
Liu Journal of Inequalities and Applications  (2016) 2016:9 
DOI 10.1186/s13660-015-0947-2

R E S E A R C H Open Access

Refinements of the Erdös-Mordell
inequality, Barrow’s inequality, and
Oppenheim’s inequality
Jian Liu*

*Correspondence:
China99jian@163.com
East China Jiaotong University,
Nanchang, Jiangxi 330013, China

Abstract
In this paper, we present some new refinements of the Erdös-Mordell inequality,
Barrow’s inequality, and Oppenheim’s inequality. Based on verification by computer,
several related interesting conjectures are put forward.

MSC: 51M16

Keywords: Erdös-Mordell inequality; Barrow’s inequality; Oppenheim’s inequality;
triangle; interior point

1 Introduction
For any interior point P of the triangle ABC, let R, R, R denote the distances from P
to the vertices A, B, C, and let r, r, r denote the distances from P to sides BC, CA,
AB, respectively. In addition, we denote the cyclic sums over the triples (R, R, R) and
(r, r, r) by

∑
. Then the well-known Erdös-Mordell inequality states that

∑
R ≥ 

∑
r, (.)

with equality if and only if �ABC is equilateral and P is its center.
Inequality (.) was conjectured by Erdös [] in . Mordell and Barrow [] first proved

it in , and since then this inequality is known as the Erdös-Mordell inequality and has
attracted the attention of many mathematicians who offered various new proofs, general-
izations, variations, sharpness, and conjectures (see [–] and the references therein).

In [], Barrow indeed proved the following stronger version of (.):
∑

R ≥ 
∑

w, (.)

where w, w, w are the lengths of the internal bisectors of ∠BPC, ∠CPA, ∠APB, respec-
tively. For generalizations, sharpness, and extensions of Barrow’s inequality, see [, , ,
, , ].

In , Oppenheim [] applied geometrical transformations to study Erdös-Mordell
inequality and other inequalities connecting the segments R, R, R, r, r, r. At the end
of this paper, he conjectured that the following inequality holds:

∑
RR ≥

∑
(r + r)(r + r). (.)
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Oppenheim [] tried to prove this inequality in the same year. However, the author of
this paper pointed out that there exist faults in Oppenheim’s proof in a recent paper [].
We also presented a new method to prove the above inequality in the paper. In fact, we
proved the following refinement of (.):

∑
RR ≥

∑
har +

∑
rr ≥

∑
(r + r)(r + r), (.)

where ha, hb, hc are the corresponding altitudes of �ABC and
∑

har = har + hbr + hcr.
The main purpose of this paper is to establish some new refinements of the Erdös-

Mordell inequality, Barrow’s inequality (.) and Oppenheim’s inequality (.). We also
propose some closely related interesting conjectures.

The remainder of this paper is organized as follows. In the next section, we first establish
a new inequality involving an interior point of a triangle. Then we use this inequality, the
Erdös-Mordell inequality and another well-known inequality to deduce a refinement of
the Oppenheim inequality. In Section , we present a refinement with one parameter for
Barrow’s inequality (.). In Sections  and , some new refinements of the Erdös-Mordell
inequality are established. Finally, in Section , we propose some interesting related con-
jectures as open problems.

In the following, we shall unceasingly use the above symbols. In addition, we also denote
the lengths of the sides BC, CA, AB of the triangle ABC by a, b, c, respectively, and denote
the corresponding medians of the triangle ABC by ma, mb, mc. We denote cyclic sums
over the triples (a, b, c) (including subscripts), (x, y, z), (u, v, w), (r, r, r), (R, R, R), and
(A, B, C) by

∑
, such as

∑
a(b – c)r

 = a(b – c)r
 + b(c – a)r

 + c(a – b)r
,

∑
w(R + R) = w(R + R) + w(R + R) + w(R + R),

∑
u(wy – vz) = u(wy – vz) + v(uz – wx) + w(vx – uy),

∑
(mb + mc)(r + R) = (mb + mc)(r + R) + (mc + ma)(r + R) + (ma + mb)(r + R).

2 A new refinement of Oppenheim’s inequality
In this section, we first establish a new geometric inequality which may be of independent
interest. We shall make use of this result and its weaker form (see inequality (.) below)
several times in the sequel.

Lemma . For any interior point P of the triangle ABC, we have

∑
RR ≥ 


∑

(w + w + w)R, (.)

with equality holding if and only if �ABC is equilateral and P is its center.

Proof First of all, we establish the following weighted trigonometric inequality for any
triangle ABC:

∑ yz(x + y + z)
y + z

cos A ≤
∑

yz, (.)

where A, B, C are the angles of �ABC and x, y, z are arbitrary positive numbers.
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By the law of cosines, inequality (.) is equivalent to

∑ yz(x + y + z)(b + c – a)
bc(y + z)

≤ 
∑

yz,

i.e.,

abc(y + z)(z + x)(x + y)
∑

yz

–
∑

yz(z + x)(x + y)(x + y + z)a
(
b + c – a) ≥ . (.)

Let b + c – a = u, c + a – b = v, a + b – c = w, then a = v + w, b = w + u, c = u + v, where
u, v, w >  by the triangle inequality. Thus, we see that inequality (.) is equivalent to the
following algebraic inequality:

(v + w)(w + u)(u + v)(y + z)(z + x)(x + y)
∑

yz

–
∑

yz(z + x)(x + y)(x + y + z)(v + w)
[
(w + u) + (u + v) – (v + w)]

≥ . (.)

Expanding and rearranging gives the equivalent inequality:


∑

x
∑

ux(vy – wz) + xyz
∑

u(wy – vz) ≥ , (.)

which is obviously true for the positive numbers x, y, z, u, v, w. From (.), it is easily seen
that the equality in (.) holds if and only if x = y = z and u = v = w. We further conclude
that equality in (.) holds if and only if �ABC is equilateral and x = y = z.

We now make use of inequality (.) to deduce geometric inequality (.). Let ∠BPC =
δ, ∠CPA = δ, and ∠APB = δ, then we have the following known identity (cf. [],
p.):

w =
RR

R + R
cos δ, (.)

and two formulas are valid for w and w. Since  < δ < π ,  < δ < π ,  < δ < π , and
δ + δ + δ = π , we see that δ, δ, δ are angles of a triangle. Hence, it follows from (.)
and (.) that

∑
RR ≥

∑
(R + R + R)

RR

R + R
cos δ

=



∑
(R + R + R)w

=



∑
(w + w + w)R,

which proves inequality (.). By the equality condition of (.), we conclude that equality
in (.) holds if and only if R = R = R and δ = δ = δ, i.e., ABC is equilateral and P is its
center. This completes the proof of Lemma .. �
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It is well known that the following inequality is related to the Erdös-Mordell inequality.
See [] for instance.

Lemma . For any interior point P of the triangle ABC, we have

∑
rR ≥ 

∑
rr, (.)

with equality holding if and only if P coincides with a vertex of �ABC or �ABC is equilat-
eral and P is its center.

We now state and prove the following refinement of the Oppenheim inequality.

Theorem . For any interior point P of the triangle ABC, the following inequalities hold:

∑
RR ≥ 


∑

R(r + r + r) ≥
∑

(r + r)(r + r). (.)

Equalities in (.) hold if and only if �ABC is equilateral and P is its center.

Proof By Lemma . and the obvious facts that w ≥ r, w ≥ r, and w ≥ r, the first
inequality of (.) follows immediately. In addition, by the Erdös-Mordell inequality (.)
and inequality (.), we have




∑
R(r + r + r)

=



∑
R

∑
r +




∑
rR

≥
(∑

r

)
+

∑
rr =

∑
(r + r)(r + r),

which proves the second inequality of (.).
It is clear that the equality conditions in (.) are the same as in (.) and (.), i.e., if and

only if �ABC is equilateral and P is its center. The proof of Theorem . is completed.
�

3 A refinement of Barrow’s inequality
We first give the following compact inequality.

Lemma . For any interior point P of the triangle ABC, we have

∑
R

 ≥
∑

w(R + R), (.)

with equality holding if and only if R : R : R = sin 
∠BPC : sin 

∠CPA : sin 
∠APB.

In fact, inequality (.) is a simple consequence of the following well-known weighted
inequality (see [], p., Theorem ):

∑
w

(


R
+


R

)

yz ≤
∑

x, (.)
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where x, y, z are arbitrary real numbers and the equality holds if and only if x : y : z =
sin 

∠BPC : sin 
∠CPA : sin 

∠APB.
If we let x = R, y = R, and z = R in (.), then inequality (.) follows immediately. To

our surprise, inequality (.) has not been given in [, ] although it is compact.

Remark . Oppenheim [] obtained a weighted generalization of Barrow’s inequality
(.), which is equivalent with (.) when x, y, z are positive.

For Barrow’s inequality (.), we now give the following refinement with one parameter.

Theorem . Let k be a real number such that  ≤ k ≤ , then for any interior point P of
the triangle ABC the following inequalities hold:

∑
R ≥ 

∑
(kR + R + R)(w + R)

(k + )
∑

R
≥ 

∑
w. (.)

If k = , then the first equality in (.) holds if and only if R : R : R = sin 
∠BPC :

sin 
∠CPA : sin 

∠APB. If  < k ≤ , then the equalities in (.) hold if and only if �ABC
is equilateral and P is its center.

Proof The first inequality of (.) is equivalent to

(k + )
(∑

R

)
– 

∑
(kR + R + R)(w + R) ≥ .

Expanding and rearranging gives


[∑

R
 –

∑
w(R + R)

]
+ k

[

∑

RR – 
∑

wR –
∑

R


]
≥ , (.)

which is required to prove.
If k = , then the above inequality becomes inequality (.), and the equality condition

in this case is obtained from Lemma .. If  ≥ k > , by (.), to prove (.) we need to
prove that

k
[∑

R
 –

∑
w(R + R)

]
+ k

[

∑

RR – 
∑

wR –
∑

R


]
≥ ,

i.e.,


∑

RR –
∑

(w + w + w)R ≥ , (.)

which is equivalent with inequality (.) of Lemma .. Hence, inequality (.) is proved
when  < k ≤ , while the equality condition in this case is the same as in (.).

The second inequality of (.) is equivalent to

∑
(kR + R + R)(w + R) – (k + )

∑
w

∑
R ≥ ,

which can be rewritten as

k
[∑

R
 –

∑
w(R + R)

]
+ 

∑
RR –

∑
R(w + w + w) ≥ . (.)
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By inequalities (.) and (.), we see that the above inequality holds for k ≥ . Also, by the
equality conditions of (.) and (.), it is easy to conclud that if k ≥  then the equality in
(.) holds if and only if �ABC is equilateral and P is its center. This completes the proof
of Theorem .. �

The following particular case (k = ) of Theorem . is of interest.

Corollary . For any interior point P of �ABC, we have

∑
R ≥

∑
(R + R)(w + R)

∑
R

≥ 
∑

w. (.)

This double inequality can be regarded as an associated result of (.) and (.).

4 Refinements of the Erdös-Mordell inequality I
There are few refinements of the Erdös-Mordell inequality in the literature. In [], the
author gave the following result:

∑
R ≥ 


∑√

a + r
 ≥

∑(
c
b

+
b
c

)

r ≥ 
√

∑
har ≥ 

∑
r. (.)

In this section and next section, we shall give some new refinements of the Erdös-
Mordell inequality. First, we point out that we have the following result, which is a coun-
terpart of Theorem ..

Theorem . Let k be real number such that  ≤ k ≤ , then for any interior point P of the
triangle ABC the following inequalities hold:

∑
R ≥ 

∑
(kR + R + R)(r + R)

(k + )
∑

R
≥ 

∑
r. (.)

Equalities in (.) hold if and only if �ABC is equilateral and P is its center.

Proof Noting the fact that w ≥ r etc., the following two inequalities follow from (.) and
(.), respectively:


∑

RR ≥
∑

(r + r + r)R, (.)
∑

R
 ≥

∑
r(R + R). (.)

According to these two inequalities, by the same arguments used in the proof of Theo-
rem ., we deduce that the double inequality (.) holds.

Since the equalities of w ≥ r, w ≥ r, and w ≥ r are all valid if and only if P is the
circumcenter of �ABC, thus by the equality conditions of (.) and (.), it is easy to con-
clude that both equalities of (.) and (.) hold if and only if �ABC is equilateral and P
is its center. Further, we know that the statement in Theorem . for the equalities is right.
This completes the proof of Theorem .. �
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In particular, for k =  in Theorem ., we obtain the following.

Corollary . For any interior point P of �ABC, we have

∑
R ≥

∑
(R + R)(r + R)

∑
R

≥ 
∑

r. (.)

In a recent paper [], Theorem , the author established the following sharpened ver-
sion of the Erdös-Mordell inequality:

∑ (r + r)

R
≤

∑
R, (.)

with equality holding if and only if �ABC is equilateral and P is its center or �ABC is a
right isosceles triangle and P is its circumcenter.

Next, we apply inequality (.) to prove another refinement with one parameter for the
Erdös-Mordell inequality.

Theorem . Let P be an interior point P of the triangle ABC (P may lie on the boundary
except the vertices of ABC) and let k ≥  be a real number, then

∑
R ≥ 

(k + )

∑ (kR + r + r)

R
≥ 

∑
r. (.)

Equalities in (.) hold if and only if �ABC is equilateral and P is its center.

Proof We have

∑ (kR + r + r)

R

=
kR

 + kR(r + r) + (r + r)

R

= k
∑

R + k
∑

r +
∑ (r + r)

R

≤ k
∑

R + k
∑

R +
∑

R

= (k + )
∑

R,

where we used the Erdös-Mordell inequality (.) and inequality (.). Thus, the first in-
equality in (.) is proved (which in fact holds for k ≥ ).

On the other hand, by k ≥  and the Cauchy-Schwarz inequality we have

∑ (kR + r + r)

R
≥ [

∑
(kR + r + r)]

∑
R

=
(k

∑
R + 

∑
r)

∑
R

.

Thus, to prove the second inequality of (.), we only need to prove that

(
k
∑

R + 
∑

r

) ≥ (k + )
∑

R
∑

r. (.)
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By the hypothesis k ≥  and the Erdös-Mordell inequality (.), we obtain

(
k
∑

R + 
∑

r

)
– (k + )

∑
R

∑
r

=
(∑

R – 
∑

r

)(
k

∑
R – 

∑
r

)

≥
(∑

R – 
∑

r

) ≥ .

Thus, inequality (.) and the second inequality in (.) are proved. According to the
equality conditions of (.), (.) and the Cauchy-Schwarz inequality, we see that the
equalities in (.) hold if and only if �ABC is equilateral and P is its center. This com-
pletes the proof of the Theorem .. �

For k =  in Theorem ., we get the following.

Corollary . Let P be an interior point of the triangle ABC (P may lie on the boundary
except the vertices of ABC), then

∑
R ≥ 


∑ (R + r + r)

R
≥ 

∑
r. (.)

In [], for proving Oppenheim’s inequality (.), we presented the following inequality:

R + R ≥ r +
(r + r)

R
, (.)

with equality holds if and only if b = c and P is its circumcenter of triangle ABC. We have
also pointed out that the Erdös-Mordell inequality (.) can easily be obtained from (.)
in []. Next, we shall use (.), the previous inequalities (.) and (.) to establish the
following refinement of the Erdös-Mordell inequality.

Theorem . For any interior point P of the triangle ABC, the following inequalities hold:

∑
R ≥

√
∑[

R
 + rR + (r + r)

] ≥ 
∑

r. (.)

Equalities in (.) hold if and only if �ABC is equilateral and P is its center.

Proof By inequality (.), we have

∑
R(R + R) ≥ 

∑
Rr +

∑
(r + r),

so that


∑

RR ≥ 
∑

rR +
∑

(r + r). (.)

Adding
∑

R
 to both sides of (.), we get

(∑
R

) ≥
∑

R
 + 

∑
rR +

∑
(r + r) =

∑[
R

 + rR + (r + r)],

which shows that the first inequality in (.) is true.
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On the other hand, by inequalities (.), (.) and the Erdös-Mordell inequality we have

∑[
R

 + rR + (r + r)]

=
∑

R
 + 

∑
rR +

∑
(r + r)

≥
∑

r(R + R) +
∑

rR + 
∑

rr +
∑

(r + r)

=
∑

r
∑

R + 
∑

rr +
∑

(r + r)

≥ 
(∑

r

)
+ 

∑
rr +

∑
(r + r)

= 
(∑

r

)
.

Thus, the second inequality in (.) holds.
In view of the equality conditions of (.), (.), and (.), we immediately conclude

that the equalities in (.) hold if and only if �ABC is equilateral and P is its center. This
completes the proof of Theorem .. �

In the proof of the final theorem given in this section, we shall use the following well-
known result (for proofs, see e.g., [, , ]).

Lemma . For any interior point P of the triangle ABC, we have

⎧
⎪⎨

⎪⎩

aR ≥ br + cr,
bR ≥ cr + ar,
cR ≥ ar + br.

(.)

Equalities in (.) successively hold if and only if P lies on the line AO, BO, and CO, where
O is the circumcenter of the triangle ABC.

Theorem . For any interior point P of the triangle ABC, the following inequalities hold:

∑
R ≥

√
∑

(R + R)(r + R) ≥
√




∑
(r + R)(r + R) ≥ 

∑
r. (.)

Equalities in (.) hold if and only if �ABC is equilateral and P is its center.

Proof The first inequality in (.) is equivalent to the proved inequality (.), since

(∑
R

)
–

∑
(R + R)(r + R) =

∑
R

 –
∑

r(R + R).

By the previous inequality, (.), we have


∑

(R + R)(r + R) – 
∑

(r + R)(r + R)

= 
∑

RR –
∑

r(R + R) – 
∑

rr

≥
∑

(r + r + r)R –
∑

r(R + R) – 
∑

rr
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=
∑

(r + r)R + 
∑

rR –
∑

r(R + R) – 
∑

rr

= 
(∑

rR – 
∑

rr

)

≥ ,

where we used Lemma . in the last step. Thus, the second inequality in (.) is proved.
The third inequality in (.) is equivalent to

∑
(r + R)(r + R) ≥ 

(∑
r

)
. (.)

By Lemma . it is sufficient to prove that

∑(

r +
cr + ar

b

)(

r +
ar + br

c

)

≥ 
(∑

r

)
,

i.e.,

∑
a(cr + ar + br)(ar + br + cr) – abc

(∑
r

) ≥ ,

which is equivalent to

∑
a(b – c)r

 +
∑(

a + ab + ac + bc + bc – abc
)
rr ≥ . (.)

By the arithmetic-geometric means inequality, we have

a + ab + ac + bc + bc – abc ≥ ,

with equality holding if and only if a = b = c. Hence, inequalities (.) and then (.)
are proved, while the equality in (.) occurs only when �ABC is equilateral and P is its
center. This completes the proof of Theorem .. �

5 Refinements of the Erdös-Mordell inequality II
The refinements of the Erdös-Mordell inequality, given in the last section, involve six seg-
ments R, R, R, r, r, r but not the geometric elements of �ABC. In this section, we use
an unified method based on two lemmas (Lemmas . and . below) to establish three
new refinements of the Erdös-Mordell inequality, which also cover the sides, the altitudes,
and the medians of the triangle ABC besides the above six segments.

The result of Theorem . prompts us to consider the following general refinements of
the Erdös-Mordell inequality in the form:

∑
R ≥ 

∑
k(r + R)
∑

k
≥ 

∑
r, (.)

where k, k, k are positive real numbers.
Before offering the results of this kind of double inequalities, we first prove two related

lemmas.
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Lemma . If the positive real numbers k, k, k form a triangle and satisfy

⎧
⎪⎨

⎪⎩

k(b – c) + (k – k)(b – c) ≥ ,
k(c – a) + (k – k)(c – a) ≥ ,
k(a – b) + (k – k)(a – b) ≥ ,

(.)

then for any interior point P of the triangle ABC the following inequality holds:

∑
R ≥ 

∑
k(r + R)
∑

k
. (.)

Equality in (.) holds if and only if the equalities in (.) are all valid and P is the circum-
center of the triangle ABC.

Proof Note that

∑
k

∑
R – 

∑
k(r + R) =

∑
(k + k – k)R – 

∑
kr.

Inequality (.) is equivalent to

∑
(k + k – k)R ≥ 

∑
kr, (.)

which is obviously a generalized form of the Erdös-Mordell inequality. Since k, k, k form
a triangle, we have k + k – k >  etc. Thus, by Lemma ., to prove (.) we only need to
prove that

∑
(k + k – k)

br + cr

a
– 

∑
kr ≥ ,

i.e.,

∑
bc(k + k – k)(br + cr) – abc

∑
kr ≥ .

Expending and rearranging gives the equivalent inequality

∑
a
[
k(b – c) + (k – k)

(
b – c)]r ≥ , (.)

which is clearly true if (.) is valid. From Lemma . and (.), one sees that the equality
in (.) occurs if and only if the equalities in (.) are all valid and P is the circumcenter
of the triangle ABC. This completes the proof of Lemma .. �

Lemma . If the positive real numbers k, k, k satisfy

⎧
⎪⎨

⎪⎩

(b – c)(bk – ck) ≥ ,
(c – a)(ck – ak) ≥ ,
(a – b)(ak – bk) ≥ ,

(.)

then for any interior point P of the triangle ABC the following inequality holds:
∑

k(r + R)
∑

k
≥

∑
r. (.)
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Equality in (.) holds if and only if equalities in (.) are all valid and P is the circumcenter
of the triangle ABC.

Proof It is easy to know that inequality (.) is equivalent to

∑
kR –

∑
(k + k)r ≥ , (.)

which is obviously a generalized form of the Erdös-Mordell inequality. Since k, k, k > ,
by Lemma ., to prove the above inequality we need to prove that

∑
k

br + cr

a
–

∑
(k + k)r ≥ .

Multiplying both sides by abc and rearranging gives the equivalent inequality

∑
a(b – c)(bk – ck)r ≥ , (.)

which is clearly true if (.) is valid. By Lemma . and (.), we conclude that the equality
conditions mentioned in the lemma is true. This completes the proof of Lemma .. �

Lemma . and Lemma . show that if the positive real numbers k, k, k form a triangle
and satisfy (.) and (.), then the refinement (.) of the Erdös-Mordell inequality holds.
Next, we shall establish three refinement of the Erdös-Mordell inequality by applying this
conclusion.

Theorem . For any interior point P of the triangle ABC and arbitrary non-negative real
numbers λ and μ (λ, μ not both zero) the following inequalities hold:

∑
R ≥ 

∑
(λa + μb + μc)(r + R)

(λ + μ)
∑

a
≥ 

∑
r. (.)

If λ = , then the first equality in (.) holds if and only if P is the circumcenter of ABC; If
μ = , then the second equality in (.) holds if and only if P is the circumcenter of ABC;
in other cases, the equalities hold if and only if �ABC is equilateral and P is its center.

Proof We first prove the first inequality in (.) by means of Lemma .. Let λa+μb+μc =
k, λb + μc + μa = k, and λc + μa + μb = k, where λ ≥ , μ ≥  and λ, μ not both zero.
Then

k + k – k = λ(b + c – a) + μa > .

Similarly, we have k + k – k >  and k + k – k > . Thus, k, k, k form a triangle, and
∑

k = (λ + μ)
∑

a. A short calculation gives

k(b – c) + (k – k)
(
b – c) = λ(a + b + c)(b – c) ≥ ,

and two similar relations hold. We hence by Lemma . conclude that the first inequality
in (.) holds.
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We now use Lemma . to prove the second inequality in (.). Under the above as-
sumptions, we easily get

(b – c)(bk – ck) = μ(a + b + c)(b – c) ≥ .

Similarly, we have (c – a)(ck – ak) ≥  and (a – b)(ak – bk) ≥ . Thus, by Lemma .,
the second inequality in (.) is proved.

It is easy to see that the first inequality in (.) when λ =  and the second inequality in
(.) when μ =  are both equivalent to

∑
aR ≥

∑
(b + c)r, (.)

which follows from (.). By Lemma ., we see that the equalities (.) in the above two
cases holds if and only if P is the circumcenter of �ABC. For other cases, by Lemma . and
Lemma . we easily conclude that the equalities in (.) are valid if and only if a = b = c
and P is the circumcenter of �ABC, i.e., �ABC is equilateral and P is its center. This
completes the proof of Theorem .. �

In (.), for μ = , we obtain the following.

Corollary . For any interior point P of the triangle ABC, we have

∑
R ≥ 

∑
a(r + R)
∑

a
≥ 

∑
r. (.)

Remark . By applying Lemma . and Lemma ., it is easy to prove the following ex-
ponential generalization of (.):

∑
R ≥ 

∑
ak(r + R)
∑

ak ≥ 
∑

r, (.)

where k is a real number such that  < k ≤ .

In (.), for λ = , we obtain

Corollary . For any interior point P of the triangle ABC, we have

∑
R ≥

∑
(b + c)(r + R)

∑
a

≥ 
∑

r. (.)

Since r +R ≥ ha = r
∑

a/a, where r is the inradius of �ABC. Thus, by the first inequality
of (.), we obtain a lower bound of

∑
R, namely

Corollary . For any interior point P of the triangle ABC, we have

∑
R ≥ r

∑ b + c
a

. (.)
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Motivated by Theorem ., we find that if the lengths of the sides a, b, c are replaced by
the corresponding altitudes ha, hb, hc of �ABC in (.), respectively, then the inequalities
hold for μ >  and μ ≥ λ ≥ , i.e., the following double inequality holds:

∑
R ≥ 

∑
(λha + μhb + μhc)(r + R)

(λ + μ)
∑

ha
≥ 

∑
r, (.)

which is required to prove. If we put λ
μ

= k, then (.) becomes the double inequality
(.) below.

Theorem . Let k be a real number such that  ≤ k ≤ , then for any interior point P of
the triangle ABC the following inequalities hold:

∑
R ≥ 

∑
(kha + hb + hc)(r + R)

(k + )
∑

ha
≥ 

∑
r. (.)

Equalities in (.) hold if and only if �ABC is equilateral and P is its center.

Proof We put

kha + hb + hc = k, khb + hc + ha = k, khc + ha + hb = k.

Then by the given condition  ≤ k ≤  we have

k + k – k = ( – k)ha + k(hb + hc) > .

Similarly, we get k + k – k >  and k + k – k > . Thus, k, k, k form a triangle and
∑

k = (k + )
∑

ha. Also, it is easy to check the following identity:

k(b – c) + (k – k)
(
b – c)

= (b – c)(bhc – chb) + k(b – c)(bha + bhb + chb – bhc – cha – chc).

Thus, by  ≥ k ≥ , (b – c)(bhc – chb) ≥ , and bhb = chc, we have

k(b – c) + (k – k)
(
b – c)

≥ k(b – c)(bhc – chb) + k(b – c)(bha + chb – bhc – cha)

= kha(b – c) ≥ .

Two inequalities similar to k(b – c) + (k – k)(b – c) ≥  of course hold. Thus, the first
inequality in (.) is proved by Lemma ..

On the other hand, it is easy to get the following identity:

(b – c)(bk – ck) = (ha + khb + khc)(b – c).

Hence, (b–c)(bk –ck) ≥  is true and its two analogs hold for k ≥ . Thus, by Lemma .,
the second inequality in (.) is valid for k ≥ .
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Summarizing, we deduce that the double inequality (.) holds for  ≤ k ≤ . In addi-
tion, by Lemma . and Lemma ., we easily conclude that the equalities in (.) occur
hold only when �ABC is equilateral and P is its center. The proof of Theorem . is com-
pleted. �

In particular, for k =  in Theorem ., we obtain

Corollary . For any interior point P of the triangle ABC, we have

∑
R ≥

∑
(hb + hc)(r + R)

∑
ha

≥ 
∑

r. (.)

Finally, we give a dual result of Theorem ., which shows that if we replace the altitudes
ha, hb, hc by the corresponding medians ma, mb, mc in (.) then the inequalities still hold,
i.e., we have the following conclusion:

Theorem . Let k be a real number such that  ≤ k ≤ , then for any interior point P of
�ABC the following inequalities hold:

∑
R ≥ 

∑
(kma + mb + mc)(r + R)

(k + )
∑

ma
≥ 

∑
r. (.)

Equalities in (.) hold if and only if �ABC is equilateral and P is its center.

Proof In order to prove double inequality (.), we first prove the following two inequal-
ities involving the medians and the sides of the triangle, i.e.,

(b – c)(bmc – cmb) ≥ , (.)

and

(b – c)
[
b(ma + mb) – c(mc + ma)

] ≥ . (.)

Inequality (.) can be obtained directly from the following identity:

(b – c)(bmc – cmb)(bmc + cmb) = (b + c)
(
a + b + c)(b – c), (.)

which is easily checked by using the known formulas m
b = (c + a) – b and m

c =
(a + b) – c. For inequality (.), expanding and rearranging gives its equivalent form:

ma
(
b + c) + mbb + mcc – bc(ma + mb + mc) ≥ , (.)

which is needed to prove. According to the median-dual transformation (cf. [], pp.-
), we know that the above inequality is equivalent to

a
(
m

b + m
c
)

+ bm
b + cm

c – mbmc(a + b + c) ≥ . (.)
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Using the formulas for the medians mb and mc again, it is easy to verify the following
identity:

[
a
(
m

b + m
c
)

+ bm
b + cm

c
] – (a + b + c)(mbmc)

=



(b + c)(b + c – a)(b – c)(a + b + c + ab + ac
)
, (.)

which shows that (.) holds true. Therefore, inequalities (.) and (.) are proved.
Also, we easily known that both equalities of (.) and (.) occur if and only if b = c.

We now apply Lemma . and Lemma . to prove the double inequality (.). Let

kma + (mb + mc) = k, kmb + (mc + ma) = k, kmc + (ma + mb) = k,

then it is not difficult to show that k, k, k can be form a triangle if  ≤ k ≤  and we
have

∑
k = (k + )

∑
ma. By Lemma ., to prove the first inequality in (.), it remains

to show that k(b – c) + (k – k)(b – c) ≥ . Taking into account that  ≥ k ≥ , by (.)
and (.) we have

k(b – c) + (k – k)
(
b – c)

= (b – c)(bmc – cmb) + k(b – c)(bma + bmb + cmb – bmc – cma – cmc)

≥ k(b – c)(bmc – cmb) + k(b – c)(bma + bmb + cmb – bmc – cma – cmc)

= k(b – c)
[
b(ma + mb) – c(mc + ma)

] ≥ ,

as claimed. Hence, the first inequality in (.) is proved.
The second inequality in (.) can also easily be proved by Lemma .. With the above

assumptions, it is easy to obtain the following identity:

(b – c)(bk – ck)

= (b – c)
[
b(ma + mb) – c(ma + mc)

]
+ k(b – c)(bmc – cmb),

which together with (.) and (.) shows that (b – c)(bk – ck) ≥  holds for k ≥ .
Thus, we finish the proof of the second inequality in (.).

The equality conditions of (.) follow easily from Lemma . and .. This completes
the proof of Theorem .. �

For k =  in (.), we get the following counterpart of (.).

Corollary . For any interior point P of the triangle ABC, we have

∑
R ≥

∑
(mb + mc)(r + R)

∑
ma

≥ 
∑

r. (.)

6 Open problems
For the inequalities established in this paper, we can propose a lot of new problems. We
next introduce some related conjectures as open problems, which have been checked by
computer.
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The first inequalities of (.) and (.) prompt the author to propose the following con-
jecture.

Conjecture . For any interior point P of �ABC, we have

∑
R(r + r + r) ≥ 

∑
har + 

∑
rr. (.)

If inequality (.) holds true, then we have the following refinement of the Oppenheim
inequality (.):

∑
RR ≥ 


∑

R(r + r + r) ≥
∑

har +
∑

rr

≥
∑

(r + r)(r + r). (.)

in which the last inequality is proved by the author in [].
From the refinement (.) of the Erös-Mordell inequality, we see that the following in-

equality holds:

∑√
a + r

 ≥ 
√

∑
har, (.)

which is difficult to prove directly. Here, we conjecture that the above inequality can be
strengthened as follows.

Conjecture . For any interior point P of �ABC, we have

∑√
a + r

 ≥ 
√

∑
mar. (.)

The following conjecture is similar to Theorem ..

Conjecture . Let k be a real number such that . ≤ k ≤ ., then for any interior
point P of �ABC the following inequalities hold:

∑
R ≥ 

∑
(kr + r + r)(R + r)

(k + )
∑

r
≥ 

∑
r. (.)

Another conjecture with one parameter, which comes from considering generalizations
of the previous double inequality (.), is as follows.

Conjecture . Let k be a real number such that  < k < , then for any interior point P
of �ABC the following inequalities hold:

∑
R ≥ 

∑
(R + r)

√
a + kr


∑√

a + kr


≥ 
∑

r. (.)

Many years ago, the author found the following interesting ‘r-w’ phenomenon: If an in-
equality involving the segments r, r, r and other geometric elements holds for any in-
terior P of �ABC, then the inequality from replacing r, r, r by w, w, w in the original
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inequality, respectively, often still holds for either any or acute triangle ABC. Based on this
phenomenon and with the verification by computer, we can propose some dual inequali-
ties for the results presented in this paper. Here, we only give one example, which is a dual
conjecture of Theorem . as follows.

Conjecture . For any interior point P of �ABC and non-negative real numbers λ and
μ (λ, μ not both zero), the following inequalities hold:

∑
R ≥ 

∑
(λa + μb + μc)(w + R)

(λ + μ)
∑

a
≥ 

∑
w. (.)

When λ = , the first inequality in (.) actually is equivalent to the following beautiful
inequality:

∑
aR ≥

∑
(b + c)w, (.)

which is clearly sharper than the previous inequality (.) but has not been proved at
present.
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