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Abstract
In this paper, we use the Reilly formula and the Hessian comparison theorem to
estimate the lower bounds of the first eigenvalues for the biharmonic operator
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1 Introduction
It is well known that the eigenvalues and eigenfunctions of the Laplacian play an important
role in global differential geometry since they reveal important relations between geom-
etry of the manifold and analysis. Among the eigenvalue problems of the Laplacian, the
biharmonic operator eigenvalue problems are interesting projects because these problems
root in physics and geometric analysis. In this paper, we investigate the lower bounds
of the first eigenvalues for the buckling problem and clamped plate problem on mani-
folds. There is a lot of research on these problems; see, for example, [–], among oth-
ers.

Let M be an n-dimensional compact connected Riemannian manifold with smooth
boundary ∂M. We consider the biharmonic operator eigenvalue problem for the famous
buckling problem

⎧
⎨

⎩

�f = –��f in M,

f |∂� = ∂f
∂�n |∂M = ,

(.)

and clamped plate problem

⎧
⎨

⎩

�f = �f in M,

f |∂� = ∂f
∂�n |∂M = ,

(.)

where � is the bi-Laplace operator, and �n denotes the outer unit normal vector field of the
boundary ∂M. Equation (.) describes the critical buckling load of a clamped plate sub-
jected to a uniform compressive force around its boundary. It is known that the spectrum
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of this eigenvalue problem is real and purely discrete:

 < � ≤ � ≤ · · · ≤ �k ≤ · · · ↑ +∞.

Equation (.) describes the characteristic vibrations of a clamped plate. The spectrum of
this eigenvalue problem is also real and purely discrete:

 < � ≤ � ≤ · · · ≤ �k ≤ · · · ↑ +∞.

By the results of Li and Yau [] and the variational characterization for eigenvalues, we
can obtain lower bounds for eigenvalues of problems (.) and (.) on M ⊂ Rn (see Levine
and Protter []), respectively,


k

k∑

i=

�i ≥ n
n + 

π

(ωnV (M)) 
n

k

n ,


k

k∑

i=

�i ≥ n
n + 

π

(ωnV (M)) 
n

k

n ,

where ωn denotes the volume of a unit ball in R
n. Recently, Chen et al. [] have investigated

the first eigenvalues of problems (.) and (.) on n-dimensional compact connected Rie-
mannian manifolds with Ricci curvature bounded from below by (n – ). They proved that

� > n, � > nλ,

where λ denotes the first eigenvalue of the Dirichlet eigenvalue problem. For more re-
search, we refer the readers to [, , –].

In the present paper, we will use the Reilly formula and the Hessian comparison the-
orem to deal with problems (.) and (.) and estimate the lower bounds of their first
eigenvalues.

2 Preliminaries
In this section, we recall some preliminary knowledge, such as the Reilly formula, for later
use.

Lemma . (Reilly’s formula []) Let M be an n-dimensional compact connected Rieman-
nian manifold with smooth boundary ∂�. For every f ∈ C∞(�̄), we have

∫

M

[
(�f ) –

∣
∣∇f

∣
∣ – Ric(∇f ,∇f )

]
dV

=
∫

∂M

[
–(�̄f )〈∇f , �n〉 + (n – )H〈∇f , �n〉 + σ (∇̄f , ∇̄f )

]
dA,

where �f , ∇f , and ∇f are the Laplacian, gradient, and Hessian of f , Ric is the Ricci cur-
vature of M, �̄f and ∇̄f are the Laplacian and gradient of f in ∂M, and σ and H are the
second fundamental form and the mean curvature of ∂M with respect to the inner unit
normal vector field �n on ∂M.

Lemma . (Hessian comparison theorem) Let M be an n-dimensional complete Rieman-
nian manifold, and let x, x ∈ M. Let γ : [,ρ(x)] → M be a minimizing geodesic joining
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x and x, where ρ(x) is the distance function distM(x, x). Let K be the sectional curvature
of M, and let μi(ρ) (i = , ) be the functions defined by

μ(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

k · coth(k · ρ(x)) if infγ K = –k
,


ρ(x) if infγ K = ,

k · cot(k · ρ(x)) if infγ K = k
 and ρ < π

k

and

μ(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

k · coth(k · ρ(x)) if infγ K = –k
 ,


ρ(x) if infγ K = ,

k · cot(k · ρ(x)) if infγ K = k
 and ρ < π

k
.

Then the Hessians of ρ and ρ satisfy

μ
(
ρ(x)

) · ‖X‖ ≥ ∇ρ(x)(X, X) ≥ μ
(
ρ(x)

) · ‖X‖,

ρ(x)μ
(
ρ(x)

) · ‖X‖ ≥ ∇ρ(x)(X, X) ≥ ρ(x)μ
(
ρ(x)

) · ‖X‖,

∇ρ(x)
(
γ ′,γ ′) = , ∇ρ(x)

(
γ ′,γ ′) = ,

where X is any vector in TxM perpendicular to γ ′(ρ(x)).

Thus, the following inequalities hold (cf. []):

(n – )μ
(
ρ(x)

) ≥ �ρ(x) ≥ (n – )μ
(
ρ(x)

)
, (.)

(n – )ρ(x)μ
(
ρ(x)

)
+  ≥ �ρ(x) ≥ (n – )ρ(x)μ

(
ρ(x)

)
+ . (.)

We recall the following variational characterization for the first eigenvalues of the buck-
ling problem and the clamped plate problem:

�(M) = min
f ∈H

 (M)
f �≡

∫

M(�f ) dV
∫

M |∇f | dV
(.)

and

�(M) = min
f ∈H

(M)
f �≡

∫

M(�f ) dV
∫

M f  dV
. (.)

3 Main results
In this section, we give and prove our main results, that is, we estimate the lower bounds
of the first eigenvalues of problems (.) and (.).

Theorem . Let (M, g) be an n-dimensional compact connected Riemannian manifold
with smooth boundary ∂M and Ricci curvature bounded from below by a positive con-
stant C. Let �(M) be the first eigenvalue of the buckling problem (.). Then, for any vector
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field X ∈ �(TM) such that ‖X‖∞ = supM |X| < ∞ (where |X| =
√

g(X, X)) and infM div(X) >
, we have

�(M) ≥
(

infM div X
‖X‖∞

)

+ C. (.)

Proof For any f ∈ C∞
 (�), the vector field |∇f |X has compact support on M, and a simple

calculation shows that

div
(
X|∇f |) = |∇f |X(|∇f |) + |∇f | div(X)

≥ –|∇f |‖X‖∞
∣
∣∇|∇f |∣∣ + |∇f | inf

M
div(X). (.)

For any ε > , it follows from Young’s inequality that

|∇f |∣∣∇|∇f |∣∣ ≤ |∇|∇f ||
ε +

ε|∇f |


.

Combining this inequality and (.) yields

div
(
X|∇f |) ≥ –‖X‖∞

( |∇|∇f ||
ε +

ε|∇f |


)

+ |∇f | inf
M

div(X). (.)

It follows from f |∂M = ∂f
∂�n |∂M =  that (∇f )|∂M = . Then by the divergence theorem we

have
∫

M
div

(
X|∇f |)dV =

∫

∂M
|∇f |〈X, �n〉dV∂M = .

This equality and (.) imply

∫

M

∣
∣∇|∇f |∣∣ dV ≥ ε

‖X‖∞

(
inf
M

div X – ε‖X‖∞
)∫

M
|∇f | dV,

that is,
∫

M |∇|∇f || dV
∫

M |∇f | dV
≥ ε

‖X‖∞

(
inf
M

div X – ε‖X‖∞
)

. (.)

Let

g(ε) = ε inf
M

div X – ε‖X‖∞.

Then

g ′(ε) = ε inf
M

div X – ε‖X‖∞, g ′′(ε) =  inf
M

div X – ε‖X‖∞.

It is obvious that when g ′(ε) = , we have ε = ( infM div X
‖X‖∞ ) 

 and g ′′(ε) = – infM div X < ,
and therefore,

max g(ε) =
(

infM div X

‖X‖ 
∞

)

.
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From this equality and from (.) it follows that

∫

M |∇|∇f || dV
∫

M |∇f | dV
≥

(
infM div X

‖X‖∞

)

. (.)

On the other hand, if f ∈ C∞
 (�), then

∣
∣∇|∇f |∣∣ ≤ ∣

∣∇f
∣
∣. (.)

Indeed, without loss of generality, we choose the normal coordinate (U ; x, . . . , xn) for any
point P ∈ M, and a simple calculation shows that

∣
∣∇|∇f |∣∣(P) =

n∑

q=

[
(
∑n

i= fifiq)
∑n

i= f 
i

]

, (.)

where fj = ∂f
∂xj . From the Cauchy-Schwarz inequality it follows that

n∑

q=

( n∑

i=

fifiq

)

≤
[ n∑

q=

( n∑

i=

f 
i

)( n∑

i=

f 
iq

)]

=

( n∑

i=

f 
i

)( n∑

i,q=

f 
iq

)

. (.)

Combining (.) and (.) yields

∣
∣∇|∇f |∣∣(P) ≤

n∑

i,q=

f 
iq =

∣
∣∇f

∣
∣(P),

which implies that

∣
∣∇|∇f |∣∣ ≤

n∑

i,q=

f 
iq =

∣
∣∇f

∣
∣

on M for any f ∈ C∞
 (�). Since C∞

 (�) is dense in H
(�), the last relation also holds for

all f ∈ H
(�).

From Reilly’s formula and the equality f |∂M = ∂f
∂�n |∂M =  we get

∫

M

[
(�f ) –

∣
∣∇f

∣
∣ – Ric(∇f ,∇f )

]
dV = .

Since the Ricci curvature of M is bounded from below by a constant C, this gives

∫

M

∣
∣∇f

∣
∣ dV ≤

∫

M
(�f ) dV – C

∫

M
|∇f | dV .

From this inequality and from (.) and (.) it follows that

∫

M(�f ) dV
∫

M |∇f | dV
≥

(
infM div X

‖X‖∞

)

+ C, (.)
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which, together with (.) and the arbitrariness of X, implies

�(M) ≥
(

infM div X
‖X‖∞

)

+ C. �

Theorem . Assume that (M, g) and X ∈ �(TM) satisfy the conditions of Theorem .
and let �(M) be the first eigenvalue of the clamped plate problem (.). Then

�(M) ≥
((

infM div X
‖X‖∞

)

+ C
)

λ(M), (.)

where λ(M) is the first eigenvalue of the Dirichlet eigenvalue problem.

Proof By (.) we immediately get

∫

M(�f ) dV
∫

M f  dV
≥

((
infM div X

‖X‖∞

)

+ C
)∫

M |∇f | dV
∫

M f  dV
(.)

for all f ∈ H
(M). From the Poincaré inequality and the fact that f is nonzero with f |∂M = 

it follows that
∫

M |∇f | dV
∫

M f  dV
≥ λ(M), (.)

where the equality holds if and only if f is the first eigenfunction of the Dirichlet eigenvalue
problem. Thus, from (.), (.), and (.) and from the arbitrariness of X we have

�(M) ≥
((

infM div X
‖X‖∞

)

+ C
)

λ(M). �

As an application of our theorems, we can get the following results.

Corollary . Let (M, g) be an n-dimensional complete Riemannian manifold, and
BM(p, r) a geodesic ball with radius r < inj(p). Let κ(p, r) = sup{KM(x); x ∈ BM(p, r)}, where
KM(x) is the sectional curvature of M at x. If for k > , κ(p, r) = k, r < π

k , and the Ricci
curvature of BM(p, r) is bounded from below by a positive constant C, then

�
(
BM(p, r)

) ≥ [
(n – )kr cot(kr) + 

]/r + C,

�
(
BM(p, r)

) ≥ ([
(n – )kr cot(kr) + 

]/r + C
)
λ

(
BM(p, r)

)
.

Proof Let X = ∇ρ. Then by (.), (.), and (.) we have

�
(
BM(p, r)

) ≥
[

infBM(p,r) �ρ

‖∇ρ‖∞

]

+ C

≥
[

(n – )k infBM(p,r) cot(kρ)


+


r

]

+ C

≥ [(n – )kr cot(kr) + ]

r + C
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and

�
(
BM(p, r)

) ≥
(

[(n – )kr cot(kr) + ]

r + C
)

λ(M). �

Corollary . Let ϕ : M ↪→ N have a locally bounded mean curvature, that is, the number
h(p, r) = sup{|H(x)|; x ∈ ϕ(M) ∩ BN (p, r)} is finite, where H is the mean curvature, and let
� be any connected component of ϕ–(BN (p, r)), where p ∈ N\ϕ(M) and r > .

() If κ(p, r) = k < ∞ and the Ricci curvature of � is bounded from below by a positive
constant C, choose

r < min

{

inj(p),
π

k
, cot–[h

(
p, inj(p)

)
/(m – )k

]
/k

}

.

Then

�(�) ≥ [
(m – )k cot(kr) – h(p, r)

]/ + C,

�(�) ≥ ([
(m – )k cot(kr) – h(p, r)

]/ + C
)
λ(�).

() If limr→∞ κ(p, r) = ∞ and the Ricci curvature of � is bounded from below by a
positive constant C, let

r(s) = min
{
π/

√
κ(p, s), cot–[h(p, s)/(m – )κ(p, s)

]
/κ(p, s)

}
, s > .

Choose r = maxs> r(s). Then

�(�) ≥ ([
(m – )

√
κ(p, r) cot

(√
κ(p, r)r

)
– h(p, r)

]/ + C
)
,

�(�) ≥ ([
(m – )

√
κ(p, r) cot

(√
κ(p, r)r

)
– h(p, r)

]/ + C
)
λ(�).

Proof By the proof of Theorem . of [], if ρ(x) = distN (p, x) and f = ρ ◦ϕ : M →R, then
applying (.), we have

div(∇f ) ≥ (m – )k cot(kr) – h(p, r) >  if κ(p, r) = k.

Since ‖∇f ‖ ≤ , the estimates follow from Theorems . and .. �

Remark . If, in (.), |∇f | is replaced by f , then

∫

M |∇f | dV
∫

M f  dV
≥

(
infM div X

‖X‖∞

)

,

which, together with (.), implies

�(M) ≥
(

infM div X
‖X‖∞

)((
infM div X

‖X‖∞

)

+ C
)

. (.)

From (.) and the proof of Corollary . we have that

�
(
BM(p, r)

) ≥
(

[(n – )kr cot(kr) + ]

r

)(
[(n – )kr cot(kr) + ]

r + C
)

.



Zhang and Zhao Journal of Inequalities and Applications  (2016) 2016:5 Page 8 of 9

Remark . Using a similar argument as in Theorems . and . and Corollary ., we
can investigate the following two biharmonic operator eigenvalue problems:

⎧
⎨

⎩

�u = –p�u in �,

u|∂� = ∂u
∂�n |∂� = 

and
⎧
⎨

⎩

�u = qu in �,

u|∂� = ∂u
∂�n |∂� = .

We get

p(M) ≥ sup

(
infM div X

‖X‖∞

)

+ C,

q(M) ≥
(

sup

(
infM div X

‖X‖∞

)

+ C
)

λ(M)

and

p
(
BM(p, r)

) ≥
(

[(n – )kr cot(kr) + ]

r + C
)

,

q
(
BM(p, r)

) ≥
(

[(n – )kr cot(kr) + ]

r + C
)

λ(M),

where p and q are the first eigenvalues of these two problems.
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