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Abstract
In this paper, the authors study the partially linear single-index model when the
covariate X is measured with additive error and the response variable Y is sometimes
missing. Based on the least-squared technique, an imputation method is proposed to
estimate the regression coefficients, single-index coefficients, and the nonparametric
function, respectively. Thereafter, asymptotical normalities of the corresponding
estimators are proved. A simulation experiment and an application to a diabetes
study are used to illustrate our proposed method.
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1 Introduction
We study the partially linear single-index model

Y = g
(
ZTα

)
+ XTβ + ε, (.)

where Y is a response variable, (Z, X) ∈ Rp × Rq is covariate, g(·) is an unknown univari-
ate measurable function, ε is a random error with E(ε|Z, X) = , Var(ε|Z, X) = σ  < ∞,
and (α,β) is an unknown vector in Rp × Rq with ‖α‖ = . The restriction ‖α‖ =  ensures
identifiability.

In recent years, model (.) has attracted broad attention because it includes two impor-
tant semi-parametric models as its special cases: the single model (Ichimura []) and the
partially linear model (Engle et al. []). Relevant studies about model (.) have been done
by Carroll et al. [], Yu et al. [], Liang et al. [], Xia et al. [] and Xue et al. [], all of which
based on the complete data set.

In practice, missing-data problems are always caused by design or accident, so the statis-
ticians, such as Liu et al. [] and Lai et al. [], have paid a great attention to them. Most
of these researches concerning missing-data problems have been carried out on the con-
dition that the covariates can be observed exactly. However, observations are often mea-
sured with errors, as can be seen in the papers of Liang et al. [] and Chen et al. []. Never-
theless, those studies of the observations characterized by inaccurate measures are based
on the complete data set. Therefore, it is necessary to study error-in-variables models with
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missing response. Taking both measurement errors in the covariates and the missing re-
sponse variables into account, Liang et al. [], Wei et al. [] and Wei [] have done some
work in the partially linear model, in the partially linear additive model and in the partially
linear varying-coefficient model, respectively.

The common method of dealing with missing data is the imputation method which was
developed by Wang et al. [] in the partially linear model. This paper, with the enlight-
enment of Lai et al. [], focuses on estimating β , α, and the nonparametric function g(·)
with imputation method when the covariate X is measured with additive error and the
response variable Y is sometimes missing in the model (.). It is assumed that the obser-
vation V is a substitute of X

V = X + U . (.)

The δ =  indicates that Y is missing, otherwise δ = . We assume that the measurement
error U is independent from (Y , Z, X, δ) with E(U) =  and cov(U) = �uu. At first, it is
assumed that �uu is known. If it is unknown, it can be estimated with partial replication
(Liang et al. []). Throughout this paper, we assume the data missing mechanism is as
follows:

p(δ = |Y , Z, X) = p(δ = |Z, X) = π (Z, X) (.)

for some unknown π (Z, X). In addition, p(δ = |Y , Z, X, V ) = π (Z, X), this is because the
measurement error U is independent from (Y , Z, X, δ). As is pointed out by Liang et al.
[], since X is observed with measurement error, Y is therefore not missing at random if
no further assumptions are made.

The rest of this paper is organized as follows. In Section , the imputation method is used
to estimate the parameters and nonparametric function. In Section , relative asymptotic
results are presented. In Section , some simulation is conducted to illustrate the proposed
approach, and we apply our method to analyze a diabetes data set. All proofs are shown
in Section .

2 Methodology
In the following, let {(Yi, Zi, Xi, Vi, Ui, δi), i = , , . . . , n} be independent and identically dis-
tributed, and write A⊗ = A · AT .

2.1 Complete method
In order to derive the imputation estimators, first we define the complete estimators of β ,
α, and the nonparametric function g(·). Note that δiYi = δig(ZT

i α) + δiXT
i β + δiεi. Taking

conditional expectations given ZTα, from the assumptions, we have

E
(
δiYi|ZT

i α
)

= E
(
δi|ZT

i α
)
g
(
ZT

i α
)

+ E
(
δiXi|ZT

i α
)T

β .

By multiplying the both sides of model (.) with E(δi|ZT
i α), we obtain

E
(
δi|ZT

i α
)
Yi = E

(
δi|ZT

i α
)
g
(
ZT

i α
)

+ E
(
δi|ZT

i α
)
XT

i β + E
(
δi|ZT

i α
)
εi.
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Then making some straightforward calculations, we get

δi
[
Yi – m

(
ZT

i α
)]

= δi
[
Xi – m

(
ZT

i α
)]T

β + δiεi, (.)

where m(t) = E(δX|ZT α=t)
E(δ|ZT α=t) , m(t) = E(δY |ZT α=t)

E(δ|ZT α=t) . If m(t), m(t) are known and the Xi are ob-
served, according to (.), the least-square estimator of β can be defined as

β̂ =

{

n

n∑

i=

δi
[
Xi – m

(
ZT

i α
)]⊗

}–

·
{


n

n∑

i=

δi
[
Xi – m

(
ZT

i α
)][

Yi – m
(
ZT

i α
)]

}

.

However, the Xi are measured with error and m(ZT
i α), m(ZT

i α) are unknown. From our
assumptions, it follows that E(δV |ZTα) = E(δX|ZTα). Therefore, the estimator of β by the
correction for the attenuation technique can be defined as

β̂n =

{

n

n∑

i=

δi
[
Vi – m̂

(
ZT

i α
)]⊗ – �uu

}–

·
{


n

n∑

i=

δi
[
Vi – m̂

(
ZT

i α
)][

Yi – m̂
(
ZT

i α
)]

}

, (.)

where m̂(ZT
i α) and m̂(ZT

i α) are the estimators of m(ZT
i α) and m(ZT

i α), respectively,
and m(t) = E(δV |ZT α=t)

E(δ|ZT α=t) . Let Kh (t) =
K( t

h
)

h
, with K(·) being a kernel function and h being

a suitable bandwidth. Those estimators are defined as

m̂(t) =
n∑

i=

δiKh (ZT
i α – t)

∑n
i= δiKh (ZT

i α – t)
Yi, m̂(t) =

n∑

i=

δiKh (ZT
i α – t)

∑n
i= δiKh (ZT

i α – t)
Vi.

After obtaining the estimator of β , we try to estimate g(·) and g ′(·) for any fixed α, based
on β̂n. In fact, it becomes a single-index model which is Y – XTβ = g(ZTα) + ε. Taking
conditional expectations given ZTα on the above formula, from the previous assumptions,
there is g(t,α,β) = E(Y – XTβ|ZTα = t) = E(Y – V Tβ|ZTα = t). Thus, estimating g(·) is
not necessary to be corrected. By a local linear method, we approximate g(t) within the
neighborhood of t, g(t) ≈ g(t) + g ′(t)(t – t). Then we can obtain the estimators of g(·)
and g ′(·) by minimizing

min
g(t),g′(t)

n∑

i=

[
Yi – V T

i β̂n – g(t) – g ′(t)(ti – t)
]Kh (ti – t)δi,

where Kh (t) =
K( t

h
)

h
, with K(·) being a kernel function and h being a suitable bandwidth.

Through a direct calculation, we have

(
ĝn(t)

hĝ ′
n(t)

)

=

n

n∑

i=

(

n

BT
 SB

)–

BiδiKh (ti – t)
(
Yi – V T

i β̂n
)
, (.)
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where

Bi =

(


ti–t
h

)

, i = , , . . . , n, B =

⎛

⎜⎜
⎝

BT

...

BT
n

⎞

⎟⎟
⎠ ,

S =

⎛

⎜
⎜
⎝

δKh (t – t)
. . .

δnKh (tn – t)

⎞

⎟
⎟
⎠ .

In order to apply the above formulas, we have to know the estimation values of α, which
can be obtained by the following formula:

α̂n = min
α

n∑

i=

δi
[
Yi – V T

i β̂n – ĝn
(
ZT

i α
)]. (.)

The complete estimation procedure consists of the following steps:

Step . Select an initial value α̂, for example, using an available method, such as the com-
plete data estimation method proposed by Xia et al. [], and let α̂n = α̂

‖α̂‖ .
Step . Based on (.) and (.), we can get β̂nk , ĝnk(·) when α = α̂n.
Step . The solution of (.) is written as α̂n(k+). Let α̂n = α̂n(k+)

‖α̂n(k+)‖ .
Step . Iterate Steps  and  until convergence is achieved.

2.2 Imputation method
In this part, we will use the imputation technique to estimate β , α, and the nonparametric
function g(·). The advantage of this method is that all data can be used. First, we get β̂n, α̂n,
and ĝn(·) by the complete method. Let Y ◦

i = δiYi + ( – δi)[g(ZT
i α) + V T

i β], that is, Y ◦
i = Yi

if δi = , Y ◦
i = g(ZT

i α) + V T
i β , otherwise. From (.), we have E(Y ◦|Z, X) = g(ZTα) + XTβ .

This implies

Y ◦
i = g

(
ZT

i α
)

+ XT
i β + ei, (.)

where E(ei|Zi, Xi) = . It is just the form of the partial linear single-index model. Therefore,
the least-square estimator of β can be defined as

β̆ =

{

n

n∑

i=

[
Xi – E

(
X|ZT

i α
)]⊗

}–

·
{


n

n∑

i=

[
Xi – E

(
X|ZT

i α
)][

Y ◦
i – E

(
Y ◦|ZT

i α
)]

}

.

However, since the Xi are measured with error, we cannot obtain the exact data of Y ◦
i .

Let Y ∗
i = δiYi +(–δi)[ĝn(ZT

i α̂n)+V T
i β̂n], it can be estimated as Y ◦

i . Based on the correction
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for the attenuation technique, the imputation estimator of β can be defined as

β̆n =

{

n

n∑

i=

[
Vi – Ê

(
V |ZT

i α
)]⊗ – �uu

}–

·
{


n

n∑

i=

[
Vi – Ê

(
V |ZT

i α
)][

Y ∗
i – Ê

(
Y ∗|ZT

i α
)]

–

n

n∑

i=

( – δi)�uuβ̂n

}

, (.)

where Ê(V |ZT
i α), Ê(Y ∗|ZT

i α) are the estimators of E(V |ZT
i α), E(Y ∗|ZT

i α), respectively. Let

Kh (t) =
K( t

h
)

h
, with K(·) being a kernel function and h being a suitable bandwidth. Those

estimators are defined as

Ê(V |t) =
n∑

i=

Kh (ZT
i α – t)

∑n
i= Kh (ZT

i α – t)
Vi, Ê

(
Y ∗|t) =

n∑

i=

Kh (ZT
i α – t)

∑n
i= Kh (ZT

i α – t)
Y ∗

i .

Similarly, we obtain the imputation estimators of g(t) and g ′(t) by

min
g(t),g′(t)

n∑

i=

[
Y ∗

i – V T
i β̆n – g(t) – g ′(t)(ti – t)

]Kh (ti – t), (.)

where Kh (t) =
K( t

h
)

h
, with K(·) being a kernel function and h being a suitable band-

width. Through a direct calculation, we have

(
ğn(t)

hğ ′
n(t)

)

=

n

n∑

i=

(

n

BT
 SB

)–

BiKh (ti – t)
(
Y ∗

i – V T
i β̆n

)
, (.)

where

Bi =

(


ti–t
h

)

, i = , , . . . , n, B =

⎛

⎜⎜
⎝

BT

...

BT
n

⎞

⎟⎟
⎠ ,

S =

⎛

⎜⎜
⎝

Kh (t – t)
. . .

Kh (tn – t)

⎞

⎟⎟
⎠ .

As in the complete situation, if we want to use (.) and (.), it is a must to estimate α

first, by minimizing the sum of square errors

min
α

n∑

i=

[
Y ∗

i – V T
i β̆n – ğn

(
ZT

i α
)], (.)

say ᾰn. Next we do the same work as in the complete situation.

3 Asymptotic results
In this section, the main results of this paper are summarized. For a concise representa-
tion, let S̃ = S – E(δS|ZT α=t)

E(δ|ZT α=t) and ˜̃S = S – E(S|ZTα = t), for example, X̃ = X – E(δX|ZT α=t)
E(δ|ZT α=t) =
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X – m(t), ˜̃X = X – E(X|ZTα = t). Moreover, in order to state the asymptotic results, the
following assumptions will be used.

(C) The matrix 	X|Z = E{δ[X – m(t)]⊗} is a positive-definite.
(C) Each entry of the Hessian matrices of m(t) and m(t) is continuous and squared in-

tegrable, where the (i, j) entry of a Hessian matrix of g(z) is defined as ∂g(z)
∂zi ∂zj

.
(C) The bandwidths are of order n– 

p+ , where p is the dimension of Z.
(C) The kernels Ki(·), i = , , ,  are a bounded symmetric density functions with com-

pact support [–, ], and they satisfy
∫

uKi(u) du = ,
∫

uKi(u) du 
= .
(C) The density function f (t) of ZTα is bounded away from  and has two bounded deriva-

tives on its support.
(C) g(·), m(·), m(·), E(V |·), E(Y ∗|·) have two bounded, continuous derivatives on their

supports.
(C) The probability function π (Z, X) has bounded continuous second partial derivatives,

and is bounded away from zero on the support of (Z, X).
(C) E(|ε| < ∞), E(|U| < ∞).

Now we give the following asymptotical results.

Theorem . Assume that the conditions (C)-(C) are satisfied, then we obtain

√
n(β̆n – β) → N

(
,�–

˜̃X
�β∗�–

˜̃X

)
,

where �˜̃X = E{˜̃X⊗}, �β∗ = E[{(	X̃ + � – �	
–
Z̃ 	Z̃X̃)	–

X̃ · δ(X̃(ε – UTβ) + εU – (UUT –
�uu)β) – �	

–
Z̃ δZ̃g ′(ZTα)(ε – UTβ)}⊗], with � = E{( – δ)˜̃XX̃T } and � = E{( –

δ)˜̃X[Z̃g ′(ZTα)]T }.

Theorem . Suppose the conditions (C)-(C) are satisfied, then we have

√
n(ᾰn – α) → N

(
,�–

˜̃Z˜̃X
�α∗�–

˜̃Z˜̃X

)
,

where �˜̃Z˜̃X = E{˜̃Z˜̃X
T

g ′(t)}, �α∗ = E[(Q + P)⊗], with Q and P given in (.) and (.) of
Section , respectively.

Theorem . Suppose that the conditions (C)-(C) hold, we have

√
nh

(
ǧn(t; α̌n, β̌n) – g(t)

) → N
(

,
μ(t)γ(K)�g

f (t)

)
,

where γ(K) =
∫

K
 (u) du.

4 Numerical examples
4.1 Simulation
In this subsection, we carry out some Monte Carlo experiments to show the finite sample
performance of the proposed method. The set of data is generated from the following
model:

Yi = sin
(
π · ZT

i α
)

+ Xiβ + εi, Vi = Xi + Ui,  ≤ i ≤ n,
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Table 1 Biases of α and β under different missing functions and different sample sizes
obtained by two different methods for the simulated data

Complete Imputation

Missing rate n α̂1 α̂2 α̂3 β̂ ᾰ1 ᾰ2 ᾰ3 β̆

0.30 50 0.0035 0.0041 –0.0057 0.0308 –0.0026 0.0037 –0.0031 0.0172
100 0.0032 –0.0018 –0.0024 0.0230 0.0016 –0.0009 –0.0010 0.0092
150 0.0036 –0.0012 –0.0026 0.0234 0.0016 –0.0005 –0.0011 0.0093

0.20 50 0.0033 0.0023 –0.0047 0.0206 –0.0012 0.0009 –0.0008 0.0147
100 0.0030 –0.0018 –0.0023 0.0162 0.0012 –0.0007 –0.0005 0.0089
150 0.0031 –0.0011 –0.0024 0.0167 0.0013 –0.0003 –0.0006 0.0091

0.10 50 0.0021 0.0009 –0.0029 0.0132 –0.0005 0.0005 0.0004 0.0101
100 0.0022 –0.0009 –0.0013 0.0097 0.0003 –0.0002 –0.0004 0.0063
150 0.0022 –0.0009 –0.0015 0.0096 0.0004 –0.0002 –0.0005 0.0056

Table 2 Standard errors of α and β under different missing functions and different sample
sizes obtained by two different methods for the simulated data

Complete Imputation

Missing rate n α̂1 α̂2 α̂3 β̂ ᾰ1 ᾰ2 ᾰ3 β̆

0.30 50 0.1011 0.0883 0.0969 0.1108 0.0694 0.0586 0.0684 0.0778
100 0.0470 0.0467 0.0471 0.0662 0.0282 0.0288 0.0288 0.0448
150 0.0333 0.0331 0.0334 0.0512 0.0212 0.0215 0.0214 0.0348

0.20 50 0.0813 0.0782 0.0845 0.0995 0.0433 0.0416 0.0429 0.0626
100 0.0438 0.0438 0.0443 0.0601 0.0242 0.0247 0.0251 0.0369
150 0.0315 0.0315 0.0313 0.0475 0.0184 0.0191 0.0186 0.0291

0.10 50 0.0711 0.0731 0.0753 0.0937 0.0345 0.0327 0.0345 0.0515
100 0.0405 0.0399 0.0412 0.0560 0.0200 0.0204 0.0210 0.0306
150 0.0293 0.0290 0.0292 0.0441 0.0155 0.0159 0.0156 0.0239

where α = √
 (, , )T , β = , Xi ∼ N(, ), εi ∼ N(, .), Ui ∼ N(, .), the Zi are

trivariate with independent U(, ) components. Throughout this section, the kernel func-
tion Ki(t) = 

 ( – t) if |t| ≤  (i = , , , ) is used. The hi (i = , , , ) are taken as the
related bandwidths.

Based on this model, we considered the following three data missing mechanisms of the
response, respectively:

Case . P(δ = |Z = z, X = x) = . + .(|zTα – .| + |x – |) if |zTα – .| + |x – | ≤ , and
. elsewhere;

Case . P(δ = |Z = z, X = x) = . – .(|zTα – .| + |x – |) if |zTα – .| + |x – | ≤ , and
. elsewhere;

Case . P(δ = |Z = z, X = x) = . for all z and x.

The average missing rates are ., ., and ., respectively. For each case, we gen-
erated  random samples of size n = , , , respectively. The estimators with
standard error (SE) of α and β under different missing mechanisms, obtained by two dif-
ferent methods for the simulated data, are reported in Tables  and . The relative mean
integrated square error (MISE) of g(·) under different missing mechanisms, obtained by
two different methods for the simulated data, is reported in Table .

As is expected, the results fit our theory fairly well. From Tables  and , it can be
seen that, for each case, the estimators of both the complete method and the imputa-
tion method close their true values, and the standard errors are small. Furthermore, the
imputation estimators of α and β have smaller bias and SE than the complete estimators.
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Table 3 The relative mean integrated square error of g(·) under different missing functions
and different sample sizes obtained by two different methods for the simulated data

Complete Imputation

Missing rate n ĝn(·) ğn(·)
0.30 50 0.2014 0.1227

100 0.1251 0.0921
150 0.1014 0.0915

0.20 50 0.1514 0.0930
100 0.1102 0.0915
150 0.1026 0.0918

0.10 50 0.1451 0.0923
100 0.1138 0.0910
150 0.0996 0.0906

Table 4 The estimates and standard errors of α and β by two different methods from the
diabetes data

Parameter Complete Imputation

α1 0.0909 (0.0253) 0.1046 (0.0251)
α2 0.8523 (0.0356) 0.8681 (0.0305)
α3 0.5151 (0.0525) 0.4853 (0.0530)
β –1.3998 (0.3201) –1.2280 (0.2996)

As the sample size increases, the bias and SE of these estimators decrease for any fixed
missing rate. Furthermore, as the missing rate decreases, the bias and SE of these estima-
tors decrease for any fixed sample size. From Table , the imputation estimator ğ(·) has a
better performance than the complete estimator ĝ(·) in terms of MISE.

4.2 Application to diabetes data
In this part, we will elaborate on the proposed method through an analysis of data set
from a diabetes study. Using partially linear additive model, Gai et al. [] have analyzed
the data set which includes  observations for diabetes patients. The response variable
Y is employed as a quantitative measurement of disease progression one year after base-
line. The covariates include age, body mass index (BMI), average blood pressure (BP) and
glucose concentration. In our notation, Z = (age, BMI, BP)T , X is the glucose concentra-
tion measured with error. We have two replicates of W , the error-prone measurement of
the glucose concentration, and we apply them into estimation of the measurement error
variance. The precise procedures, containing the modified asymptotic variance for α and
β , are depicted in Section  of Liang et al. []. We carry out a sensitivity analysis by taking
σuu = .. In order to use the data set to demonstrate our methods, we presume that
% of the Y values are missed.

The estimated values of parameters of interest via using the complete method and im-
putation method are presented in Table . It is shown that imputation estimators have
smaller standard errors than complete estimators.

5 Proofs of the main results
In order to prove the main results, we first give some lemmas.

Lemma . Assume that the conditions (C)-(C) hold, then we have

E
{
ϕ̂
(
ZTα

)
– ϕ

(
ZTα

)} = O
(
(nh)– + h


)
,
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where ϕ(·) defines one of m(·), m(·), m(·), and ϕ̂(·) is for the estimators of ϕ(·).

The proof of Lemma . can be finished with the work by Mark et al. [] and Theo-
rems ,  by Einmahl et al. [].

Lemma . Assume that the conditions (C)-(C) hold, then we have

√
n(β̂n – β) → N

(
,	–

X̃ �β	–
X̃

)
,

where 	X̃ = E{δX̃⊗}, �β = E{δ[(ε – UTβ)X̃]⊗} + E{δ[(UUT – �uu)β]⊗} + E[δ(UUTε)].

The proof of Lemma . is similar to the proof of Theorem  by Liang et al. []. So the
details are omitted here.

Lemma . Under the conditions (C)-(C) hold, then we have

√
n(α̂n – α) → N

(
,	–

Z̃ �α	–
Z̃

)
,

where 	Z̃ = E{δ[Z̃g ′(t)]⊗}, �α = E{δ{[Z̃g ′(t) – 	Z̃X̃	–
X̃ X̃](ε – UTβ) + 	Z̃X̃	–

X̃ [(UUT –
�uu)β – Uε]}}⊗, with 	Z̃X̃ = E[δZ̃X̃T g ′(t)].

The proof of Lemma . uses a similar method to the proof of Theorem . by Liang
et al. []. Here, we only give some key steps. First, we derive the following expression:

ĝn(t, α̂n, β̂n) – g(t)

=

n

· 
f (t)μ(t)

n∑

i=

δiKh

(
ZT

i α – t
)(

εi – UT
i β

)

– (β̂n – β)T E(δX|ZTα = t)
E(δ|ZTα = t)

– (α̂n – α)T E(δZg ′(ZTα)|ZTα = t)
E(δ|ZTα = t)

+ op

(
√
n

)
+ Op

(
h


)
, (.)

where μ(t) = E(δ|ZTα = t). Then we can obtain

√
n	Z̃(α̂n – α) =

√
n

n∑

i=

δig ′(ZT
i α

)
Z̃i

(
εi – UT

i β
)

–
√

n	Z̃X̃(β̂n – β) + op().

Combining Lemma . and the central limit theorem, we can complete the proof of
Lemma ..

Lemma . Suppose that the conditions (C)-(C) hold, we have

√
nh

(
ĝn(t; α̂n, β̂n) – g(t) –



μ(K)g ′′(t)h



)
→ N

(
,

γ(K)�g

f (t)

)
,

where μ(K) =
∫

uK(u) du, γ(K) =
∫

K
 (u) du, and �g = σ  + βT�uuβ .
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Proof Note that α̂n – α = Op(n– 
 ), so ĝn(t; α̂n, β̂n) – ĝn(t;α, β̂n) = Op(n– 

 ). Then we only
need to obtain the asymptotic expansion of ĝn(t;α, β̂n).

From (.), we have
(

ĝn(t;α, β̂n)
hĝ ′

n(t;α, β̂n)

)

–

(
g(t)

hg ′(t)

)

=
(


n

BT
 SB

)– 
n

n∑

i=

BiδiKh (ti – t)

×
{




(
ti – t

h

)

g ′′(t)h
 +

(
εi – UT

i β
)

– V T
i (β̂n – β) + op

(
h


)
}

. (.)

As is pointed out by Lai et al. [],


n

BT
 SB = μ(t)f (t)

(
 
 μ(K)

)
(
 + op()

)
, (.)


n

n∑

i=

BiδiKh (ti – t)
{




(
ti – t

h

)

g ′′(t)h


}

=

(
f (t)μ(t) 

μ(K)g ′′(t)h




)

+ op

(
√
nh

)
. (.)

Combine (.), (.), and (.) and focus on the top equation, it follows that

ĝn(t;α, β̂n) – g(t)

=


μ(K)g ′′(t)h



+

n

n∑

i=


μ(t)f (t)

δiKh (ti – t)
[(

εi – UT
i β

)
– V T

i (β̂n – β)
]

+ op

(
√
nh

)
.

Because of Lemma ., it is easy to obtain


n

n∑

i=


μ(t)f (t)

δiKh (ti – t)V T
i (β̂n – β) = op

(
√
nh

)
,

then we know that

ĝn(t; α̂n, β̂n) – g(t) =


μ(K)g ′′(t)h



+

n

n∑

i=


μ(t)f (t)

δiKh (ti – t)
(
εi – UT

i β
)

+ op

(
√
nh

)
.

Applying the central limit theorem, we obtain Lemma .. �

Proof of Theorem . Let

�n =

n

n∑

i=

{[
Vi – Ê

(
V |ZT

i α
)]⊗ – �uu

}
.
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Then

�n = E
{[

X – E
(
X|ZTα

)]⊗} + op() = E
{˜̃X

⊗}
+ op() = �˜̃X + op().

By Lemmas .-., it is easy to show that

√
n(β̌n – β) = �–

n

{
√
n

n∑

i=

[˜̃Vi
(˜̃Y ∗i – ˜̃Vi

T
β
)]

}

+ �–
n

{√
n�uuβ –

√
n

n∑

i=

( – δi)�uuβ̂n

}

+ op().

Because of the Taylor expansion and the continuity of g ′(·), we obtain

ĝn
(
ZT

i α̂n
)

– g
(
ZT

i α
)

= ĝn
(
ZT

i α
)

+ g ′(ZT
i α

)(
ZT

i α̂n – ZT
i α

)
– g

(
ZT

i α
)

+ op

(
√
n

)
. (.)

Note that E(Y ∗|ZT
i α) = g(ZT

i α) + E(X|ZT
i α)Tβ . Using (.) yields

(˜̃Y ∗i – ˜̃Vi
T
β
)

= ( – δi)
[
ĝn

(
ZT

i α
)

– g
(
ZT

i α
)]

+ ( – δi)g ′(ZT
i α

)
ZT

i (α̂n – α)

+ ( – δi)V T
i (β̂n – β) + δi

(
εi – UT

i β
)

+ op

(
√
n

)
. (.)

Combining (.) and (.), and calculating directly, we have

√
n(β̌n – β) = �–

n

{
√
n

n∑

i=

˜̃Viδi
(
εi – UT

i β
)
}

+ �–
n

{
√
n

n∑

i=

˜̃Vi( – δi)Ṽ T
i (β̂n – β)

}

+ �–
n

{
√
n

n∑

i=

˜̃Vi( – δi)
[
Z̃ig ′(ZT

i α
)]T (α̂n – α)

}

+ �–
n

{√
n�uuβ –

√
n

n∑

i=

( – δi)�uuβ̂n

}

+ op()

= �–
n (I + I + I + I) + op().

By a straightforward calculation,

I =
√
n

n∑

i=

{˜̃Xiδi
(
εi – UT

i β
)

+ δi
(
εiUi – UiUT

i β
)}

+ op(). (.)

From Lemma . and the law of large numbers, it follows that

I =
√
n

n∑

i=

˜̃Xi( – δi)X̃T
i (β̂n – β) +

√
n

n∑

i=

( – δi)�uu(β̂n – β) + op()
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=
√

n� · 	–
X̃ · 

n

n∑

i=

{
δi

[
X̃i

(
εi – UT

i β
)

+ Uiεi –
(
UiUT

i – �uu
)
β
]}

+
√
n

n∑

i=

( – δi)�uu(β̂n – β) + op()

= I + I + op(), (.)

where

� = E
{

( – δ)˜̃XX̃T}
. (.)

Using Lemma ., I is decomposed as

I =
√
n

n∑

i=

˜̃Xi( – δi)
[
Z̃ig ′(ZT

i α
)]T (α̂n – α)

+
√
n

n∑

i=

Ui( – δi)
[
Z̃ig ′(ZT

i α
)]T (α̂n – α) + op()

=
√

n� · 	–
Z̃ · 

n

n∑

i=

δiZ̃ig ′(ZT
i α

)(
εi – UT

i β
)

–
√

n� · 	–
Z̃ 	Z̃X̃	–

X̃

· 
n

n∑

i=

{
δi

[
X̃i

(
εi – UT

i β
)

+ Uiεi –
(
UiUT

i – �uu
)
β
]}

+ op()

= I – I + op(), (.)

where

� = E
{

( – δ)˜̃X
[
Z̃g ′(ZTα

)]T}
. (.)

Also we have

I =
√

n

[

n

n∑

i=

δi�uuβ –

n

n∑

i=

( – δi)�uu(β̂n – β)

]

. (.)

Combining (.), (.), and (.), we get

I + I + I

=
√

n

[

n

n∑

i=

δi
{˜̃Xi

(
εi – UT

i β
)

+ εiUi –
(
UiUT

i – �uu
)
β
}
]

=
√

n

[

n

n∑

i=

δi
{

X̃i
(
εi – UT

i β
)

+ εiUi –
(
UiUT

i – �uu
)
β
}
]

+ op()

=
√

n	X̃(β̂n – β) + op().

Similarly, we obtain

I – I =
(
� – �	

–
Z̃ 	Z̃X̃

)
	–

X̃ · √n	X̃(β̂n – β) + op().
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To sum up,

√
n(β̌n – β) = �–

n
(
	X̃ + � – �	

–
Z̃ 	Z̃X̃

)
	–

X̃

· √n

[

n

n∑

i=

δi
{

X̃i
(
εi – UT

i β
)

+ εiUi –
(
UiUT

i – �uu
)
β
}
]

– �–
n �	

–
Z̃ · √n

[

n

n∑

i=

δig ′(ZT
i α

)
Z̃i

(
εi – UT

i β
)
]

+ op(). (.)

Via the central limit theorem, Theorem . can be proved. �

Proof of Theorem . We derive the following expression first:

ğn(t, ᾰn, β̆n) – g(t)

=

n
∑n

i= δiKh (ZT
i α – t)(εi – UT

i β)

n
∑n

i= Kh (ZT
i α – t)

+ (β̂n – β)T E
[
( – δ)X|ZTα = t

]

+
[
ĝn(t) – g(t)

] · [ – E
(
δ|ZTα = t

)]
– (β̆n – β)T E

[
X|ZTα = t

]

– (ᾰn – α)T E
(
Zg ′(ZTα

)|ZTα = t
)

+ op

(
√
n

)
+ Op

(
h


)
. (.)

Based on (.), we have

 =

n

n∑

i=

Kh

(
ZT

i ᾰn – t
)
(


ZT

i ᾰn – t

)

· [Y ∗
i – V T

i β̆n – ğn(t) – ğ ′
n(t)

(
ZT

i ᾰn – t
)]

.

Taking only the top equation into account, using a Taylor expansion, and calculating di-
rectly, we obtain


n

n∑

i=

Kh

(
ZT

i α – t
)[

ğn(t) – g(t)
]

=

n

n∑

i=

Kh

(
ZT

i α – t
)[

( – δi)V T
i (β̂n – β) + ( – δi)

(
ĝn

(
ZT

i α
)

– g
(
ZT

i α
))

+ δi
(
εi – UT

i β
)]

– (β̆n – β)T 
n

n∑

i=

Kh

(
ZT

i α – t
)
Vi

– (ᾰn – α)T 
n

n∑

i=

Kh

(
ZT

i α – t
)
Zig ′(t) + op

(
√
n

)
+ Op

(
h


)
. (.)

Dividing all terms in (.) by 
n
∑n

i= Kh (ZT
i α – t), we have

ğn(t) – g(t) =

n
∑n

i= δiKh (ZT
i α – t)(εi – UT

i β)

n
∑n

i= Kh (ZT
i α – t)

+ (β̂n – β)T

n
∑n

i=( – δi)Kh (ZT
i α – t)Vi


n
∑n

i= Kh (ZT
i α – t)
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+
(
ĝn(t) – g(t)

) 
n
∑n

i=( – δi)Kh (ZT
i α – t)


n
∑n

i= Kh (ZT
i α – t)

– (β̆n – β)T

n
∑n

i= Kh (ZT
i α – t)Vi


n
∑n

i= Kh (ZT
i α – t)

– (ᾰn – α)T

n
∑n

i= Kh (ZT
i α – t)Zig ′(t)


n
∑n

i= Kh (ZT
i α – t)

+ op

(
√
n

)
+ Op

(
h


)
.

Note that


n
∑n

i=( – δi)Kh (ZT
i α – t)Vi


n
∑n

i= Kh (ZT
i α – t)

= E
[
( – δ)X|ZTα = t

](
 + op()

)
,


n
∑n

i=( – δi)Kh (ZT
i α – t)


n
∑n

i= Kh (ZT
i α – t)

=  – E
(
δ|ZTα = t

)(
 + op()

)
,


n
∑n

i= Kh (ZT
i α – t)Vi


n
∑n

i= Kh (ZT
i α – t)

= E
(
X|ZTα = t

)(
 + op()

)
,

and


n
∑n

i= Kh (ZT
i α – t)Zig ′(t)


n
∑n

i= Kh (ZT
i α – t)

= E
(
Zg ′(ZTα

)|ZTα = t
)(

 + op()
)
.

Thus, equation (.) follows.
Second, we give the proof of Theorem .. From (.), ᾰn is the solution of


n

n∑

i=

[
Y ∗

i – V T
i β̆n – ğn

(
ZT

i ᾰn
)] · ğ ′

n
(
ZT

i ᾰn
)
Zi = ,

it can be rewritten as


n

n∑

i=

g ′(ZT
i α

)
Zi

{[
Y ∗

i – V T
i β – g

(
ZT

i α
)]

–
[
ğn

(
ZT

i ᾰn
)

– g
(
ZT

i α
)]

– V T
i (β̆n – β)

} · ( + op()
)

= . (.)

Because of the Taylor expansion and the continuity of g ′(·), we can obtain

ğn
(
ZT

i ᾰn
)

– g
(
ZT

i α
)

= ğn
(
ZT

i α
)

+ g ′(ZT
i α

)(
ZT

i ᾰn – ZT
i α

)
– g

(
ZT

i α
)

+ op

(
√
n

)
. (.)

By (.), (.) can be written as


n

n∑

i=

g ′(ZT
i α

)
Zi

{
δi

(
εi – UT

i β
)

+ ( – δi)V T
i (β̂n – β)

+ ( – δi)
[
ĝn

(
ZT

i α
)

– g
(
ZT

i α
)]

–
[
ğn

(
ZT

i α
)

– g
(
ZT

i α
)]

– V T
i (β̆n – β)

– g ′(ZT
i α

)
ZT

i (ᾰn – α)
}(

 + op()
)

= .
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Applying (.) to the equation, it is easy to obtain

√
n

n∑

i=

δig ′(ZT
i α

)
Zi

(
εi – UT

i β
)

–
√
n

n∑

i=

g ′(ZT
i α

)
Zi ·


n
∑n

j= δjKh (ZT
j α – ZT

i α)(εj – UT
j β)


n
∑n

j= Kh (ZT
j α – ZT

i α)

–
√
n

n∑

i=

g ′(ZT
i α

)
Zi

[
ĝn

(
ZT

i α
)

– g
(
ZT

i α
)] · [δi – E

(
δ|ZTα = ZT

i α
)]

+ (β̂n – β)T √
n

n∑

i=

g ′(ZT
i α

)
Zi

[
( – δi)Vi – E

(
( – δ)V |ZTα = ZT

i α
)]

=
√
n

n∑

i=

g ′(ZT
i α

)
Zi

(˜̃Zig ′(ZT
i α)

˜̃Xi + Ui

)T (
ᾰn – α

β̆n – β

)

+ op(). (.)

Note that the second term of the left-hand side of (.) is

√
n

n∑

i=

δi
(
εi – UT

i β
)
E
[
Zg ′(ZTα

)|ZTα = ZT
i α

]
+ op().

Then the first two terms of the left-hand side of (.) are as follows:

√
n

n∑

i=

δig ′(ZT
i α

)
Zi

(
εi – UT

i β
)

–
√
n

n∑

i=

δi
(
εi – UT

i β
)
E
[
Zg ′(ZTα

)|ZTα = ZT
i α

]

=
√
n

n∑

i=

δi
(
εi – UT

i β
)˜̃Zig ′(ZT

i α
)
. (.)

Applying (.) to the third term of the left-hand side of (.), it follows that

√
n

n∑

i=

g ′(ZT
i α

)
Zi

[
δi – E

(
δ|ZTα = ZT

i α
)] · [ĝn

(
ZT

i α
)

– g
(
ZT

i α
)]

=
√
n

n∑

i=

g ′(ZT
i α

)
Zi

[
δi – E

(
δ|ZTα = ZT

i α
)]

·
{


n


f (ZT

i α)μ(ZT
i α)

n∑

j=

δjKh

(
ZT

j α – ZT
i α

)(
εj – UT

j β
)
}

– (β̂n – β)T √
n

n∑

i=

g ′(ZT
i α

)
Zi

[
δi – E

(
δ|ZTα = ZT

i α
)]E(δX|ZTα = ZT

i α)
E(δ|ZTα = ZT

i α)

– (α̂n – α)T √
n

n∑

i=

g ′(ZT
i α

)
Zi

[
δi – E

(
δ|ZTα = ZT

i α
)]

× E(δZg ′(ZTα)|ZTα = ZT
i α)

E(δ|ZTα = ZT
i α)

+ op() = J – J – J + op(). (.)
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Similar to the second term of the left-hand side of (.),

J =
√
n

n∑

i=

δi
(
εi – UT

i β
)

×
{

E[δZg ′(ZTα)|ZT
i α]

E(δ|ZT
i α)

–
E[E(δ|ZTα)Zg ′(ZTα)|ZT

i α]
E(δ|ZT

i α)

}
. (.)

Also, we have

J =
√

n(β̂n – β)T E
{
[
δ – E

(
δ|ZTα

)]E(δX|ZTα)
E(δ|ZTα)

g ′(ZTα
)
Z
}

+ op(). (.)

Combining with Lemma ., we have

J =

[

	–
Z̃

{
√
n

n∑

i=

δig ′(ZT
i α

)
Z̃i

(
εi – UT

i β
)

–
√

n	Z̃X̃(β̂n – β)

}]T

· E
{
[
δ – E

(
δ|ZTα

)]E[δZg ′(ZTα)|ZTα]
E(δ|ZTα)

g ′(ZTα
)
Z
}

+ op(). (.)

The last term of the left-hand side of (.) is

√
n(β̂n – β)T E

{[
( – δ)X – E

(
( – δ)X|ZTα

)]
g ′(ZTα

)
Z
}

+ op(). (.)

Through a direct calculation, the first term of the right-hand side of (.) is

√
n�˜̃Z(ᾰn – α) + op(), (.)

where

�˜̃Z = E
{[˜̃Zg ′(ZTα

)]⊗}. (.)

The last term of the right-hand side of (.) is

√
n�˜̃Z˜̃X(β̆n – β) + op(), (.)

where

�˜̃Z˜̃X = E
{˜̃Zg ′(ZTα

)˜̃X
T}

. (.)

Combining (.)-(.), and (.), and using Theorem ., (.) becomes

√
n�˜̃Z(ᾰn – α) =

√
n

n∑

i=

δi
(
εi – UT

i β
)
g ′(ZT

i α
)˜̃Zi

–
√
n

n∑

i=

δi
(
εi – UT

i β
)
g ′(ZTα

)E[(δ – E(δ|ZTα))Z|ZT
i α]

E(δ|ZT
i α)
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+
√

n(β̂n – β)T E
{[

δ – E
(
δ|ZTα

)]E(δX|ZTα)
E(δ|ZTα)

g ′(ZTα
)
Z
}

+ E
{
[
δ – E

(
δ|ZTα

)]E[δZg ′(ZTα)|ZTα]
E(δ|ZTα)

g ′(ZTα
)
Z
}T

·
[

	–
Z̃

√
n

n∑

i=

δig ′(ZT
i α

)
Z̃i

(
εi – UT

i β
)
]

– E
{[

δ – E
(
δ|ZTα

)]E[δZg ′(ZTα)|ZTα]
E(δ|ZTα)

g ′(ZTα
)
Z
}T

· [	–
Z̃

√
n	Z̃X̃(β̂n – β)

]

+
√

n(β̂n – β)T E
{[

( – δ)X – E
(
( – δ)X|ZTα

)]
Zg ′(ZTα

)}

– �˜̃Z˜̃X�–
˜̃X

(
	X̃ + � – �	

–
Z̃ 	Z̃X̃

)√
n(β̂n – β)

+ �˜̃Z˜̃X�–
˜̃X

�	
–
Z̃ · √n


n

n∑

i=

δig ′(ZT
i α

)
Z̃i

(
εi – UT

i β
)

+ op()

= F – F + F + F – F + F – F + F + op(). (.)

Through a direct calculation,

Q = F – F + F + F

=
{

 + E
{
[
δ – E

(
δ|ZTα

)]E[δZg ′(ZTα)|ZTα]
E(δ|ZTα)

g ′(ZTα
)
Z
}T

	–
Z̃

+ �˜̃Z˜̃X�–
˜̃X

�	
–
Z̃

}
· √

n

n∑

i=

δig ′(ZT
i α

)
Z̃i

(
εi – UT

i β
)
. (.)

Combining with Lemma ., we have

P = F – F + F – F

=
[

E
{[

δ – E
(
δ|ZTα

)]E(δX|ZTα)
E(δ|ZTα)

g ′(ZTα
)
Z
}T

– E
{
[
δ – E

(
δ|ZTα

)]E[δZg ′(ZTα)|ZTα]
E(δ|ZTα)

g ′(ZTα
)
Z
}T

	–
Z̃ 	Z̃X̃

+ E
{[

( – δ)X – E
(
( – δ)X|ZTα

)]
Zg ′(ZTα

)}T

– �˜̃Z˜̃X�–
˜̃X

(
	X̃ + � – �	

–
Z̃ 	Z̃X̃

)]
	–

X̃

· √
n

n∑

i=

{
δi

[
X̃i

(
εi – UT

i β
)

+ Uiεi –
(
UiUT

i – �uu
)
β
]}

+ op(). (.)

Then, with the application of the central limit theorem, Theorem . follows immedi-
ately. �

Proof of Theorem . Similar to the proof of Lemma ., we first derive the asymptotical
expression of ǧn(t;α, β̂n).
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From (.), we have

(
ǧn(t;α, β̌n)

hǧ ′
n(t;α, β̌n)

)

–

(
g(t)

hg ′(t)

)

=
(


n

BT
 SB

)– 
n

n∑

i=

BiKh (ti – t)

×
{

( – δi)(β̂n – β)T Vi + ( – δi)
[
ĝn

(
ZT

i α̂n
)

– g
(
ZT

i α
)]

+



(
ti – t

h

)

g ′′(t)h
 + δi

(
εi – UT

i β
)

– (β̌n – β)T Vi

}
+ op

(
√
nh

)
. (.)

By h
h

→ , n → ∞, with Lemmas .-., focusing on the top equation, we get

ǧn(t;α, β̌n) – g(t) =

n

n∑

i=


f (t)

δiKh (ti – t)
(
εi – UT

i β
)

+ op

(
√
nh

)
.

Applying the central limit theorem, we complete the proof of Theorem .. �
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