)^{\prime}} d y\right)^{\frac{1}{(p / a)^{\prime}}} \\
& \quad \times\left(f_{Q_{0}} v(x)^{q \theta_{4}} d x\right)^{\frac{1}{q_{4}}}\left(1+2^{m n} k^{m}\right)\left(\frac{\left|Q_{0}\right|}{\left|3 Q_{k}\right|}\right)^{\frac{1}{q_{0}}\left(1-\frac{1}{a}\right)} .
\end{aligned}
$$

By the condition (2), we have

$$
\begin{aligned}
& \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}\left(\frac{\left|Q_{0}\right|}{|3 Q|}\right)^{\frac{1}{q_{0}}}|3 Q|^{\frac{1}{r_{0}}}\left(f_{3 Q} w(y)^{-p^{\prime}} d y\right)^{\frac{1}{p^{\prime}}}\left(f_{Q_{0}} v(x)^{q}\left|b(x)-m_{Q}(b)\right|^{m q} d x\right)^{\frac{1}{q}} \\
& \leq C\|b\|_{\mathrm{BMO}}^{m}[v, w]_{a q_{0}, r_{0}, a q, p / a} \sum_{k=1}^{\infty} \sum_{\substack{Q_{k} \in \mathcal{D}\left(\mathbb{R}^{n}\right), Q_{k} \supset Q_{0},\left|Q_{k}\right|=2^{k n}\left|Q_{0}\right|}}\left(1+2^{m n} k^{m}\right) 2^{-\frac{k n}{q_{0}}\left(1-\frac{1}{a}\right)} \\
& =C\|b\|_{\mathrm{BMO}}^{m}[v, w]_{a q_{0}, r_{0}, a q, p / a} \sum_{k=1}^{\infty}\left(1+2^{m n} k^{m}\right) 2^{-\frac{k n}{q_{0}}\left(1-\frac{1}{a}\right)} \\
& \leq C\|b\|_{\mathrm{BMO}}^{m}[v, w]_{a q_{0}, r_{0}, a q, p / a .} .
\end{aligned}
$$

Therefore we obtain

$$
\begin{equation*}
\left\|C_{1}[f, v]\right\|_{\mathcal{M}_{q}^{q_{0}}} \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a}\|b\|_{\mathrm{BMO}}^{m}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} . \tag{11}
\end{equation*}
$$

Next, we evaluate $C_{2}[f, v](x)$. By Hölder's inequality for $\theta_{5} \in(1, p)$ in Lemma 3, we have

$$
\begin{aligned}
C_{2}[f, v](x)= & v(x) \sum_{\substack{Q \ni Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}} l(Q)^{\alpha-n} \chi_{Q}(x)\left(\int_{3 Q}\left|m_{Q}(b)-b(y)\right|^{m} f(y) d y\right) \\
\leq & v(x) \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}} l(Q)^{\alpha-n} \chi_{Q}(x)\left(\int_{3 Q}\left|m_{Q}(b)-b(y)\right|^{m \theta_{5}^{\prime}} d y\right)^{\frac{1}{\theta_{5}^{\prime}}} \\
& \times\left(\int_{3 Q}|f(y)|^{\theta_{5}} d y\right)^{\frac{1}{\theta_{5}}} .
\end{aligned}
$$

By Hölder's inequality for $\frac{p}{\theta_{5}}>1$, we obtain

$$
\begin{aligned}
C_{2}[f, v](x) \leq & v(x) \sum_{\substack{Q \supsetneq Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}} l(Q)^{\alpha-\frac{n}{p_{0}}} \chi_{Q}(x)\left(f_{3 Q}\left|m_{Q}(b)-b(y)\right|^{m \theta_{5}^{\prime}} d y\right)^{\frac{1}{\theta_{5}^{\prime}}}|3 Q|^{\frac{1}{p_{0}}} \\
& \times\left(f_{3 Q} w(y)^{-\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}} d y\right)^{\frac{1}{\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}}}\left(f_{3 Q}|f(y)|^{p} w(y)^{p} d y\right)^{\frac{1}{p}}
\end{aligned}
$$

Taking the Morrey norm, we obtain

$$
\begin{aligned}
C_{2}[f, v](x) \leq & \|f w\|_{\mathcal{M}_{p}^{p_{0}}} v(x) \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}} l(Q)^{\alpha-\frac{n}{p_{0}}} \chi_{Q}(x)\left(f_{3 Q}\left|m_{Q}(b)-b(y)\right|^{m \theta_{5}^{\prime}} d y\right)^{\frac{1}{\theta_{5}^{\prime}}} \\
& \times\left(f_{3 Q} w(y)^{-\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}} d y\right)^{\frac{1}{\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}}} .
\end{aligned}
$$

Using Lemma 1, we have

$$
C_{2}[f, v](x) \leq\|b\|_{\mathrm{BMO}}^{m}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} v(x) \sum_{\substack{Q \supseteq Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}} l(Q)^{\alpha-\frac{n}{p_{0}}} \chi_{Q}(x)\left(f_{3 Q} w(y)^{-\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}} d y\right)^{\frac{1}{\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}}} .
$$

Since we have the assumption that $a \geqq \frac{p}{\left(\theta_{5}\left(\frac{p}{\theta_{5}}\right)^{\prime}\right)^{\prime}}>1$, using Hölder's inequality, we obtain

$$
C_{2}[f, v](x) \leq C\|b\|_{\mathrm{BMO}}^{m}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} v(x) \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}} l(Q)^{\alpha-\frac{n}{p_{0}}} \chi_{Q}(x)\left(f_{3 Q} w(y)^{-(p / a)^{\prime}} d y\right)^{\frac{1}{(p / a)^{\prime}}} .
$$

The integral of $C_{2}[f, v](x)^{q}$ on Q_{0} is evaluated as follows:

$$
\begin{aligned}
& \left|Q_{0}\right|^{\frac{1}{q_{0}}}\left(f_{Q_{0}} C_{2}[f, v](x)^{q} d x\right)^{\frac{1}{q}} \\
& \leq \\
& \leq C\|b\|_{\mathrm{BMO}}^{m}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}} l(Q)^{\alpha-\frac{n}{p_{0}}}\left|Q_{0}\right|^{\frac{1}{q_{0}}} \\
& \quad \times\left(f_{Q_{0}} v(x)^{q} d x\right)^{\frac{1}{q}}\left(f_{3 Q} w(y)^{-(p / a)^{\prime}} d y\right)^{\frac{1}{(p / a)^{\prime}}} \\
& \leq C\|b\|_{\mathrm{BMO}}^{m}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} \sum_{\substack{Q \supset Q_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}\left(\frac{\left|Q_{0}\right|}{|3 Q|}\right)^{\frac{1}{a_{q}}}|3 Q|^{\frac{1}{r_{0}}} \\
& \quad \times\left(f_{Q_{0}} v(x)^{a q} d x\right)^{\frac{1}{a_{q}}}\left(f_{3 Q} w(y)^{-(p / a)^{\prime}} d y\right)^{\frac{1}{(p / a)^{\prime}}}\left(\frac{\left|Q_{0}\right|}{|3 Q|}\right)^{\frac{1}{q_{0}}\left(1-\frac{1}{a}\right)} .
\end{aligned}
$$

By the condition (2), we have

$$
\begin{aligned}
& \left|Q_{0}\right|^{\frac{1}{q_{0}}}\left(f_{Q_{0}} C_{2}[f, v](x)^{q} d x\right)^{\frac{1}{q}} \\
& \quad \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a}\|b\|_{\mathrm{BMO}}^{m}\|f w\|_{\mathcal{M}_{p}^{p_{0}}} \sum_{\substack{Q \mathcal{Q} \mathcal{O}_{0}, Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}}\left(\frac{\left|Q_{0}\right|}{|3 Q|}\right)^{\frac{1}{q_{0}}\left(1-\frac{1}{a}\right)} \\
& \quad \leq C[v, w]_{a q_{0}, r_{0}, a q, p / a}\|b\|_{\mathrm{BMO}}^{m}\|f w\|_{\mathcal{M}_{p}^{p_{0}} .} .
\end{aligned}
$$

We obtain the desired result.

Competing interests

The author declares that they have no competing interests.

Acknowledgements

The author wish to thank Professor Y Sawano for a rich lecture of higher order commutators generated by BMO-functions and the fractional integral operator.

Received: 16 September 2015 Accepted: 21 December 2015 Published online: 04 January 2016

References

1. Iida, T, Sato, E, Sawano, Y, Tanaka, H: Weighted norm inequalities for multilinear fractional operators on Morrey spaces Stud. Math. 205, 139-170 (2011)
2. Sawano, Y, Sugano, S, Tanaka, H: A bilinear estimate for commutators of fractional integral operators. In: Potential Theory and Its Related Fields. RIMS Kôkyûroku Bessatsu, vol. B43, pp. 155-170. Res. Inst. Math. Sci., Kyoto (2013)
3. Grafakos, L: Modern Fourier Analysis, 2nd edn. Graduate Texts in Math., vol. 250. Springer, New York (2008)
4. Lu, S, Ding, Y, Yan, D: Singular Integrals and Related Topics. World Scientific, Singapore (2007)
5. Adams, D: A note on Riesz potentials. Duke Math. J. 42, 765-778 (1975)
6. Di-Fazio, G, Ragusa, MA: Commutators and Morrey spaces. Boll. UMI 7, 323-332 (1991)
7. Komori, Y, Mizuhara, T: Notes on commutators and Morrey spaces. Hokkaido Math. J. 32, 345-353 (2003)
8. Iida, T, Sawano, Y, Tanaka, H: Atomic decomposition for Morrey spaces. Z. Anal. Anwend. 33, 149-170 (2014)
9. Sawano, Y, Sugano, S, Tanaka, H: Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces. Trans. Am. Math. Soc. 363, 6481-6503 (2011)
10. Ding, Y, Lu, S: Weighted norm inequalities for fractional integral operators with rough kernel. Can. J. Math. 50, 29-39 (1998)
11. Ding, Y, Lu, S: Higher order commutators for a class of rough operators. Ark. Mat. 37, 33-44 (1999)
12. lida, T: Weighted inequalities on Morrey spaces for linear and multilinear fractional integrals with homogeneous kernels. Taiwan. J. Math. 18, 147-185 (2014)
13. Duoandikoetxea, J: Fourier Analysis. Grad. Studies in Math., vol. 29. Am. Math. Soc., Providence (2001)
14. Pérez, C:Two weighted inequalities for potential and fractional type maximal operators. Indiana Univ. Math. J. 43 663-683 (1994)
15. Pérez, C: On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between L^{p} spaces with different weights. Proc. Lond. Math. Soc. (3) 71, 135-157 (1995)
16. Pérez, C: Sharp L -weighted Sobolev inequalities. Ann. Inst. Fourier (Grenoble) 45, 809-824 (1995)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field

Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```

