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Abstract

In this paper, some new generalized retarded inequalities for discontinuous functions
are discussed, which are effective in dealing with the qualitative theory of some
impulsive differential equations and impulsive integral equations. Compared with
some existing integral inequalities, these estimations can be used as tools in the study
of differential-integral equations with impulsive conditions.
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1 Introduction

In analyzing the impulsive phenomenon of a physical system governed by certain differen-
tial and integral equations, one often needs some kinds of inequalities, such as Gronwall-
like inequalities; these inequalities and their various linear and nonlinear generalizations
are crucial in the discussion of the existence, uniqueness, boundedness, stability, and other
qualitative properties of solutions of differential and integral equations (see [1-12] and ref-
erences therein). In [1], Lipovan studied the inequality with delay (b(¢) < ¢, b(t) — oo as

t— 00)

b(t)

u(t) <c+ /tf(s)w(u(s)) ds + / g(s)w(u(s)) ds, ty<t<t,

b(to)

in [2], Agarwal et al. investigated the retarded Gronwall-like inequality

0) < a0 ifbmf( wi(u(s))
u(t) <alt)+ (L, s)wi(u(s S,
B i=1 bi(to)

in 2004, Borysenko [3] obtained the explicit bound to the unknown function of the fol-

lowing integral inequality with impulsive effect:

u(t) < alt) + / tf(s)u(s)ds+ 3" (- 0),

to<ti<t
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in 2007, Iovane [4] studied the following integral inequalities:

u(t) < a(t) + / f&u(rs))ds+ Y and (t:-0),

to<ti<t

u(t) Sa(t)+q(t)[ f FOulas)) ds + / ) / (c(0)) deds

) aiu’(ti—O)}

to<ti<t

in 2012, Wang and Li [5] gave the upper bound of solutions for the nonlinear inequality

V() < Ao(t) + f( ds+ Z ai(t; -0
r—q to<ti<t

in 2013, Yan [6] considered the following inequality:

u(t) < a(t) + /tf(t,s)u(a(s)) ds + ftf(t,s) (fsg(s,)»)u(r()\)) d)») ds
+q(?) Z o’ (t; - 0)

to<ti<t

and gave an upper bound estimation. Because of the fundamental importance, over the
years, many generalizations and analogous results have been established. However, the
bounds given on such inequalities are not directly applicable in the study of some com-
plicated retarded inequalities for discontinuous functions. It is desirable to establish new
inequalities of the above type, which can be used more effectively in the study of certain
classes of retarded nonlinear differential and integral equations. So in this paper, the fol-

lowing new integral inequalities are presented:

N t L t s
u(®) <a(t)+y / gi(S)u(gils))ds+ > f bi(s) / ¢i(0)u(w;(0)) do ds, Q)
i=1 Yt j=1 7t 0

uP(t) < ao(t) + p Z/g, ¢>l(s ds+2/ bi(s) / c,(@)uq(w,( ))d@ds
+ Z B (t; — 0), (2)

to<ti<t

N ot
W) <a®) + i)y [ ol (809)ds
i=1 Y

+Z / by(t,s) / cj(s, 0)u (wj(0)) d0 ds + qa(t) » P (t; - 0). (3)

to<ti<t

We give the explicit upper bounds estimation of unknown function of these new inequal-
ities, some applications of these inequalities in impulsive differential equations are also
involved.
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2 Main results
We consider the inequality (1) first.

Theorem 2.1 Suppose that for ty € R and ty <t < 0o, the functions u(t), a(t), and g;(t),
bi(t), ¢j(t) 1 < i <N, 1=<j <L) are positive and continuous functions on [ty, o), and c;(t)
are nondecreasing functions on [ty, 00). Moreover, ¢;(t), w;(t) are continuous functions on
[to,00) and ty < ¢i(t) <t,to <w;(t) <tforl <i<Nandl<j<L.Thentheinequality (1)
implies that

u(t) <alt) + exp(/t Qi(s) ds) </t Y(s) exp(— /S Ql(t)dr) ds), (4)

where

N
Ql(t)=L+Z +Zb, )cj(2),
=1

j=1
and c}(t) = max({c;(¢), 1}.

Proof Leta(t)+z(¢) denote the function on the right-hand side of inequality (1). Obviously
z1(¢) is a positive and increasing function, and it satisfies u(t) < a(t) + z1(¢),

N L t
le t) Zgl(t ¢l + Z h/(t) / Cj(@)u(wi(e)) do
j=1 0

<Zgl(t> (#:0) +z(:(0)))

L t
250 [ GO)an®) +2 (@) do. )
j=1 fo
Let
Y(t) = nga i(0)) Zb () f ¢j(0)a(w;(0)) db, 6)
j=1
L t
Zgz Zl + ij / Zl W}(G)) (7)
j=1

Obviously, = dzl(t < Y(t) + z(¢). Let cl(t) max{c;(£),1}. We can obtain

N L L t
o) < (Zgl(t) + Zb,(t)c}u)) (zl(t) £y / 21(w,(6)) de>. (8)
i=1 j=1 j=1 7t

Let

L t
50 -20+ Y [ a(yo)d
j=1 “f0
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we note that z3(t) is a positive and nondecreasing function on I with z3(¢y) = 0, and z;(¢) <

z3(t), which satisfies

dzs( dz
dg 1 + Zzl w; t)

N L L
+ (Zg,»(t) + Z b,-(t)c}(t))zg(t) + ZZg (w,(t))
i=1 j=1 j=1
N L
< (L +> gty + Y b,(t)c}(t)) z3(t) + Y ()

i=1 j=1

= Qu(B)z3(8) + Y (2). ©)

Consider the initial value problem of the differential equation

(10)

m = Qu()z4(t) + Y (1),
Z4(to) =0.

The solution of equation (10) is

() = exp(/ Qi(s) ds) (/ Y(s) exp(— /S Ql(r)dr> ds). (11)

Then by comparison of the differential inequality, we have z3(£) < z4(¢), so

u(t) <alt) + exp(/t Qi(s) ds) (/t Y(s) exp(— /S Ql(r)dr> ds>. (12)

This completes the proof. d
Now, we consider the inequality (2).

Theorem 2.2 Suppose that g(t), b(t), ¢i(t), wi(t) are defined as those in Theorem 2.1,
p>q>0,to<ti<ty<---,Bi > 0,a0(t) is continuous and nondecreasing function on [ty, t1)

and ao(t) > 1. u(t) is a piecewise continuous nonnegative function on [ty, 00) with only the
first discontinuous points t;, i =1,2,.... Then, for all t € Iy and I = [tx_1, L], we obtain

-1

u(t) <t (1), (13)

where

w(6) - {m(t) exp ( / Qa(s) ds) }'7
Lg-1

X [1+L<1— z)(1+ak 1(t))L‘1

p
a4

x / . exp(— fk (1 - Z)Qz(f)dt) ds} w
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ar(t) =

/()7 (¢1(5)) d

-1 =1

+Z/ me(s)/ m(0)T (W (0)) dads+2ﬁ,r,(r,, tel.

§-1 m=1 b j=1

Proof Let V = ui. The inequality (2) is equivalent to

Vg (t) < ap(t) + gils)Vv

L ¢ s
+ bi(s) | ¢i(0)V(w;(0))dOds
2 [ 56 [ e@vmo)

+ ) Bu(t;-0), Vre[0,00). (15)
to<t;<t
Let I; = [ti1, 4], i=1,2,.... First, we consider the following inequality on /;:

N ¢
Vi <ao s L Zl f GOV () ds

L t s
> / b;(s) / ¢i(0)V (w;(6)) db ds. (16)
j=1 to to
For T € 1 and t € [to, T), let

Yi(t) = ao(T) +

Z / GOV () d
+ bi(s) Scl(O)V w;(0)) d ds. 17)
2 [ 56 [ @vime)

q
Obviously Y;(¢) > 1, and Vg (£) < Y1(8), so V(¢) < Y{ (t), and

dvi(t)  p & : f
i 21: GOV (d:(t)) + ;b,(t) /to (0)V (w;(6)) db
) N
<L GOYF 0+ b0 / 50)Y; (w0)) do
i= ] 1

q

P
N

5(%2 Zb(tc(t)(Yl(t Z/ v/ (w6 d@) 18)
1 to

Let

L t ¢
=10+ [ ¥ (wo)as
j=1 "t
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Then Y;(¢) < Y5(¢), and differentiating Y>(¢) implies

dY,(t) dyi(t 1
dzt( ) _ 1(8) . Z 7 (wi(®))
N L q
< (L > et + ij<t)c;(t)> Ya(t) + LY (0) 19)
Lo e j=1
Let
N
Qu(8) = Lq S e+ Zb (@),
i= j=1

11

Considering dY3 =Qu(t)Y5(t )+LY" (¢), we obtain Y5” (¢ £ B0 — 0, () Y;”(t)+L. Denote

dt
r=q

R(t) = Y3” (¢), we have Y3(¢) = RF- -4 (t). Furthermore,

55

‘ dRY) _ = (QORO + 1)1~ D),
(20)

R(to) = ” (7).

Then we get

R(t) —exp|:( )/ Qz(S)dS]
X [aOTq(T)+L<1—;—§> /;0 exp<—/t:<ppq)Q2(r)dr> ] (21)

Then

Ya(t) = ao(T) exp ( f Qus) ds)

N ool - (11 &
x[1+L<1—p)a0 (T)A)exp( A)(l p)Qz(t)dr>ds] . (22)

By comparison of the differential inequality, we have Y,(t) < Y3(¢). Moreover, Vs @) <
q
Y, (¢) implies V(¢) < Y7 (¢), and this inequality is equivalent to

q

V() < [ﬂo(T) exp(/ Qs (s) ds>:|p
D\ Faom (ool (14
x[1+L(1—p>a0 (T)/toexp( /to(l p)Qz(r) )ds:| . (23)

Letting t = T, where T is a positive constant chosen arbitrarily, we get

I
Q

q

T »
V(T) < [aom exp ( / Q:(s) ds>]

r T s 7—q
X |:1 +L<1—g>a{)"q(T) /to exp(—/to <1—Z>Q2(r)dr) dsi| . (24)



Zheng et al. Journal of Inequalities and Applications (2016) 2016:7 Page 7 of 14

Obviously,

V() < [ao(t) GXp( / Qa(s) ds)]p
X[1+L<1——> é'pt)/exp< /(1——)Q2(T)dt> T_q

= 11 (¢). (25)
For all ¢ € I, we can obtain the following estimation by (15) and (25):

p
Va

(t) < ao(t) + &)V

+Z/ 5)/ ¢(0 w} 9) dfds+ BV (t - 0)

5% L t s
p
f i(s)) d. b; ; i dod
< ao(0) + _q; f B0 (9)ds+ 1 f /(5 f (0)7 (w)(0)) o ds
N ¢
+pin(t) + pLiq ;/n gi(s)V(¢ils)) ds

L t s
+ bi(s) | ci(0)V(w;(0))dods
2 [ 56 [ avime)

&)V (ei(s)) ds

+Z/ s)/ ci(0 w} 9) do ds. (26)

Since it has the same style as (16), we can use the same ways to obtain the estimation as
(25). Therefore

q

Vie) < [al(t) exp( [ @ ds)} '
><|:1+L<1——> fi(t)/ exp< /<I—Z)Q2(T)dt>d8:|p_q. (27)

Let 7,(¢) denote the function of the right-hand side of (26), which is a positive and non-

]

decreasing function on I,. Using mathematical induction, Vk € Z, when Vt € I, the esti-
mation is obtained. We have

V() < [ﬂk-l(t) exp(/ Qs (s) ds)]p
tk-1
X |:1 + L(l - Z)a,f_i’ () /tk_l exp(— /tk_l (1 -~ Z)Qﬂr)dt) ds} - (28)

This completes the proof. d
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We consider the inequality (3) now.
Theorem 2.3 Suppose ¢;(t), wj(t), ao(t), p, q are defined as those in Theorem 2.2. gi(t,s),
bj(t,s), c;(t,s) are nondecreasing functions with their two variables. q,(t), q2(t) are contin-
uous and nondecreasing functions on [ty,00) and positive on [ty,00) and u(t) is a piece-

wise continuous nonnegative function on [ty, 00) with only the first discontinuous points t;,
i=12,...,and satisfying (3). Then, for all t € I,

u(t) <RY (1), (29)

where
Re(t) - [ak_l(t)q(t) exp( [ @+50) ds)]”
k-1
X |:1 + (1 - Z) '/t:_l exp(/t:_1 (g - 1) (Ql(r) + B1(r)) d‘[) dsi|”’
e Ri(¢ils))

a1 (0) = ﬂo(t)q(t){l D3 f att s)[ o ]ds

bi(t,s) KRt -0) (30)
Zf |: ao(s) :|(/_ C/(s,H)Rj(Wj(Q))d9> d5+;ﬁim};

N
| la@0)an6(©))F
;g’ ao(?)

’

b (w,»(t))ao(w,«(t))]g
- i ao(t) .

Mh

~.

Proof Let v = uf, so the inequality (3) is equivalent to
p N ¢
O a0+ a0 [ abIvee)d
i-1 /0

+Z / (t,5) / ci(s,0)v(w;(0)) d ds + q2(t) Y Biv(ti - 0). (31)

to<ti<t

Note that w(t) = v§ (¢), then from (31), we get

w(o)
e _1+q1(t)2/ alt, s>[ o ]
L
t bj(t,S)
+ZI:/to[ao(S)

v Y g0 (32)

a(t—

} /;S c(s, e)v(w,(e)) do ds

to<ti<t
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Moreover, with the assumption that g(£) = max{q;(¢), g2(¢)} + 1, we see

w(t) v(gi(s))
a(t)_ (t{1+2/ (L )|: ]

b; -
+Z/t0[ (£, s)}/ ¢(s,0)v(w;(0)) d6 ds + Z ﬁ,%}. (33)

j=1 o (S) £ to<ti<t

Let

N
M) =1+Y / 4t )[vwil((;))}
i=1 Yo
L
¢ bj(t,s) v(tl—
+me[ao(s)]/ (5,0)v(w(0)) dods+ > pi— (34)

j=1 to<t;<t

Then Iy (¢) is a positive and nondecreasing function on I with I';(tp) = 1 and

M < g@T1(8), w(t) < g(O)T1(H)ao(t), (35)
ao(?)

sov(t) <(q (t)l"l(t)ao(t))l’ Applying (31) to (35), we obtain

<1+ Z / q(@i(s))ao(¢i(s))]? r, g (5) ds

ao(s)

+Z/£O [b(t S)}(/ ¢i(s,0)[q (Wj(g))aO(Wj(e))]% Z(G)d@)

1 ao(s) ¢

LY 5,14 = 0ao(ti = O 1 —0)1?

ag (tt ) (36)

to<ti<t

Let I; = [t;_1, t;), first, we consider the condition under which, for all ¢ in [Z, £1), we have

() <1+ Z/ gi(t, ) a(()s(;gbl( ))] Flg(s)ds

Z / [ao (S)}( / c,-(s,9)[q(w/(9))a0(wj(9))]zFlg(é)d9> ds.  (37)

Forall ¢ € [ty, T), where T € I}, we get

N q
! [q(pi(s))ao(@i(s))]” g
@) <1+ ;/to ai(T,s) ) Ty7 (s) ds

‘roi(T,s)

L s .
+Z /to[ ;0 (;) }( /to ¢i(s,0)[q(w;(8)) a0 (w;(9))] rlp(e)de) ds.  (38)

J=1

T
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Let I'y () denote the function on the right-hand side of (38), which is a positive and nonde-
creasing function on I; with I'y(¢p) = 1, and I'1(¢t) < I'»(¢). For all ¢ € [y, T), differentiating
FZ(t)r

T

dry(t) & [q(:(8)) a0 (¢i(£))]
dt S;gi(T’t) ao(t)

/t (5, 0)[q(w;(0)) a0 (;(8)) | T+ (0) db. (39)

L
bi(T, 1)
" Z[ a®) 1/,

j=1

Let

[q(@:(t)ao(pi(e)]?

N
QW) =) &l(T,2) oD

i=1

)

L

B(t) =) _b{(T,t)/(T, 1)

j-1

[q(w,(£))ao (w;(8))] 7
ao(t) '

Since c;, g, ao are nondecreasing functions, we can estimate (40) further to obtain

d q L oyq
th“) < QUOH () + BY) / 1% (9) do. (40)

Moreover, we can get

dl (¢ 1 t 14
;t( ) < (QW +BW) (r; @ + /to r’ (9)d9>
5(Q(t)+B(t))(F2(t)+ / rzf‘i(e)de). (41)

q
Let I'3(¢) = T'y(2) + f['; 'y (0) d6. We see that '3 (¢) satisfies 2 (¢) < ['3(¢), and differentiating
I'3(¢), we can obtain

drs(t) _dra) s
dt dt + 20 (1)
< (Q) + BW)T5() + T35 (1), @2)
Consider
: 480 _ (Q(r) + BUO)T4() + TL (1), .
[a(to) = 1.

Since (43) is a Bernoulli equation, we compute it to obtain

Ca(t) = exp(/ (Q(s) +B(S)) ds)

to
P

q 4 S q P4
X |:1 + (1 - 1—7> /to exp(/to —(1 - ;)(Q(r) +B(1)) dr) ds] . (44)
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Then by comparison of the differential inequality, we have I's(¢) < I'4(£). Therefore,

q

v(t) < (ao(t)q(t) exp(/ (Q(s) +B(s)) ds>)p
g t s_ B g p%q
X |:1 + (1 - p) /to CXP(/;O (1 p) (Q(r) + B(v)) dt) ds:| . (45)

By taking ¢ = T in the above inequality, and noticing the definitions of Qi(¢) and By (¢), we
get

W) < [ﬂo(t)q(t) exp( [ (@ +50) ds)]ﬁ

to
4

O O )

Let R;(¢) denote the function on the right-hand side of (46). When ¢ € I;, we obtain
)
V() < ao(t)g(t) 1+ Z gl(t 9| 2 ds

L rarbi(t,s) s
o [ TH ([ gt ormmenas) s zﬂl =0 }

j=1

v(i(s))
+ao {Z/gltsli(ao(s)} S

bt s
+ Z fh [ ;E) (s;):| ( fto ¢i(s, 0)v(w;(6)) de) ds}. (47)

j=1

Let

a(t) = ao(D)q( t){1+z / alt )[Rl(‘f’z“))} S

151 b(t, ) s
+ ;/;0 |: ;O(SS) ](/;0 ¢i(s,0)Ry (w;(9)) d@) ds

=1

k

Ri(t;-0)
+;ﬂia(ti_o)}. (48)

Obviously, a;(£) > ay(t). Since g(t) > 1, we can go further to obtain

vq(t)<a1 t)q(t){1+Z/ gi(t,s )|: V(i) ]ds

t b‘(t, ) s
+ ]Z /ﬁ [ - (SS) }( /to (5, 0)(w;(0)) de) ds}. (49)

=1
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Since (49) has the same style as (38), we can use the same solution to deal with it, finally
the estimation of the unknown function in the inequality (3) is obtained. We have

q

W) < (aklmq(t) exp ( | @o+ho ds)))ﬁ

k-1
9

x [1 v (1 - g) /t:l exp(—(l - g) /t:l (Qi(2) + By (1)) dt) ds] T s0)

Let Ri(¢) denote the function on the right-hand side, and

ax-1(t) = tlo(t)Q(t){l + Z[ [R Wh(;))] s

L

% T bilt, s) s k Ri(t; -0
S [N esommonan)as 3 s o

j-1

So we obtain
-1
u(t) <R{ (2).
This proves Theorem 2.3. O

3 Applications

In this section we will apply our Theorem 2.1 and Theorem 2.2 to discuss the following
differential-integral equation and retarded differential equation for discontinuous func-
tions, respectively. We present the following propositions.

Proposition 3.1 Counsider the following equation:

{ % = H(t,x(¢1(2)), ..., x(dn(0) fo K(s,x(wi(s))) ds, .. fo K(s,x(w(s))) ds), (52)

x(0) =x9, Vtel=][0,00),

where the function K is in C(R x R,R,) and ¢;(t) < t, wj(t) <, for t >0, H satisfies the

following condition:
t t
H(t,ul,ug,...,uN,/ K(s,vl)ds,...,/ K(s,vL)ds)
0 0
=S aou+ Y b0 [ oo (53)
i=1 j=1 0

where g(t), bj(t), cj(t), wj(t) are defined as in Theorem 2.1. If

/th(s)ds<oo, /tY(s)exp<—/sQ1(r)dr) ds < o00.

Then all the solutions of equation (53) exist on I and for all t in I = [0, 00), and they satisfy
the following estimate:

|x(t)| <x0+ exp(/ Qi(s) ds) (/ Y(s) exp(—/ Ql(r)dr> ds). (54)
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Proof Integrating both sides of equation (52) from 0 to ¢, we get

x(t) = %o + / H(s,x(¢1(s)),...,x(¢N(s)),/SI((r,x(wl(r))) drg,...,
0 0

s
/ K(t,x(wL(r))) dr) ds. (55)
0
Using the conditions (52) and (53), we can obtain

N t L t s
%) <%0+ Y f gi($)x(¢i(s)) ds + Y / bi(s) / ¢;(0)x(w;(0)) do ds. (56)

i=1 /%0 j=1 Yt fo
Applying Theorem 2.1 to (56), we can obtain the estimate. d

Proposition 3.2 Consider the impulsive differential system

0 = H(t,x(p1(0)), ..., 2N (), [y K (s, x(wi () ds, ..., [y K(s,x(wi(s))) ds),
AW)le=o = Bix?(t; - 0), (57)
x(0)=¢, Vtel=][0,00),

where ¢;(t), w;(t) are defined as in Theorem 2.2 and the function K is in C(R x R,R,).
Furthermore, H satisfies

‘H(t,x(qﬁl(t)),...,x(q)N(t)),/O K(s,x(wl(s)))ds,...,/o I((s,x(wL(s)))ds)

N L s
<> gt (i) + Y_bys) /0 () (wy(2)) dit. (58)
i=1 j=1

Then all the solutions of equation (57) exist on I and satisfy |x(t)| < w(t) forall t € I, where
w«(t) is defined as in Theorem 2.2.

Proof Integrating (57) we obtain
| @) < +/ H(s,x(qbl(s)),...,x(d)N(s)),/ K(t,x(m(7)))dr,...,
0 0

/S K(r,x(wL(r))) dr) ds
0
+ ) Pul(t;—0), Vel (59)

to<ti<t

Furthermore, we get

N ot
NOEES> / a(5)4%(91(9)) ds
i=1 Y0

Lo \
+1Z=1:/0 bj(S)/O~ ci(O)x1 (wi(0)) do ds + " P (ti - 0). (60)

to<ti<t

Then we use Theorem 2.2 to obtain the estimation. O
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