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Abstract
This paper is devoted to the optimal control problem of switching system in which
constraints on the state variable are given by inclusions. Using Ekeland’s variational
principle, second-order necessary condition of optimality for stochastic switching
systems with constraints is obtained, and transversality conditions for switching law
are established.
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1 Introduction
Stochastic differential equations have provided a lot of interest for problems of nuclear
fission, communication systems, self-oscillating systems, etc., where the influences of ran-
dom disturbances cannot be ignored [, ].

Hybrid systems, including special class-switching systems, are widely use for representa-
tion of noninvariant phenomena. Switching systems have the benefit of modeling dynamic
processes with continuous law of movement. For general theory of stochastic switching
systems, we refer to [–]. Recently, optimization problems of hybrid systems and, in par-
ticular, optimization problems of switching systems have attracted a lot of theoretical and
practical interest [, –].

Stochastic control problems have a variety of practical applications in fields such as
physics, biology, economics, management sciences, etc. [, ]. A classical approach for
optimization and particularly for control problems is to derive necessary conditions satis-
fied by an optimal solution. The modern stochastic optimal control theory has been devel-
oped along the lines of Pontryagin’s maximum principle and Bellman’s dynamic program-
ming [, ]. The stochastic maximum principle has been first considered by Kushner
[]. The earliest results on the extension of Pontryagin’s maximum principle to stochas-
tic control problems are obtained in [–]. A general theory of the stochastic maximum
principle based on random convex analysis was given by Bismut []. Modern presen-
tations of stochastic maximum principle with backward stochastic differential equations
are considered in [–]. First-order necessary conditions of optimality for stochastic
switching systems have been studied by the author in [–].
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It is well known that the first-order necessary conditions provide a basic tool to study
the properties of optimal controls. However, in some cases, the Hamilton function van-
ishes almost everywhere, and therefore, first-order necessary conditions cannot provide
enough information to find the desired optimal controls. The above-mentioned cases are
called singular, and to investigate these situations, an additional test in terms of high-order
necessary conditions is required. Deterministic optimization problems for singular con-
trols were intensively used by [, ]. Such kind problems for stochastic systems have
been investigated in [, ].

In this paper, the singular optimal control problem of stochastic switching systems with
uncontrolled diffusion coefficients is considered. Second-order necessary conditions of
optimality and transversality conditions are obtained in [] for uncontrolled switching
systems. Ekeland’s variational principle [] has been widely used in various areas of anal-
ysis such as fixed point analysis, optimization, and optimal control theory. In this paper,
backward stochastic differential equations and Ekeland’s variational principle is used to
establish a singular maximum principle for stochastic optimal control problems of con-
strained switching systems.

2 Preliminaries and formulation of problem
Throughout this paper, we use the following notation. By N we denote some positive con-
stant, Rn denotes the n-dimensional real vector space, | · | denotes the Euclidean norm
in Rn, and E represents the mathematical expectation. Assume that w(t), w(t), . . . , wr(t)
are independent Wiener processes that generate the filtration Fl

t = σ̄ (wl(t), tl–, tl), l = , r,
 = t < t < · · · < tr = T . Let (�, F , P) be a probability space with filtration {Ft , t ∈ [, T]},
where Ft =

⋃r
l= Fl

t ; L
F (a, b; Rn) denotes the space of all predictable processes x(t,ω) ≡ x(t)

such that E
∫ b

a |xt(ω)| dt < +∞; Rm×n is the space of linear transformations from Rm to Rn.
Let Ol ⊂ Rnl , Ql ⊂ Rml , l = , r, be open sets. Unless specified otherwise, we use the fol-
lowing notation: t = (t, t, . . . , tr), u = (u, u, . . . , ur), x = (x, x, . . . , xr).

Consider the following stochastic control system:

dxl(t) = gl(xl(t), ul(t), t
)

dt + f l(xl(t), t
)

dwl(t), t ∈ (tl–, tl], l = , r, ()

xl(tl–) = �l–(xl–(tl–), tl–
)
, l = , r; x

t = x, ()

ul(t) ∈ Ul
∂ ≡ (

ul(·, ·) ∈ L
Fl |ul(t, ·) ∈ Ul ⊂ Rml , a.c.

)
. ()

Elements of Ul
∂ are called admissible controls. The problem is to find an optimal solution

(x, u) = (x, x, . . . , xr , u, u, . . . , ur) and a switching sequence t = (t, t, . . . , tr) such that the
cost functional

J(u) =
r∑

l=

E
[

ϕl(xl(tl)
)

+
∫ tl

tl–

pl(xl(t), ul(t), t
)

dt
]

()

is minimized on the decisions of system ()-() generated by all admissible controls U =
U × U × · · · × Ur under the conditions

Eql(xl(tl)
) ∈ Gl, l = , r, ()

Gl are a closed convex sets in R.
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Assume that the following requirements are satisfied:
(AI) The functions gl , f l , pl , l = , r, and their derivatives are continuous in (x, u, t).

(AII) The derivatives of gl , f l , pl , l = , r, are bounded by N( + |x|).
(AIII) The functions ϕl(x), l = , r, and the functions �l(x, t), l = , r – , are

continuously differentiable, and their derivatives are bounded by N( + |x|).
(AIV) The functions ql(x), l = , r, are continuously differentiable, and their derivatives

are bounded by N( + |x|).
Furthermore, the following requirements are assumed.

(BI) The unctions gl , f l , pl , l = , r, are twice continuously differentiable with respect
to x.

(BII) The functions gl , f l , pl , l = , r, and all their derivatives are continuous in (x, u); gl
x,

gl
xx, f l

x , f l
xx, pl

xx are bounded.
(BIII) The functions ϕl(x) : Rnl → R, l = , r, and the functions �l(x, t) : Rnl × T → R,

l = , r – , are twice continuously bounded differentiable.
(BIV) The functions ql(x) : Rnl → R, l = , r, are twice continuously bounded

differentiable.
Consider the sets:

Ai = Ti+ ×
i∏

j=

Oj ×
i∏

j=

Qj, i = , r,

with the elements

π i =
(
t, t, ti, x(t), x(t), . . . , xi(t), u, u, . . . , ui).

Definition  The set of functions {xl(t) = xl(t,π l), t ∈ [tl–, tl], l = , r} is said to be a so-
lution of equations ()-() with variable structure corresponding to an element π r ∈ Ar

if the function xl(t) ∈ Ol on the interval [tl–, tl] satisfies condition () at point tl , is ab-
solutely continuous on the interval [tl–, tl] with probability , and satisfies equation ()
almost everywhere.

Definition  The element π r ∈ Ar is said to be admissible if the pairs (xl(t), ul(t)), t ∈
[tl–, tl], l = , r, are solutions of system ()-() and satisfy the constraints ().

Definition  Let A
r be the set of admissible elements. The element π̄ r ∈ A

r is said to be
an optimal solution of problem ()-() if there exist admissible controls ūl(t), t ∈ [tl–, tl],
l = , r, and the corresponding solutions x̄l(t), t ∈ [tl–, tl], l = , r, of system ()-() such
that the pairs (x̄l(t), ūl(t)), l = , r, minimize the functional ().

3 Maximum principle
The following is a revised and improved version of Theorem  in [].

Theorem  Suppose that, conditions (AI)-(AIII) hold and

π r =
(
t, t, tr , x(t), x(t), . . . , xr(t), u, u, . . . , ur)

is an optimal solution of problem ()-(). Then
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(a) there exist random processes (ψ l(t),β l(t)) ∈ L
F (tl–, tl; Rnl ) × L

F (tl–, tl; Rnl×nl ) that
are the solutions of the following adjoint equations:

⎧
⎪⎨

⎪⎩

dψ l(t) = –Hl
x(ψ l(t), xl(t), ul(t), t) dt + β l(t) dwl(t), tl– ≤ t < tl,

ψ l(tl) = –ϕl
x(xl(tl)) + ψ l+(tl)�l

x(xl(tl), tl), l = , r – ,
ψ r(tr) = –ϕr

x(xr(tr));
()

(b) ∀ūl ∈ Ul , l = , r, a.c. fulfills the maximum principle:

Hl(ψ l(θ ), xl(θ ), ūl, θ
)

– Hl(ψ l(θ ), xl(θ ), ul(θ ), θ
) ≤ , a.e. θ ∈ [tl–, tl]; ()

(c) the following transversality conditions hold:

ψ l+(tl)�l
t
(
xl(tl), tl

)
= , a.c., l = , r – , ()

where, for t ∈ [tl–, tl],

Hl(ψ(t), x(t), u(t), t
)

= ψ(t)gl(x(t), u(t), t
)

+ β(t)f l(x(t), t
)

– pl(x(t), u(t), t
)
.

The following result can be proved according to the scheme in the proof of Theorem 
in []. In order to investigate the optimal control problem with constraints (), we use
Ekeland’s variational principle.

Theorem  Suppose that conditions (AI)-(AIV) hold and

π r =
(
t, t, tr , x(t), x(t), . . . , xr(t), u, u, . . . , ur)

is an optimal solution of problem ()-(). Then
(a) there exist random processes (ψ l(t),β l(t)) ∈ L

F (tl–, tl; Rnl ) × L
F (tl–, tl; Rnl×nl ) that

are solutions of the following adjoint equations:

⎧
⎪⎨

⎪⎩

dψ l(t) = –Hl
x(ψ l(t), xl(t), ul(t), t) dt + β l(t) dwl(t), tl– ≤ t < tl,

ψ l(tl) = –λl
ql

x(xl(tl)) – λl
ϕ

l
x(xl(tl)) + ψ l+(tl)�l

x(xl(tl), tl), l = , r – ,
ψ r(tr) = –λr

qr
x(xr(tr)) – λr

ϕ
r
x(xr(tr));

()

(b) ∀ūl ∈ Ul , l = , r, a.c. fulfills the maximum principle:

Hl(ψ l(θ ), xl(θ ), ūl, θ
)

– Hl(ψ l(θ ), xl(θ ), ul(θ ), θ
) ≤ , a.e. θ ∈ [tl–, tl]; ()

(c) the following transversality conditions hold:

ψ l+(tl)�l
t
(
xl(tl), tl

)
= , a.c., l = , r – , ()

where, for t ∈ [tl–, tl],

Hl(ψ(t), x(t), u(t), t
)

= ψ(t)gl(x(t), u(t), t
)

+ β(t)f l(x(t), t
)

– pl(x(t), u(t), t
)
.
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4 The second-order necessary condition
In order to review in detail the stochastic singular control switching systems, we need to
introduce the definition of singular controls in the maximum principle sense.

Definition  Admissible controls ul(t), l = , . . . , r, are said to be singular on control re-
gions V l if each V l ⊂ Ul is nonempty and, for a.e. t ∈ [tl–, tl), we have

Hl
x
(
ψ l(t), xl(t), ul(t), t

)
= Hl

x
(
ψ l(t), xl(t), vl, t

)
, ∀vl ∈ V l.

To state the main result of this paper, we will use the following theorem, the full proof
of which can be found in []. However, for convenience of the reader, we present a brief
proof.

Theorem  Suppose that conditions (AI)-(AIII) and (BI)-(BIII) hold. Let π r = (t, t, . . . ,
tr , x(t), x(t), . . . , x(tr), u, u, . . . , ur) be an optimal solution of problem ()-(), and u =
(u, u, . . . , ur) be singular on the control region V = (V , V , . . . , V r). Then

(a) there exist random processes (ψ l(t),β l(t)) ∈ L
Fl (tl–, tl; Rnl ) × L

Fl (tl–, tl; Rnl×nl ) and
( l(t), Kl(t)) ∈ L

Fl (tl–, tl; Rnl ) × L
Fl (tl–, tl; Rnl×nl ) that are solutions of the following

adjoint equations:

⎧
⎪⎨

⎪⎩

dψ l(t) = –Hl
x(ψ l(t), xl(t), ul(t), t) dt + β l(t) dw(t), tl– ≤ t < tl,

ψ l(tl) = –ϕl
x(xl(tl)) + ψ l+(tl)�l

x(xl(tl), tl), l = , r – ,
ψ r(tr) = –ϕr

x(xr(tr));
()

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d l(t) = –[Hl
x( l

t , xl(t), ul(t), t) + Hl
xx(ψ l(t), xl(t), ul(t), t)

+ f l∗
x (xl(t), t) l(t)f l

x (xl(t), t)] dt + Kl(t) dwl(t), t ∈ [tl–, tl),
 l(tl) = –ϕl

xx(xl(tl)) +  l+(tl)�l
xx(xl(tl), tl), l = , r – ,

r(tr) = –ϕr
xx(xr(tr));

()

(b) for a.e. θ ∈ [tl–, tl] and ∀ūl ∈ V l , l = , r, a.c. the second-order maximum conditions
fulfill

�ūl Hl
x
(
ψ l(θ ), xl(θ ), ul, θ

)
�ūl gl∗(xl(θ ), ul(θ ), θ

)

+ �ūl gl∗(xl(θ ), ul(θ ), θ
)
 l(θ )�ūl gl(xl(θ ), ul(θ ), θ

) ≤ ; ()

(c) the following transversality conditions hold:

ψ l+(tl)�l
t
(
xl(tl), tl

)
+ . l+∗

(tl)�l
tt
(
xl(tl), tl

)
 l+(tl) = ,

l = , r – , a.c. ()

Here

Hl((t), x(t), u(t), t
)

= (t)gl(x(t), u(t), t
)

+ gl∗(x(t), u(t), t
)
(t)

+ K(t)f l(x(t), t
)

+ f l∗(x(t), t
)
K(t).

Proof Let ūl(t) = ul(t) + �ūl(t), l = , r, be some admissible controls and x̄l(t) = xl(t) +
�x̄l(t), l = , r, be the corresponding trajectories of system ()-(). Let  = t < t < · · · <



Aghayeva Journal of Inequalities and Applications  (2016) 2016:13 Page 6 of 14

tr = T be a switching sequence. Then we obtain the following identities for some sequence
 = t̄ < t̄ < · · · < t̄r = T :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d�x̄l(t) = [�ūl gl(xl(t), ul(t), t) + gl
x(xl(t), ul(t), t)�x̄l(t)

+ .�x∗(t)gl
xx(xl(t), ul(t), t)�x(t)] dt

+ [f l
x (xl(t), t)�x̄l(t) + .�x∗(t)f l

xx(xl(t), t)�x(t)] dwl(t) + η
t ,

�x̄(t) = ,
�x̄l(tl–) = �l–(x̄l–(tl–), t̄l–) – �l–(xl–(tl–), tl–), l = , r,

()

where

η
t =

∫ 



[
gl∗

x
(
xl(t) + μ�x̄l(t), ūl

t , t
)

– gl∗
x
(
xl(t), ul(t), t

)]
�x̄l(t) dμdt

+ .
∫ 


�x̄l∗(t)

[
gl∗

xx
(
xl(t) + μ�x̄l(t), ul(t), t

)
– g∗

xx
(
xl(t), ul(t), t

)]
�x̄l(t) dμdt

+
∫ 



[
f l∗
x
(
xl(t) + μ�x̄l(t), t

)
– f l∗

x
(
xl(t), t

)]
�x̄l(t) dμdwl(t)

+ .
∫ 


�x̄l∗(t)

[
f l∗
xx
(
xl(t) + μ�x̄l(t), t

)
– f ∗

xx
(
xl(t), t

)]
�x̄l(t) dμdwl(t).

In order to establish the existence and uniqueness of a solution of adjoint stochastic
differential equations, it suffices to follow the method described in the article [] and to
use the independence of Wiener processes w(t), . . . , wr(t).

The stochastic processes ψ l(t), l = , r, at the points t, t, . . . , tr are defined as

ψ l(tl) = –ϕl
x
(
xl(tl)

)
+ ψ l+(tl)�l

x
(
xl(tl), tl

)
, ψ r(tr) = –ϕr

x
(
x(tr)r) ()

and

 l(tl) = –ϕl
xx
(
xl(tl)

)
+  l+(tl)�l

xx
(
xl(tl), tl

)
, r(tr) = –ϕr

xx
(
xr(tr)

)
. ()

According to Itô’s formula [], the expression of an increment of the cost functional ()
takes the following form:

�J(u) =
r∑

l=

E
{

ϕl(x̄l(tl)
)

– ϕl(xl(tl)
)

+
∫ tl

tl–

[
pl(x̄l(t), ūl

t , t
)

– pl(xl(t), ul(t), t
)]

dt
}

= –
r∑

l=

E
∫ tl

t–

[
�ūl Hl(ψ l(t), xl(t), ul(t), t

)
+ Hl

x
(
ψ l(t), xl(t), ul(t), t

)
�x̄l(t)

– .�x̄l∗(t)f l∗
x
(
xl(t), t

)
 l(t)f l

x
(
xl(t), t

)
�x̄l(t)

+ �x̄l∗(t)�ūl gl(xl(t), ul(t), t
)
 l(t)�x̄l(t)

– �x̄l∗(t)gl
x
(
xl(t), ul(t), t

)
 l(t)�x̄l(t) – �x̄l∗(t)f l

x
(
xl(t), t

)
Kl

t �x̄l(t)

+ ψ l∗
t �ūl gl

x
(
xl(t), ul(t), t

)
�x̄l(t) – �ūl pl

x
(
xl(t), ul(t), t

)
�x̄l(t)

]
�t̄l dt

+
r–∑

l=

ψ l+(tl)�t
(
xl(tl), tl

)
+

r∑

l=

η
tl
tl– , ()
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where

η
tl
tl– = E

∫ 


( – μ)

[
ϕl∗

x
(
x̄l(tl)

)
– ϕ∗

x
(
xl(tl)

)]
�x̄l(tl) dμ

– E
∫ tl

tl–

∫ 


( – μ)

[
Hl

x
(
ψ l(t), x̄l(tl), ul(t), t

)

– Hl
x
(
ψ l(t), xl(t)ul(t), t

)]
�x̄l(t)�t̄l dμdt

– E
∫ 


( – μ)ψ l+

tl

[
�l

x
(
x̄l(tl)

)
–�l

x
(
xl(t), tl

)]
�xl(t)�t̄l dμ

+ E
∫ 


( – μ)�x̄l∗

tl

[
ϕl∗

xx
(
x̄l(tl)

)
– ϕ∗

xx
(
xl(tl)

)]
�x̄l(tl) dμ

+ E
∫ tl

tl–

∫ 


( – μ)�x̄l∗

t
[
Hl

xx
(
ψ l(t), x̄l(tl), ul(t), t

)

– Hl
xx
(
ψ l(t), xl(t)ul(t), t

)]
�x̄l(t)�t̄l dμdt

+ E
∫ 


( – μ)�x̄l∗

tl
 l+(tl)

[
�l

xx
(
x̄l(tl), tl

)
– �l

xx
(
xl(t), tl

)]
�x̄l(tl)�t̄l dμ. ()

By assumptions (AIII) and (BIII), using identities () and () from expressions (), (),
and (), according to the fact that the coefficients of the independent increments �xl(t),
�t̄ equal zero, we obtain that () is true. Taking into consideration (), (), (), and
(), through the simple expression () of transformations, can be written as

�J(u) =
s∑

l=

�J l(ul)

= –
s∑

l=

E
∫ tl

tl–

[
�ul Hl(ψ l(t), xl(t), ul(t), t

)
+ �ul Hl

xl

(
ψ l(t), xl(t), ul(t), t

)
�x̄l(t)

– .�x̄l∗
tl

f l∗(xl(t), t
)
 l(t)f l

x
(
xl(t), t

)
�x̄l(tl)

+ �x̄l∗(tl)�ūl gl(xl(t), ul(t), t
)
 l(t)�x̄l(tl)

– �x̄l∗(tl)gl
x
(
xl(t), ul(t), t

)
 l(t)�x̄l(tl) – �x̄l∗(tl)f l

x
(
xl(t), t

)
Kl(t)�x̄l(tl)

]
�t̄l dt

+
r∑

l=

η
tl
tl– . ()

Consider the following spike variations:

�ul(t) = �uθl
t,εl =

{
, t /∈ [θl, θl + εl), εl > , θl ∈ [tl–, tl),
ūl – ul

t , t ∈ [θl, θl + εl), ūl ∈ L(�, Fθl , P; Rm),

where εl >  are small enough.

The following lemma will be used in estimation of increment ().

Lemma  Assume that conditions (AI), (AII), (BI), (BII) are satisfied. Then

lim
εl→

E
∣
∣xθl

εl
(t) – xl(t)

∣
∣ ≤ Nε

l a.e. in [tl–, tl), l = , r.
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Here xθl
εl (t) are the trajectories of system ()-() corresponding to the controls uθl

εl (t) =
ul(t) + �uθl

εl (t).

Proof See Lemma  in []. �

By invoking expression () and using Lemma  the following estimation is implied:

η
θl+εl
θl

= o
(
ε

l
)
, l = , r.

According to the singularity of controls ūl(t), l = , r, in the maximum sense for given
special variation from (), it follows that, for each l,

�θ l J(u) = –εlE
[
�ūl Hx

(
ψ l(θl), xl(θl), ul(θl), θl

)
�ūl gl(xl(θl), ul(θl), θl

)

+ �ūl gl∗(xl(θl), ul(θl), θl
)
 l(θl)�ūl gl(xl

θl
, ul(θl), θl

)
�t̄l

]
+ o

(
ε

l
) ≥ .

Finally, due to the smallness and arbitrariness of εl , () is fulfilled. Theorem  is
proved. �

5 Necessary condition of optimality for singular controls
This section is devoted to investigation of singular optimal control problems for stochas-
tic switching systems with constraints. We obtain a necessary condition of optimality for
stochastic control problem of switching systems ()-(). Using Ekeland’s variational prin-
ciple, the given problem is converted into a sequence of unconstrained problems. Based
on Theorem , we establish the maximum principle and transversality conditions for the
sequence of switching systems. Then we obtain a necessary condition of optimality in the
case where endpoint constraints are imposed.

Theorem  Suppose that conditions (AI)-(AIV) and (BI)-(BIV) hold. Let π r = (t, t, . . . ,
tr , x(t), x(t), . . . , x(tr), u, u, . . . , ur) be an optimal solution of problem ()-(), and u =
(u, u, . . . , ur) be singular on the control region V = (V , V , . . . , V r). Then

(a) there exist random processes (ψ l(t),β l(t)) ∈ L
Fl (tl–, tl; Rnl ) × L

Fl (tl–, tl; Rnl×nl ) and
( l(t), Kl(t)) ∈ L

Fl (tl–, tl; Rnl ) × L
Fl (tl–, tl; Rnl×nl ) that are solutions of the following

adjoint equations:

⎧
⎪⎨

⎪⎩

dψ l(t) = –Hl
x(ψ l(t), xl(t), ul(t), t) dt + β l(t) dw(t), tl– ≤ t < tl,

ψ l(tl) = –λl
ql

x(xl(tl)) – λl
ϕ

l
x(xl(tl)) + ψ l+(tl)�l

x(xl(tl), tl), l = , r – ,
ψ r(tr) = –λr

qr
x(xr(tr)) – λr

ϕ
r
x(xr(tr));

()

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d l(t) = –[Hl
x( l(t), xl(t), ul(t), t) + Hl

xx(ψ l(t), xl(t), ul(t), t)
+ f l∗

x (xl(t), t) l(t)f l
x (xl(t), t)] dt + Kl(t) dwl(t), t ∈ [tl–, tl),

 l(tl) = –λl
ql

xx(xl(tl)) – λl
ϕ

l
xx(xl(tl))

+  l+(tl)�l
xx(xl(tl), tl), l = , r – ,

r(tr) = –λr
qr

xx(xr(tr)) – λr
ϕ

r
xx(xr(tr));

()

(b) a.e. θ ∈ [tl–, tl] and ∀ūl ∈ V l , l = , r, a.c. the second-order maximum conditions ()
are satisfied;

(c) the transversality conditions () hold.
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Proof For any natural j, let us introduce the following approximating functional for each
l = , r:

Ij(u) = Sj

〈

E
r∑

l=

[

ϕl(tl) +
∫ tl

tl–

pl(xl(t), ul(t), t
)

dt
]

, E
r∑

l=

ql(xl(tl)
)
〉

= min
(c,yl)∈ε

√
√
√
√

∣
∣c – /j – EM(x, u, t)

∣
∣ +

r∑

l=

∣
∣yl – Eql

(
xl(tl)

)∣
∣,

where M(x, u, t) =
∑r

i=[ϕl(xl(tl)) +
∫ tl

tl–
p(xl(t), ul(t), t) dt], ε = {c : c ≤ J, yl ∈ Gl}, c = c +

· · · + cr , and J is the minimal value of the functional in problem ()-().
Let V l ≡ (Ul

∂ , d) be the space of controls obtained by means of the following metric:
d(ul, vl) = (l ⊗ P){(t,ω) ∈ [tl–, tl] × � : ν l

t �= ul(t)}. For each l = , r, V l is a complete metric
space [].

It is easy to prove the following fact.

Lemma  Assume that conditions (AI)-(AIV) hold, ul,n(t), l = , r, is a sequence of admis-
sible controls from V l , and xl,n(t) is the sequence of corresponding trajectories of system
()-(). If d(ul,n(t), ul(t)) → , then, limn→∞{suptl–≤t≤tl

E|xl,n(t) – xl(t)|} = , where xl(t) is
a trajectory corresponding to the admissible controls ul(t), l = , r.

Due to the continuity of the functionals Il
j : V l → Rnl , according to Ekeland’s variational

principle, there are controls such that ul,j(t) : d(ul,j(t), ul(t)) ≤
√

εl
j and for ∀ul(t) ∈ V l , the

following is achieved: Il
j (ul,j) ≤ Il

j (ul) +
√

εl
j d(ul,j, ul), εl

j = 
j .

This inequality means that (t, . . . , tr , x,j(t), . . . , xr,j(t), u,j(t), . . . , ur,j(t)) for each t ∈ (tl–, tl]
is a solution of the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Jj(u) =
∑r

l=(Il
j (ul) +

√
εl

j E
∫ tl

tl–
δ(ul(t), ul,j(t)) dt) → min,

dxl(t) = gl(xl(t), ul(t), t) dt + f l(xl(t), t) dw(t), l = , r,
xl+(tl) = �l(xl(tl), tl), l = , r – ; x(t) = x,
ul(t) ∈ Ul

∂ .

()

The function δ(u, v) is determined in the following way:

δ(u, v) =

{
, u = v,
, u �= v.

Then according to Theorem , we have that if (x,j(t), . . . , xr,j(t), u,j(t), . . . , ur,j(t)) is an
optimal solution of problem (), then

() there exist random processes (ψ l,j(t),β l,j(t)) ∈ L
Fl (tl–, tl; Rnl ) × L

Fl (tl–, tl; Rnl×nl ) that
are solutions of the following system:

⎧
⎪⎨

⎪⎩

dψ l,j(t) = –Hl
x(ψ l,j(t), xl,j(t), ul,j(t), t) dt + β l,j(t) dwl(t), t ∈ [tl–, tl), l = , r,

ψ l,j(tl) = –λ
l,j
 ϕl

x(xl,j(tl)) – λ
l,j
 ql

x(xl,j(tl)) + ψ l
tl+

�l
x(xl,j(tl), tl), l = , r – ,

ψ r(tr) = –λ
r,j
 ϕr

x(xr,j(tr) – λ
r,j
 qr

x(xr,j(tr)),
()
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and the random processes  l,j(t) ∈ L
Fl (tl–, tl; Rnl ), Kl,j(t) ∈ L

Fl (tl–, tl; Rnl×nl ) that are solu-
tions of the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d l,j(t) = –[Hl
x( l,j(t), xl,j(t), ul,j(t), t) + Hl

xx(ψ l,j(t), xl,j(t), ul,j(t), t)
+ f l∗

x (xl,j(t), ul,j(t), t) l,j(t)f l
x (xl,j(t), ul,j(t), t)] dt + Kl,j(t) dwl(t),

 l,j(tl) = –λ
l,j
 ϕl

xx(xl,j(tl)) – λ
l,j
 ql

xx(xl,j(tl) + 
l,j
tl+�

l
xx(xl,j(tl), tl), l = , r – ,

r,j(tr) = –λ
r,j
 ϕr

xx(xr,j(tr)) – λ
r,j
 qr

xx(xr,j(tr),

()

where nonzero (λl,j
 ,λl,j

 ) ∈ Rk+, l = , r, satisfy the following requirement:

(
λ

l,j
 ,λl,j


)

=
[

–cl + /j + ϕl(xl(tl)
)

+
∫ tl

tl–

p
(
xl(t), ul(t), t

)
dt, –yl + Eql(xl,j(tl)

)
]/

J
j ()

with

J
j =

( r∑

l=

∣
∣yl –Eql(xl,j(tl)

)∣
∣ +

∣
∣
∣
∣
∣
c – /j – E

r∑

l=

[

ϕl(xl(tl)
)

+
∫ tl

tl–

p
(
xl(t), ul(t), t

)
dt
]∣∣
∣
∣
∣

)/

;

() for a.e. t ∈ [tl–, tl] and ∀ũl ∈ V l , l = , r, a.c. is satisfied:

�ūl,j Hl
x
(
ψ l,j(θ ), xl,j(θ ), ul,j, θ

)
�ūl,j gl∗(xl,j(θ ), ul,j(θ ), θ

)

+ �ūl,j gl∗(xl,j(θ ), ul,j(θ ), θ
)
 l,j(θ )�ūl gl(xl,j(θ ), ul,j(θ ), θ

) ≤ ; ()

() the following transversality conditions hold:

ψ l+,j(tl)�
l,j
t
(
xl,j(tl), tl

)
+ . l+,j∗ (tl)�

l,j
tt
(
xl,j(tl), tl

)
 l+,j(tl) = , l = , r – , a.c. ()

According to conditions (BI)-(BIV), we have that (λj
,λj

) → (λ,λ) as j → ∞.
The proof of item (a) of Theorem  is based on the following lemmas.

Lemma  Let ψ l(tl) be a solution of system (), and ψ l,j(tl) be a solution of system (). If
d(ul,j(t), ul(t)) → , j → ∞, then

E
∫ tl

tl–

∣
∣ψ l,j(t) – ψ l(t)

∣
∣ dt + E

∫ tl

tl–

∣
∣β l,j(t) – β l(t)

∣
∣ dt → , l = , r.

Proof It is clear that ∀t ∈ [tl–, tl],

d
(
ψ l,j(t) – ψ l(t)

)

= –
[
Hl

x
(
ψ

l,j
t , xl,j(t), ul,j(t), t

)
– Hl

x
(
ψ l(t), xl(t), ul(t), t

)]
dt +

(
β l,j(t) – β l(t)

)
dw(t)

= –
[
ψ l,j(t)gl

x
(
xl,j(t), ul,j(t), t

)
+ β l,j(t)f l

x
(
xl,j(t), t

)

– pl
x
(
xl,j(t), ul,j(t), t

)
– ψ l(t)gl

x
(
xl(t), ul(t), t

)

– β l(t)f l
x
(
xl(t), t

)
+ pl

x
(
xl(t), ul(t), t

)]
dt +

(
β l,j(t) – β l(t)

)
dw(t).
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Let us square both sides of the last equation. Then, according to Itô’s formula, ∀s ∈
[tr–, T],

E
(
ψ l,j(t) – ψ l(t)

) – E
(
ψ l,j(s) – ψ l(s)

)

= E
∫ tr

s

[
ψ l,j(t) – ψ l(t)

][(
gl∗

x
(
xl,j(t), ul,j(t), t

)
– gl∗

x
(
xl(t), ul(t), t

))
ψ l,j(t)

+ gl∗
x
(
xl(t), ul(t), t

)(
ψ l,j(t) – ψ l(t)

)
+
(
f l∗
x
(
xl,j(t), t

)
– f l∗

x
(
xl(t), t

))
β l,j(t)

+ f l∗
x
(
xl(t), t

)(
β l,j(t) – β l(t)

)
– pl(xl,j(t), ul,j(t), t

)
+ pl

x
(
xl(t), ul(t), t

)]
dt

+ E
∫ tr

s

(
β l,j(t) – β l(t)

) dt.

Now, due to assumptions (AI)-(AIII), we get:

E
∫ tr

s

∣
∣β l,j(t) – β l(t)

∣
∣ dt + E

∣
∣ψ l,j(s) – ψ l(s)

∣
∣

≤ EN
∫ tr

s

∣
∣ψ l,j(t) – ψ l(t)

∣
∣ dt + ENε

∫ tr

s

∣
∣β l,j(t) – β l(t)

∣
∣ dt + E

∣
∣ψ l,j(tr) – ψ l(tr )

∣
∣.

Hence, by the Gronwall inequality [] we obtain that

E
∣
∣ψ l,j(s) – ψ l(s)

∣
∣ ≤ DeN(tr–s) a.e. in [tr–, tr], ()

where D = E|ψ l,j(tr) – ψ l(tr)|. Hence, it follows from () and () that ψ l,j(tr) → ψ l(tr),
which leads to D → . Consequently, it follows that ψ l,j(s) → ψ l(s) in L

F (tr–, tr ; Rnl ), and
thus β l,j(s) → β l(s) in L

F (tr–, tr ; Rnl×nl ).
Then from the expression

E
∣
∣ψ l,j(tl) – ψ l(tl)

∣
∣ – E

∣
∣ψ l,j(s) – ψ l

s
∣
∣

= E
∫ tl

s

(
ψ l,j(t) – ψ l(t)

)[(
gl∗

x
(
xl,j(t), ul,j(t), t

)
– gl∗

x
(
xl(t), ul(t), t

))
ψ l,j(t)

+ gl∗
x
(
xl(t), ul(t), t

)(
ψ l,j(t) – ψ l(t)

)
+
(
f l∗
x
(
xl,j(t), t

)
– f l∗

x
(
xl(t), t

))
β

j
t

+ f l∗
x
(
xl(t), t

)(
β l,j(t) – β l,j(t)

)
+ pl

x
(
xl(t), ul(t), t

)
– pl

x
(
xl,j(t), ul,j(t), t

)]
dt

+ E
∫ tl

s

∣
∣β l,j(t) – β l(t)

∣
∣ dt,

using simple transformations, in view of assumptions (AI)-(AIV), we obtain:

E
∫ tl

s

∣
∣β l,j(t) – β l(t)

∣
∣ dt + E

∣
∣ψ l,j(s) – ψ l

s
∣
∣

≤ EN
∫ tl

s

∣
∣ψ l,j(t) – ψ l(t)

∣
∣ dt + ENε

∫ tl

s

∣
∣β l,j(t) – β l(t)

∣
∣ dt + E

∣
∣ψ l,j(tl) – ψ l(tl)

∣
∣.

Hence, according to the Gronwall inequality, we have:

E
∣
∣ψ l,j(s) – ψ l(s)

∣
∣ ≤ DeN(tl–s) a.e. in [tl–, tl], l = , r – ,
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where the constant D is determined as D = E|ψ l,j(tl) – ψ l(tl)|, and D → . Then from
() it follows that ψ l,j(s) → ψ l(s) in L

Fl (tl–, tl; Rn) and β l,j(s) → β l(s) in L
Fl (tl–, tl; Rn×n).

Lemma  is proved. �

Lemma  Let  l,j(tl) be a solution of system (), and  l(tl) be a solution of system ().
Then

E
∫ tl

tl–

∣
∣ l,j(t) –  l(t)

∣
∣ dt + E

∫ tl

tl–

∣
∣Kl,j(t) – Kl(t)

∣
∣ dt → , l = , r, as j → ∞.

Proof Due to Itô’s formula, from expressions () and () for all s ∈ [tl–, tl) we have:

d
(
 l,j(t) –  l(t)

)
= –

{(
gl∗

x
(
xl,j(t), ul,j(t), t

)
 l,j(t) – gl∗

x
(
xj

t , uj
t , t

)
 l(t)

)

+
(


l,j
t gl

x
(
xl,j(t), ul,j(t), t

)
–  l(t)gl

x
(
xj

t , uj
t , t

))

+
(
f l∗
x
(
xl,j(t), t

)
Kl,j(t) – f l∗

x
(
xl(t), t

)
Kl(t)

)

+ Hl
xx
(
ψ l,j(t), xl,j(t), ul,j(t), t

)
– Hl

xx
(
ψ l(t), xl(t), ul(t), t

)}
dt

+
(
Kl,j(t) – Kl(t)

)
dwl(t).

Based on Itô’s formula, from the previous expression we get:

E
∣
∣ l,j(tl) –  l(tl)

∣
∣ – E

∣
∣ l,j(s) –  l(s)

∣
∣

≤ E
∫ tl

s

[
 l,j(t) –  l

t
][(

gl∗
x
(
xl,j(t), ul,j(t), t

)
– gl∗

x
(
xj

t , uj
t , t

))
 l,j(t)

+ gl,∗
x
(
xj

t , uj
t , t

)(
 l,j(t) –  l(t)

)
+
(
f l∗
x
(
xl,j(t), t

)
– f l∗

x
(
xl(t), t

))
Kl,j(t)

+ Hl
xx
(
ψ l,j(t), xl,j(t), ul,j(t), t

)
– Hl

xx
(
ψ

j
t , xl(t), ul(t), t

)

+ Hl
xx
(
ψ l,j(t), xl(t), ul(t), t

)
– Hl

xx
(
ψ l(t), xl(t), ul(t), t

)]
dt

+ E
∫ tl

s

∣
∣Kl,j(t) – Kl(t)

∣
∣ dt.

Then by simple transformations we obtain:

E
∫ tl

s

∣
∣Kl,j(t) – Kl(t)

∣
∣ dt + E

∣
∣ l,j(t) –  l(t)

∣
∣

≤ EN
∫ tl

s

∣
∣ l,j(t) –  l(t)

∣
∣ dt + ENε

∫ t

s

∣
∣Kl,j(t) – Kl(t)

∣
∣ dt + E

∣
∣ l,j(tl) –  l(tl)

∣
∣.

According to the Gronwall inequality, a.e. in [tl–, tl) we have:

E
∣
∣ l,j(s) –  l(s)

∣
∣ ≤ De–N(tl–s),

where the constant D is defined as

D = E
∣
∣ l,j(tl) –  l(tl)

∣
∣ + ENε

∫ tl

s

∣
∣Kl,j(t) – Kl(t)

∣
∣ dt,
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so that  l,j(tr) →  l(tr), and hence, according to assumptions (BI)-(BIV) and expressions
() and (), we obtain  l,j(t) →  l(t) in L

Fr (tr–, tr ; Rn) as j → ∞.
Then, according to sufficient smallness of ε, it follows that D → . Consequently,

 l,j(t) →  l(t) in L
Fl (tl–, tl; Rn) and Kl,j(t) → Kl(t) in L

Fl (tl–, tl; Rn×n), l = , r – . Lemma 
is proved. �

Based on Lemma  and Lemma , we can pass to the limit in systems () and (), and
the fulfilment of () and () is derived. Following a similar scheme and taking the limits
in () and (), we can obtain the fulfilment of second-order necessary conditions and
transversality conditions. Theorem  is proved. �

6 Conclusions
This paper is motivated by the increased interest of the research on switching systems.
Many theoretical and numerical advances have recently been realized in the field of
stochastic optimization. The stochastic control problem of switching systems in which
the endpoint restrictions are defined with the help of convex closed sets is considered.
The results developed in this study can be viewed as stochastic analogues of the problems
formulated in [, ] and an extension of the results for switching systems given in [, ].
The main result, Theorem , is a natural evolution of Theorem  in [].
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