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Abstract
The present paper establishes a new inequality for the covariance of a random
variable, which involves functions with bounded derivatives. Some Chebyshev type
integral inequalities are given as applications of the new inequality.
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1 Introduction
There is an important field in the theory of inequalities which involves two kinds of special
inequalities. One is based on the functions with bounded derivatives or of Ostrowski type,
which is successfully applied in probability theory, mathematical statistics, information
theory, numerical integration, and integral operator theory. A chapter in [] is devoted to
this kind of inequalities. Another field is concerned with the inequalities with the moments
of random variables; see [–]. By using this kind of Ostrowski type inequalities, we can
get various tight bounds with the moments of random variables defined on some finite
interval. There are numerous works available in the literature.

In this paper, we give an inequality for covariance involving functions with bounded
derivatives. As applications of the inequality, we obtain some new inequalities similar to
the Čebyšev integral inequality.

We assume throughout the paper that ξ is a random variable having the cumulative
distributing function F . By Eξ we denote the expectation of ξ defined by

Eξ =
∫ ∞

–∞
t dF(t), (.)

by Dξ the variance of ξ defined by

Dξ = E(ξ – Eξ ), (.)

and by Cov(ξ ,η) the covariance of two random variables ξ , η defined by

Cov(ξ ,η) = E(ξ – Eξ )(η – Eη). (.)
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We often use the following formula to compute Cov(ξ ,η):

Cov(ξ ,η) = E(ξη) – EξEη. (.)

2 A new random inequality
This paper gives the following new inequality for covariance involving functions with
bounded derivatives.

Theorem . Assume that two functions f , g : [a, b] → R are continuous in [a, b] and dif-
ferentiable in (a, b) whose derivatives f ′, g ′ : (a, b) → R are bounded in (a, b); if ξ is a random
variable which has finite expected value Eξ and variance Dξ . Then one has

∣∣Cov
(
f (ξ ), g(ξ )

)∣∣ ≤ 
∥∥f ′∥∥∞

∥∥g ′∥∥∞Dξ , (.)

where a is a real or –∞; b is a real or +∞ and

∥∥f ′∥∥∞ = sup
t∈(a,b)

∣∣f ′(t)
∣∣ < ∞,

∥∥g ′∥∥∞ = sup
t∈(a,b)

∣∣g ′(t)
∣∣ < ∞. (.)

Proof Under the conditions of the theorem, since f (ξ ) is bounded, the expected value
Ef (ξ ) exists. Applying the Lagrange mean theorem, one can get

[
f (x) – Ef (ξ )

] = E[f (x) – f (ξ )
]

= E[f ′(ξ + θ (x – ξ )
)
(x – ξ )

]

≤ ∥∥f ′∥∥
∞E|x – ξ | ≤ ∥∥f ′∥∥

∞E(x – ξ )

=
∥∥f ′∥∥

∞
[
(x – Eξ ) + Dξ

]
, (.)

where the parameter  ≤ θ ≤  is not a constant but depends on x, ξ , and a ≤ x ≤ b. Letting
x = ξ in inequality (.) and then taking the expectation to both sides of the inequality gives

E
[
f (ξ ) – Ef (ξ )

] ≤ ∥∥f ′∥∥
∞

[
E(ξ – Eξ ) + Dξ

]
= 

∥∥f ′∥∥
∞Dξ . (.)

That is,

Df (ξ ) ≤ 
∥∥f ′∥∥

∞Dξ . (.)

Similarly we have

Dg(ξ ) ≤ 
∥∥g ′∥∥

∞Dξ . (.)

Consequently,

∣∣Cov
(
f (ξ ), g(ξ )

)∣∣ ≤ √
Df (ξ )Dg(ξ ) ≤ 

∥∥f ′∥∥∞
∥∥g ′∥∥∞Dξ . (.)

Thus, the inequality is derived. �
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3 Some applications
In the following section, we will discuss some applications as regards the inequality (.).
In fact, if the random variable ξ in (.) has a certain distribution, we can derive a corre-
sponding Čebyšev type inequality. At first, we show the famous Čebyšev integral inequality
[].

Let us consider two functions f , g : [a, b] → R are continuous in [a, b] and differentiable
in (a, b) whose derivatives f ′, g ′ : (a, b) → R are bounded in (a, b). Then

∣∣T(f , g)
∣∣ ≤ 


(b – a)∥∥f ′∥∥∞

∥∥g ′∥∥∞, (.)

for all x ∈ [a, b], where

T(f , g) =


b – a

∫ b

a
f (x)g(x) dx –


b – a

∫ b

a
f (x) dx · 

b – a

∫ b

a
g(x) dx. (.)

In , Grüss showed that []

∣∣T(f , g)
∣∣ ≤ 


(M – m)(N – n), (.)

if M, m, N , n are real numbers which satisfy –∞ < m ≤ f (x) ≤ M < +∞, –∞ < n ≤ g(x) ≤
N < +∞ for all x ∈ [a, b]. Moreover, / is the best possible constant.

Over the years, the Čebyšev integral inequality has evoked the interest of several re-
searchers who showed new proofs, and extended and innovated the inequality. See e.g. [,
–] and the references given therein.

As the first application of the inequality (.), let ξ have uniform distribution in [a, b],
then we have the inequality as follows.

Theorem . Let f , g : [a, b] → R be continuous in [a, b] and differentiable in (a, b) whose
derivatives f ′, g ′ : (a, b) → R are bounded in (a, b). Then

∣∣T(f , g)
∣∣ ≤ 


(b – a)∥∥f ′∥∥∞

∥∥g ′∥∥∞. (.)

Proof Let ξ be a random variable which possesses the uniform distribution u[a, b]. So, it
has the following probability density function:

ϕ(x) =

⎧⎨
⎩


b–a , a ≤ x ≤ b,

, otherwise.
(.)

Then one can have

Cov
(
f (ξ ), g(ξ )

)
= Ef (ξ )g(ξ ) – Ef (ξ ) · Eg(ξ )

=


b – a

∫ b

a
f (x)g(x) dx –


b – a

∫ b

a
f (x) dx · 

b – a

∫ b

a
g(x) dx

= T(f , g) (.)
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and

Dξ =
(b – a)


. (.)

Substituting (.) and (.) into (.) yields (.). Thus, the proof is complete. �

If ξ has the Gamma distribution, we can easily obtain a new inequality from (.).

Theorem . Let f , g : [, +∞) → R be continuous in [, +∞) and differentiable in (, +∞)
whose derivatives f ′, g ′ : (, +∞) → R are bounded in (, +∞). Then for α,λ > ,

∣∣∣∣
∫ +∞


f (t)g(t)tα–e–λt dt

–
λα

�(α)

∫ +∞


f (t)tα–e–λt dt

∫ +∞


g(t)tα–e–λt dt

∣∣∣∣
≤ α�(α)

λα+

∥∥f ′∥∥∞
∥∥g ′∥∥∞, (.)

where �(α) is the well-known Gamma function, defined by

�(α) =
∫ +∞


xα–e–x dx. (.)

Proof Let a random variable ξ possess Gamma distribution �(α,λ) whose probability den-
sity function is

ϕ(x) =

⎧⎨
⎩

λα

�(α) xα–e–λx, x ≥ ,

, x < ,
(.)

where the parameters α > , λ > . Then it is easy to obtain

Cov
(
f (ξ ), g(ξ )

)
= Ef (ξ )g(ξ ) – Ef (ξ ) · Eg(ξ )

=
λα

�(α)

∫ +∞


f (t)g(t)tα–e–λt dt

–
λα

�(α)

∫ +∞


f (t)tα–e–λt dt · λα

�(α)

∫ +∞


g(t)tα–e–λt dt (.)

and

Dξ =
α

λ . (.)

Substituting (.) and (.) into (.) one gets (.). Thus, we complete the proof. �

If ξ has the Beta distribution, one has the following inequality from (.).
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Theorem . Suppose f , g : [, ] → R be continuous in [, ] and differentiable in (, )
whose derivatives f ′, g ′ : (, ) → R are bounded in (, ). Then

∣∣∣∣
∫ 


f (x)g(x)xa–( – x)b– dx

–
�(a + b)
�(a)�(b)

∫ 


f (x)xa–( – x)b– dx

∫ 


g(x)xa–( – x)b– dx

∣∣∣∣
≤ ab�(a)�(b)‖f ′‖∞‖g ′‖∞

(a + b)(a + b + )�(a + b)
. (.)

Proof Let ξ be a random variable which possesses the Beta distribution β(a, b). So, it has
the following probability density function:

ϕ(x) =

⎧⎨
⎩

�(a+b)
�(a)�(b) xa–( – x)b–,  ≤ x ≤ ,

, otherwise,
(.)

where the parameters a > , b > . Then one obtains

Cov
(
f (ξ ), g(ξ )

)
= Ef (ξ )g(ξ ) – Ef (ξ ) · Eg(ξ )

=
�(a + b)
�(a)�(b)

∫ 


f (x)g(x)xa–( – x)b– dx

–
�(a + b)
�(a)�(b)

∫ 


f (x)xa–( – x)b– dx

· �(a + b)
�(a)�(b)

∫ 


g(x)xa–( – x)b– dx (.)

and

Dξ =
ab

(a + b)(a + b + )
. (.)

Substituting (.) and (.) into (.) one gets (.). Thus, we complete the proof. �

All above results deal with continuous random variable. Finally, we give two examples
of discrete random variables.

Theorem . Let f , g : [, +∞) → R be continuous in [, +∞) and differentiable in (, +∞)
whose derivatives f ′, g ′ : (, +∞) → R are bounded in (, +∞). Then, for λ > ,

∣∣∣∣∣
∞∑

k=

f (k)g(k)
λk

k!
– e–λ

∞∑
k=

f (k)
λk

k!

∞∑
k=

g(k)
λk

k!

∣∣∣∣∣ ≤ λeλ
∥∥f ′∥∥∞

∥∥g ′∥∥∞. (.)

Proof Let a random variable ξ possess Poisson distribution P(λ). So, it has the following
probability function:

P(ξ = k) =
λk

k!
e–λ, k = , , , . . . , (.)
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where the parameters λ > . Then it is easy to obtain

Cov
(
f (ξ ), g(ξ )

)
= Ef (ξ )g(ξ ) – Ef (ξ ) · Eg(ξ )

=
∞∑

k=

f (k)g(k)
λk

k!
e–λ –

∞∑
k=

f (k)
λk

k!
e–λ

∞∑
k=

g(k)
λk

k!
e–λ (.)

and

Dξ = λ. (.)

Substituting (.) and (.) into (.) yields (.). The proof is complete. �

Theorem . Let f , g : [, +∞) → R be continuous in [, +∞) and differentiable in (, +∞)
whose derivatives f ′, g ′ : (, +∞) → R are bounded in (, +∞). Then, for  < p <  and n =
, , , . . . ,

∣∣∣∣∣
n∑

k=

f (k)g(k)
(

n
k

)
pk( – p)n–k

–
n∑

k=

f (k)
(

n
k

)
pk( – p)n–k

n∑
k=

g(k)
(

n
k

)
pk( – p)n–k

∣∣∣∣∣
≤ np( – p)

∥∥f ′∥∥∞
∥∥g ′∥∥∞. (.)

Proof Let a random variable ξ possess the binomial distribution B(n, p). So, it has the
following probability function:

P(ξ = k) =
(

n
k

)
pk( – p)n–k , k = , , , . . . , n, (.)

where the parameters  < p < . Then it is easy to obtain

Cov
(
f (ξ ), g(ξ )

)
= Ef (ξ )g(ξ ) – Ef (ξ ) · Eg(ξ )

=
n∑

k=

f (k)g(k)
(

n
k

)
pk( – p)n–k

–
n∑

k=

f (k)
(

n
k

)
pk( – p)n–k

n∑
k=

g(k)
(

n
k

)
pk( – p)n–k (.)

and

Dξ = np( – p). (.)

Substituting (.) and (.) into (.) one gets (.). Thus, we complete the proof. �
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