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Abstract
In this paper, we introduce a new iterative algorithm for solving the split equality
generalized mixed equilibrium problems. The weak and strong convergence
theorems are proved for demi-contractive mappings in real Hilbert spaces. Several
special cases are also discussed. As applications, we employ our results to get the
convergence results for the split equality convex differentiable optimization problem,
the split equality convex minimization problem, and the split equality mixed
equilibrium problem. The results in this paper generalize, extend, and unify some
recent results in the literature.
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1 Introduction
The equilibrium problem has been extensively studied, beginning with Blum and Oettli
[] where they proposed it as a generalization of optimization and variational inequality
problem. The classical, scalar-valued equilibrium problem deals with the existence of x∗ ∈
C such that

F
(
x∗, y

) ≥ , ∀y ∈ C, (.)

where C is the nonempty closed convex subset of a real Hilbert space H and F : C × C −→
R is a bi-mapping.

Very recently, Ahmad and Rahaman [] introduced the generalized vector equilibrium
problem of finding x ∈ C such that

F
(
λx + ( – λ)z, y

)
� –C \ {}, ∀y, z ∈ C,λ ∈ (, ],

where F : C × C −→ H is the set-valued mapping with the condition F(λx + ( – λ)z, x) ⊇
{}, and [·, z) denotes the line-segment excluding the point z. In the scalar case, the gen-
eralized equilibrium problem takes the form to find x∗ ∈ C such that

F
(
λx∗ + ( – λ)z, y

) ≥ , ∀y, z ∈ C,λ ∈ (, ], (.)
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with the condition F(λx+(–λ)z, x) = . If λ = , then the generalized equilibrium problem
(.) reduces to the classical equilibrium problem (.).

In , Moudafi and Thèra [] introduced the mixed equilibrium problem of finding
x∗ ∈ C such that

F
(
x∗, y

)
+

〈
T

(
x∗), y – x∗〉 ≥ , ∀y ∈ C, (.)

where F : C × C −→ R is a given bi-mapping with F(x, x) = , for all x ∈ C and T : C −→
C is a continuous mapping. Problem (.) has useful applications in nonlinear analysis,
including optimization problems, variational inequalities, fixed-point problems, and the
problems of Nash equilibria as special cases.

In , Peng and Yao [] considered the following extended mixed equilibrium prob-
lem (EMEP): Find x∗ ∈ C such that

F
(
x∗, y

)
+

〈
T

(
x∗), y – x∗〉 + φ(y) – φ

(
x∗) ≥ , ∀y ∈ C, (.)

where φ : C −→ R∪ {+∞} is a mapping.
If T = , then the extended mixed equilibrium problem (.) becomes the mixed equi-

librium problem to find x∗ ∈ C such that

F
(
x∗, y

)
+ φ(y) – φ

(
x∗) ≥ , ∀y ∈ C. (.)

Problem (.) was studied by Ceng and Yao []. If T =  and F(x, y) = , for all x, y ∈ C, the
extended mixed equilibrium problem (.) becomes the following convex minimization
problem:

Finding x∗ ∈ C such that φ(y) – φ
(
x∗) ≥ , ∀y ∈ C. (.)

Now, we mention the following generalized mixed equilibrium problem of finding
x∗ ∈ C:

F
(
λx∗ + ( – λ)b, y

)
+

〈
T

(
x∗), y – x∗〉 + φ(y) – φ

(
x∗) ≥ , ∀y, b ∈ C,λ ∈ (, ]. (.)

The solution set of problem (.) is denoted by GMEP(F , T ,φ).
The convex feasibility problem (CFP) considered in [] is a central problem in applied

mathematics, which can be formulated in various ways to find a common point of closed
and convex sets, to find a common fixed-point of nonexpansive mappings, to find a com-
mon minimum of convex functionals, to solve a system of variational inequalities. The
(CFP) is to find a member of the intersection of finitely many closed convex sets in Eu-
clidean spaces. When the intersection is empty, one can minimize a proximity function
to obtain an approximate solution to the problem. The split feasibility problem (SFP) and
the split equality problem (SEP) are generalizations of the (CFP). The (SFP) arises in many
areas of applications such as phase retrieval, medical image reconstruction, computer
temography and radiation therapy treatment planning; see, e.g., [–]. In , Censor
and Elfving [] introduced the following (SFP) in finite dimensional Hilbert spaces.
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Let H, H, and H be the real Hilbert spaces. Let C and Q be two nonempty closed
convex subsets of real Hilbert spaces H and H, respectively, A : H −→ H be a bounded
linear mapping. The (SFP) is to find a point x∗ such that

x∗ ∈ C and Ax∗ ∈ Q. (.)

Recently, Moudafi and Al-Shemas [] introduced the split equality problem (SEP) of
finding x∗ and y∗ with the property

x∗ ∈ C, y∗ ∈ Q such that Ax∗ = By∗, (.)

where A : H −→ H and B : H −→ H are bounded linear mappings, which allows for
asymmetric and partial relations between the variables x∗ and y∗. If H = H and B = I ,
then the (SEP) (.) reduces to the (SFP) (.).

In order to study the weak convergence properties of (SEP) (.), Moudafi and Al-
Shemas [] introduced the following simultaneous iterative method:

⎧
⎨

⎩
xn+ = U(xn – γnA∗(Axn – Byn));

yn+ = T(yn + γnB∗(Axn – Byn)),
(.)

where U : H −→ H, T : H −→ H are firmly quasi-nonexpansive mappings, A∗ and B∗

are the adjoint of A and B, respectively. Under some suitable conditions, they proved the
weak convergence result for the SEP (.).

To get the strong and weak convergence theorems for the (SEP) (.), Ma et al. [] gen-
eralized the corresponding results of Moudafi and Al-Shemas [], and they introduced
the following iterative algorithm under some mild control conditions in Hilbert spaces:

⎧
⎨

⎩
xn+ = ( – αn)xn + αnU(xn – γnA∗(Axn – Byn));

yn+ = ( – αn)yn + αnT(yn – γnB∗(Axn – Byn)),
(.)

where {αn} ⊂ [α, ], for some α > .
Recently, He [] introduced the following split equilibrium problem (SEqP). Let F : C ×

C −→ R and G : Q × Q −→ R be two bi-mappings, A : H −→ H be a bounded linear
mapping. The split equilibrium problem is to find an element x∗ ∈ C such that

F
(
x∗, x

) ≥ , ∀x ∈ C, (.)

and such that

y∗ = Ax∗ ∈ Q solves G
(
y∗, y

) ≥ , ∀y ∈ Q. (.)

To solve the split equilibrium problem (SEqP), He [] proposed the following iterative
algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

F(un, u) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;

G(vn, v) + 
rn

〈v – vn, vn – Aun〉 ≥ , ∀v ∈ Q;

xn+ = PC(un) + μA∗(vn – Aun),

(.)
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where PC is the metric projection operator from H onto C, rn ⊂ (,∞) with
limn→∞ inf rn > , and μ ∈ (, 

‖A∗‖ ) is a constant.
Very recently, Ma et al. [] considered the following split equality mixed equilibrium

problem (SEMEP). Let φ : C −→ R ∪ {+∞} and ϕ : Q −→ R ∪ {+∞} be proper lower
semicontinuous and convex mappings such that C ∩ domφ �= ∅ and Q ∩ domϕ �= ∅, and
A : H −→ H and B : H −→ H be bounded linear mappings. Then the SEMEP is to find
x∗ ∈ C and y∗ ∈ Q such that

F
(
x∗, x

)
+ φ(x) – φ

(
x∗) ≥ , ∀x ∈ C,

G
(
y∗, y

)
+ ϕ(y) – ϕ

(
y∗) ≥ , ∀y ∈ Q, and (.)

Ax∗ = By∗.

The set of solutions of (.) is denoted by SEMEP(F , G,φ,ϕ).
In order to obtain the weak and strong convergence results of (SEMEP) (.), Ma et al.

[] presented the following simultaneous iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F(un, u) + φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;

G(vn, v) + ϕ(v) – ϕ(vn) + 
rn

〈v – vn, vn – Aun〉 ≥ , ∀v ∈ Q;

xn+ = αnun + ( – αn)T(un – γnA∗(Aun – Bvn));

yn+ = αnvn + ( – αn)S(vn + γnB∗(Aun – Bvn)),

(.)

where T : H −→ H, S : H −→ H are nonexpansive mappings.
In this paper, we consider the following split equality generalized mixed equilibrium

problem (SEGMEP).
Let F : C × C −→ R and G : Q × Q −→ R be two nonlinear bi-mappings, T : C −→ C

and S : Q −→ Q be two nonlinear mappings, and φ : C −→ R ∪ {+∞} and ϕ : Q −→ R ∪
{+∞} be proper lower semicontinuous and convex mappings such that C ∩ domφ �= ∅ and
Q ∩ domϕ �= ∅. Let A : H −→ H and B : H −→ H be bounded linear mappings. Then
the split equality generalized mixed equilibrium problem (SEGMEP) is to find x∗ ∈ C and
y∗ ∈ Q such that

F
(
λx∗ + ( – λ)b, x

)
+

〈
T

(
x∗), x – x∗〉 + φ(x) – φ

(
x∗) ≥ ,

∀x, b ∈ C,λ ∈ (, ],

G
(
λy∗ + ( – λ)c, y

)
+

〈
S
(
y∗), y – y∗〉 + ϕ(y) – ϕ

(
y∗) ≥ , (.)

∀y, c ∈ Q,λ ∈ (, ], and

Ax∗ = By∗.

The solution set of problem (.) is denoted by SEMEP(F , G, T , S,φ,ϕ).
Special cases:
() If λ = λ =  and T = S = , then the split equality generalized mixed equilibrium

problem (.) becomes the split equality mixed equilibrium problem (.).
() If λ = λ = , T = S = , and φ = ϕ = , then the split equality generalized mixed

equilibrium problem (.) reduces to the following split equality equilibrium
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problem: find x∗ ∈ C and y∗ ∈ Q such that

F
(
x∗, x

) ≥ , ∀x ∈ C, G
(
y∗, y

) ≥ , ∀y ∈ Q, and Ax∗ = By∗. (.)

The set of solutions of (.) is denoted by SEEP(F , G).
() If F = G =  and T = S = , then the split equality generalized mixed equilibrium

problem (.) becomes the split equality convex minimization problem to find
x∗ ∈ C and y∗ ∈ Q such that

φ(x) ≥ φ
(
x∗), ∀x ∈ C, ϕ(y) ≥ ϕ

(
y∗), ∀y ∈ Q, and Ax∗ = By∗. (.)

The set of solutions of (.) is denoted by SECMP(φ,ϕ).
() If B = I , then the split equality convex minimization problem (.) reduces to the

following split convex minimization problem. Find x∗ ∈ C such that

φ(x) ≥ φ
(
x∗), ∀x ∈ C, and

y∗ = Ax∗ ∈ Q such that ϕ(y) ≥ ϕ
(
y∗), ∀y ∈ Q.

(.)

The set of solutions of (.) is denoted by SCMP(φ,ϕ).
In this paper, by using the well-known KKM technique, we derive an important lemma

which is a foundation for studying the generalized mixed equilibrium problem (.). Mo-
tivated by the recent above work of Moudafi et al. [], Ma et al. [], Ma et al. [] and
Chidume et al. [], in this paper, we introduce a new iterative algorithm for solving the
split equality generalized mixed equilibrium problem (.) for demi-contractive map-
pings. We obtain weak and strong convergence results for the sequences generated by
these processes. As applications, we employ our results to study the convergence results
for the split equality convex differentiable optimization problem, the split equality convex
minimization problem, and the split equality mixed equilibrium problem. The results of
this paper generalize, extend, and unify some well-known weak and strong convergence
results in the literature mentioned above.

2 Preliminaries
We first recall some definitions and known results which are needed to prove our main
results.

In the sequel, let H be a real Hilbert space with inner product 〈·, ·〉, and norm ‖ · ‖. Let C
be a nonempty closed convex subset of H . Let the symbols → and ⇀ denote strong and
weak convergence, respectively. A point x ∈ H is said to be a fixed point of T provided
Tx = x, where T : H −→ H is a mapping. We denote the set of fixed points of the mapping
T by Fix(T). It is well known that

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖, (.)

for all x, y ∈ H and λ ∈ [, ].

Definition . A mapping T : H −→ H is said to be firmly quasi-nonexpansive if Fix(T) �=
∅ and

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ – ‖x – Tx‖, ∀x ∈ H , x∗ ∈ Fix(T).
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Definition . Let C be a nonempty subset of H . The mapping T : C −→ C is said to be
k-demi-contractive if Fix(T) �= ∅ and there exists a constant k ∈ (, ) such that

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ + k‖x – Tx‖, ∀x ∈ C, x∗ ∈ Fix(T). (.)

Remark . Clearly, the class of firmly quasi-nonexpansive mappings is a subclass of
demi-contractive mappings. Note also that the mapping T satisfying (.) with k =  is
usually called hemicontractive. It is easy to observe from (.) that

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ +
√

k‖x – Tx‖
≤ ( +

√
k)

∥∥x – x∗∥∥ +
√

k
∥∥Tx – x∗∥∥

=
(

 +
√

k
 –

√
k

)∥∥x – x∗∥∥

= L
∥∥x – x∗∥∥,

where L = +
√

k
–

√
k

, so that

∥
∥Tx – x∗∥∥ ≤ L

∥
∥x – x∗∥∥.

Definition . A mapping T : C −→ H is said to be demi-closed at a point z ∈ H if, the
weak convergence of {xn} in C to some point p ∈ C and the strong convergence of {Txn}
to z implies that Tp = z.

Definition . A mapping T : C −→ H is said to be demi-compact at a point z ∈ H if,
for any bounded sequence {xn} in C such that (I – T)xn → z as n → ∞, then there exist a
subsequence {xnj} and a point p ∈ C such that xnj → p as j → ∞ and (I – T)p = z.

Definition . A multi-valued mapping F : C −→ H is said to be KKM-mapping if, for
each finite subset {x, . . . , xn} of C, Co{x, . . . , xn} ⊆ ⋃n

i= F(xi), where Co{x, . . . , xn} denotes
the convex hull of {x, . . . , xn}.

Theorem . (KKM theorem []) Let C be a subset of a Hausdorff topological vector
space H and let F : C −→ H be a KKM-mapping. If for each x ∈ C, F(x) is closed and if for
at least one point x ∈ C, F(x) is compact, then

⋂
x∈C F(x) �= ∅.

Lemma . ([]) Let C be a nonempty closed convex subset of a strictly convex Banach
space X, and T : C −→ C be a nonexpansive mapping with Fix(T) �= ∅. Then Fix(T) is
closed and convex.

For solving the generalized mixed equilibrium problem (.), let us give the following
assumptions for the bi-mapping F : C × C −→R, and the mapping T : C −→ C:

(A) F(λx + ( – λ)b, x) = , for all x ∈ C;
(A) F is monotone, i.e., F(λx + ( – λ)b, y) + F(λy + ( – λ)b, x) ≤ , for all x, y ∈ C;
(A) T is monotone, i.e., 〈T(x) – T(y), x – y〉 ≥ , for all x, y ∈ C;
(A) for each x ∈ C, y �→ F(λx + ( – λ)b, y) is convex and lower semicontinuous;
(A) F is hemicontinuous in the first argument;
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(A) T is weakly upper semicontinuous;
(A) for each x ∈ C, λ ∈ (, ] and r > , there exist a bounded set D ⊂ C and a ∈ C

such that for any z ∈ C \ D,

–F
(
λa + ( – λ)b, z

)
+

〈
T(z), a – z

〉
+ φ(a) – φ(z) +


r
〈a – z, z – x〉 < , ∀b ∈ C.

Lemma . Let C be a nonempty closed convex subset of a Hilbert space H. Suppose that
the bi-mapping F : C × C −→ R and the mapping T : C −→ C satisfy the conditions (A)-
(A). Let φ : C −→R∪ {+∞} be a proper lower semicontinuous and convex mapping such
that C ∩ domφ �= ∅. For r > , λ ∈ (, ] and x ∈ H, let JF ,T

r : H −→ C be the resolvent
operator of F and T , defined by

JF ,T
r (x) =

{
z ∈ C : F

(
λz + ( – λ)b, y

)
+

〈
T(z), y – z

〉

+ φ(y) – φ(z) +

r
〈y – z, z – x〉 ≥ , ∀y, b ∈ C

}
. (.)

Then:
(i) for each x ∈ H, JF ,T

r (x) �= ∅;
(ii) JF ,T

r is single-valued;
(iii) JF ,T

r is firmly nonexpansive, i.e., for any x, y ∈ H,

∥∥JF ,T
r (x) – JF ,T

r (y)
∥∥ ≤ 〈

JF ,T
r (x) – JF ,T

r (y), x – y
〉
;

(iv) Fix(JF ,T
r ) = GMEP(F , T ,φ) and it is closed and convex.

Proof (i) Let x̄ be any given point in H. For each y ∈ C, we define

M(y) =
{

z ∈ C : –F
(
λy + ( – λ)b, z

)
+

〈
T(z), y – z

〉

+ φ(y) – φ(z) +

r
〈y – z, z – x̄〉 ≥ 

}
. (.)

Since y ∈ M(y), M(y) is nonempty. Now, we show that M is a KKM-mapping. To the con-
trary, suppose that M is not a KKM-mapping. Then there exist a finite subset {y, . . . , yn}
of C and ti ≥  for all i = , . . . , n with

∑n
i= ti =  such that z̄ =

∑n
i= tiyi /∈ ⋃n

i= M(yi), for
each i. Then we have

–F
(
λyi + ( – λ)b, z̄

)
+

〈
T(z̄), yi – z̄

〉
+ φ(yi) – φ(z̄) +


r
〈yi – z̄, z̄ – x̄〉 < , ∀i.

By using (A)-(A) and convexity of φ, we have

 = F
(
λz̄ + ( – λ)b, z̄

)
+

〈
T(z̄), z̄ – z̄

〉
+ φ(z̄) – φ(z̄) +


r
〈z̄ – z̄, z̄ – x̄〉

= F

(

λz̄ + ( – λ)b,
n∑

i=

tiyi

)

+

〈

T(z̄),
n∑

i=

tiyi –
n∑

i=

tiz̄

〉

+ φ

( n∑

i=

tiyi

)
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– φ(z̄) +

r

〈 n∑

i=

tiyi – z̄, z̄ – x̄

〉

≤
n∑

i=

tiF
(
λz̄ + ( – λ)b, yi

)
+

n∑

i=

ti
〈
T(z̄), yi – z̄

〉
+

n∑

i=

tiφ(yi) –
n∑

i=

tiφ(z̄)

+

r

n∑

i=

ti〈yi – z̄, z̄ – x̄〉

≤ –
n∑

i=

tiF
(
λyi + ( – λ)b, z̄

)

+
n∑

i=

ti

{
〈
T(z̄), yi – z̄

〉
+ φ(yi) – φ(z̄) +


r
〈yi – z̄, z̄ – x̄〉

}

=
n∑

i=

ti

{
–F

(
λyi + ( – λ)b, z̄

)
+

〈
T(z̄), yi – z̄

〉
+ φ(yi) – φ(z̄) +


r
〈yi – z̄, z̄ – x̄〉

}

< ,

which is not possible, and hence M is a KKM-mapping.
Now, we prove that M(y) = M(f )

w
for each y ∈ C, i.e., M(y) is weakly closed. Let z ∈

M(f )
w

and {zn} be a sequence in M(y) such that zn ⇀ z. Since zn ∈ M(y), we have

–F
(
λy + ( – λ)b, zn

)
+

〈
T(zn), y – zn

〉
+ φ(y) – φ(zn) +


r
〈y – zn, zn – x̄〉 ≥ .

It follows from (A) and (A), and the weak lower semicontinuity of φ and ‖ · ‖ that

 ≤ lim sup
n→∞

{
–F

(
λy + ( – λ)b, zn

)
+

〈
T(zn), y – zn

〉
+ φ(y) – φ(zn) +


r
〈y – zn, zn – x̄〉

}

≤ lim sup
n→∞

{
–F

(
λy + ( – λ)b, zn

)}
+ lim sup

n→∞
{〈

T(zn), y – zn
〉
+ φ(y)

}

– lim inf
n→∞ φ(zn) +


r

lim sup
n→∞

〈y – zn, zn – x̄〉

≤ – lim inf
n→∞

{
F
(
λy + ( – λ)b, zn

)}
+ lim sup

n→∞

{〈
T(zn), y – zn

〉
+ φ(y)

}

– lim inf
n→∞ φ(zn) +


r

lim sup
n→∞

〈y – zn, zn – x̄〉

≤ –F
(
λy + ( – λ)b, z

)
+

〈
T(z), y – z

〉
+ φ(y) – φ(z) +


r
〈y – z, z – x̄〉.

This implies that z ∈ M(y), and hence M(y) is weakly closed.
In order to show that M(y) is weakly compact for at least a point y ∈ C, from (A), we

can see that there exist a bounded set D ⊂ C and a ∈ D such that for any z ∈ C \D, we have
z /∈ M(a). Then M(a) ⊂ D, i.e., it is bounded, which shows that M(y) is weakly compact.
Then by KKM theorem .,

⋂
y∈C M(y) �= ∅. Hence, for z ∈ ⋂

y∈C M(y), we have

–F
(
λy + ( – λ)b, z

)
+

〈
T(z), y – z

〉
+ φ(y) – φ(z) +


r
〈y – z, z – x̄〉 ≥ . (.)



Rahaman et al. Journal of Inequalities and Applications  (2015) 2015:418 Page 9 of 25

Let y ∈ C be arbitrary, and let zt = ty + ( – t)z,  < t ≤ . Then zt ∈ C, and hence we have

–F
(
λzt + ( – λ)b, z

)
+

〈
T(z), zt – z

〉
+ φ(zt) – φ(z) +


r
〈zt – z, z – x̄〉 ≥ . (.)

Applying (.), using (A), (A), and convexity of φ, we have

 = F
(
λzt + ( – λ)b, zt

)

= F
(
λzt + ( – λ)b, ty + ( – t)z

)

≤ tF
(
λzt + ( – λ)b, y

)
+ ( – t)F

(
λzt + ( – λ)b, z

)

≤ tF
(
λzt + ( – λ)b, y

)
+ ( – t)

{
〈
T(z), zt – z

〉
+ φ(zt) – φ(z) +


r
〈zt – z, z – x̄〉

}

≤ tF
(
λzt + ( – λ)b, y

)
+ t( – t)

〈
T(z), y – z

〉
+ t( – t)φ(y) – t( – t)φ(z)

+
t( – t)

r
〈y – z, z – x̄〉

≤ F
(
λzt + ( – λ)b, y

)
+ ( – t)

〈
T(z), y – z

〉
+ ( – t)φ(y) – ( – t)φ(z)

+
( – t)

r
〈y – z, z – x̄〉.

Letting t →  and therefore zt → z, and by (A), we get

F
(
λz + ( – λ)b, y

)
+

〈
T(z), y – z

〉
+ φ(y) – φ(z) +


r
〈y – z, z – x̄〉 ≥ ,

i.e., z ∈ JF ,T
r (x̄). Hence, from the arbitrariness of x̄, we see that JF ,T

r (x) is nonempty.
(ii) We claim that JF ,T

r is single-valued. Indeed, for x ∈ H and r > , let z, z ∈ JF ,T
r (x).

Then

F
(
λz + ( – λ)b, z

)
+

〈
T(z), z – z

〉
+ φ(z) – φ(z) +


r
〈z – z, z – x〉 ≥ 

and

F
(
λz + ( – λ)b, z

)
+

〈
T(z), z – z

〉
+ φ(z) – φ(z) +


r
〈z – z, z – x〉 ≥ .

Adding the above two inequalities, we obtain

F
(
λz + ( – λ)b, z

)
+ F

(
λz + ( – λ)b, z

)

–
〈
T(z) – T(z), z – z

〉
+


r
〈z – z, z – z〉 ≥ .

From (A)-(A) and r > , we have

〈z – z, z – z〉 ≥ ,

which implies that z = z, and hence JF ,T
r is single-valued.
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(iii) To prove that JF ,T
r is firmly nonexpansive, for any x, y ∈ H, we have

F
(
λJF ,T

r (x) + ( – λ)b, JF ,T
r (y)

)
+

〈
T

(
JF ,T
r (x)

)
, JF ,T

r (y) – JF ,T
r (x)

〉

+ φ
(
JF ,T
r (y)

)
– φ

(
JF ,T
r (x)

)
+


r
〈
JF ,T
r (y) – JF ,T

r (x), JF ,T
r (x) – x

〉 ≥ 

and

F
(
λJF ,T

r (y) + ( – λ)b, JF ,T
r (x)

)
+

〈
T

(
JF ,T
r (y)

)
, JF ,T

r (x) – JF ,T
r (y)

〉

+ φ
(
JF ,T
r (x)

)
– φ

(
JF ,T
r (y)

)
+


r
〈
JF ,T
r (x) – JF ,T

r (y), JF ,T
r (y) – y

〉 ≥ .

Adding the above two inequalities, we get

F
(
λJF ,T

r (x) + ( – λ)b, JF ,T
r (y)

)
+ F

(
λJF ,T

r (y) + ( – λ)b, JF ,T
r (x)

)

–
〈
T

(
JF ,T
r (y)

)
– T

(
JF ,T
r (x)

)
, JF ,T

r (y) – JF ,T
r (x)

〉

+

r
〈
JF ,T
r (y) – JF ,T

r (x), JF ,T
r (x) – JF ,T

r (y) – x + y
〉 ≥ .

Using (A)-(A) and r > , we have

〈
JF ,T
r (y) – JF ,T

r (x), JF ,T
r (x) – JF ,T

r (y) – (x – y)
〉 ≥ ,

which implies that

∥∥JF ,T
r (x) – JF ,T

r (y)
∥∥ ≤ 〈

JF ,T
r (x) – JF ,T

r (y), x – y
〉
.

(iv) Take x ∈ C. Then

x ∈ Fix
(
JF ,T
r

)

⇔ x = JF ,T
r (x)

⇔ F
(
λx + ( – λ)b, y

)
+

〈
T(x), y – x

〉
+ φ(y) – φ(x) +


r
〈y – x, x – x〉 ≥ 

⇔ F
(
λx + ( – λ)b, y

)
+

〈
T(x), y – x

〉
+ φ(y) – φ(x) ≥ 

⇔ x ∈ GMEP(F , T ,φ).

Since JF ,T
r is firmly nonexpansive, therefore JF ,T

r is also nonexpansive. By Lemma ., we
see that Fix(JF ,T

r ) = GMEP(F , T ,φ) is closed and convex. �

Let the mappings G : Q × Q −→ R and S : Q −→ Q satisfy (A)-(A). Let ϕ : Q −→ R ∪
{+∞} be a proper lower semicontinuous and convex mapping such that Q ∩ domϕ �= ∅.
For s > , λ ∈ (, ], and u ∈ H, let JG,S

s : H −→ Q be the resolvent operator of G and S,
defined by

JG,S
s (u) =

{
v ∈ Q : G

(
λv + ( – λ)c, w

)
+

〈
S(v), w – v

〉
+ ϕ(w) – ϕ(v)

+

s
〈w – v, v – u〉 ≥ ,∀w, c ∈ Q

}
. (.)
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Then clearly JG,S
s satisfies (i)-(iv) of Lemma ., and Fix(JG,S

s ) = GMEP(G, S,ϕ).

Lemma . (Opial’s lemma []) Let H be a real Hilbert space and {μn} be a sequence in
H such that there exists a nonempty set W ⊂ H satisfying the following conditions:

(i) for every μ ∈ W , limn→∞ ‖μn – μ‖ exists;
(ii) any weak cluster point of the sequence {μn} belongs to W .

Then there exists w∗ ∈ W such that {μn} converges weakly to w∗.

Lemma . ([]) Let H be a real Hilbert space. Then for all x, y ∈ H , we have

‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉.

3 Convergence results
In this section, we prove the weak and strong convergence result for split equality gener-
alized mixed equilibrium problem (.).

Theorem . Let H, H, and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be the
nonempty closed convex subsets of H and H, respectively. Suppose that the bi-mappings
F : C × C −→ R and G : Q × Q −→ R, and the mappings T : C −→ C and S : Q −→ Q sat-
isfy the conditions (A)-(A). Let φ : C −→R∪{+∞} and ϕ : Q −→ R∪{+∞} be the proper
lower semicontinuous and convex mappings such that C ∩ domφ �= ∅ and Q ∩ domϕ �= ∅.
Let P : H −→ H and Q : H −→ H be the two demi-contractive mappings with constants
k and k, respectively, with the condition k ∈ (, ), where k = max{k, k} such that (I – P)
and (I – Q) are demi-closed at zero, and Fix(P) �= ∅ and Fix(Q) �= ∅. Let A : H −→ H and
B : H −→ H be bounded linear mappings. Assume that (x, y) ∈ C × Q and the iteration
scheme {(xn, yn)} is defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(λun + ( – λ)b, u) + 〈T(un), u – un〉
+ φ(u) – φ(un) + 

rn
〈u – un, un – xn〉 ≥ ;

G(λvn + ( – λ)c, v) + 〈S(vn), v – vn〉(v)

+ ϕ – ϕ(vn) + 
rn

〈v – vn, vn – yn〉 ≥ ;

xn+ = ( – αn)(un – γnA∗(Aun – Bvn)) + αnP(un – γnA∗(Aun – Bvn));

yn+ = ( – αn)(vn + γnB∗(Aun – Bvn)) + αnQ(vn + γnB∗(Aun – Bvn)),

(.)

for every u, b ∈ C, v, c ∈ Q, and n ≥  where λA and λB denote the spectral radii of A∗A and
B∗B, respectively, {γn} is a positive real sequence such that γn ∈ (ε, 

λA+λB
–ε), for sufficiently

small ε, {αn} is a sequence in (k, ), and {rn} ⊂ (,∞) such that the following conditions are
satisfied:

(i) for some α,β ∈ (, ),  < α ≤ αn ≤ β < ;
(ii) lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .

If 
 := Fix(P) ∩ Fix(Q) ∩ SEMEP(F , G, T , S,φ,ϕ) �= ∅, then
(I) The sequence {(xn, yn)} weakly converges to a solution of problem (.).

(II) In addition, if P and Q are demi-compact, then {(xn, yn)} strongly converges to a
solution of problem (.).
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Proof To prove (I), let (x, y) ∈ 
. From Lemma ., we have

‖un – x‖ =
∥∥JF ,T

rn (xn) – JF ,T
rn (x)

∥∥ ≤ ‖xn – x‖, (.)

‖vn – y‖ =
∥∥JG,S

rn (yn) – JG,S
rn (y)

∥∥ ≤ ‖yn – y‖. (.)

Since P is a demi-contractive mapping, using the well-known identity (.) and Lemma .,
we obtain the following estimates:

‖xn+ – x‖

=
∥
∥( – αn)

(
un – γnA∗(Aun – Bvn)

)
+ αnP

(
un – γnA∗(Aun – Bvn)

)
– x

∥
∥

=
∥
∥( – αn)

{(
un – γnA∗(Aun – Bvn)

)
– x

}
+ αn

{
P
(
un – γnA∗(Aun – Bvn)

)
– x

}∥∥

= ( – αn)
∥
∥(

un – γnA∗(Aun – Bvn)
)

– x
∥
∥ + αn

∥
∥P

(
un – γnA∗(Aun – Bvn)

)
– x

∥
∥

– αn( – αn)
∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

≤ ( – αn)
∥∥(

un – γnA∗(Aun – Bvn)
)

– x
∥∥ + αn

{∥∥(
un – γnA∗(Aun – Bvn)

)
– x

∥∥

+ k
∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥}

– αn( – αn)
∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

=
∥∥(

un – γnA∗(Aun – Bvn)
)

– x
∥∥

+ kαn
∥
∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

– αn( – αn)
∥
∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

=
∥
∥(

un – γnA∗(Aun – Bvn)
)

– x
∥
∥

– αn( – k – αn)
∥
∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

= ‖un – x‖ + γ 
n
∥
∥A∗(Aun – Bvn)

∥
∥ – γn

〈
A∗(Aun – Bvn), un – x

〉

– αn( – k – αn)
∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

≤ ‖xn – x‖ + γ 
n
∥∥A∗(Aun – Bvn)

∥∥ – γn
〈
A∗(Aun – Bvn), un – x

〉

– αn( – k – αn)
∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥. (.)

From the definition of the spectral radius λA of A∗A, we have

γ 
n
∥
∥A∗(Aun – Bvn)

∥
∥ = γ 

n
〈
Aun – Bvn, AA∗(Aun – Bvn)

〉

≤ λAγ 
n 〈Aun – Bvn, Aun – Bvn〉

= λAγ 
n ‖Aun – Bvn‖. (.)

Combining (.) and (.), we have

‖xn+ – x‖

≤ ‖xn – x‖ + λAγ 
n ‖Aun – Bvn‖ – γn〈Aun – Bvn, Aun – Ax〉

– αn( – k – αn)
∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥. (.)
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Similarly, the last equality of the iterative scheme (.) leads to

‖yn+ – y‖

≤ ‖yn – y‖ + λBγ 
n ‖Aun – Bvn‖ + γn〈Aun – Bvn, Bvn – By〉

– αn( – k – αn)
∥∥(

vn + γnB∗(Aun – Bvn)
)

– Q
(
vn + γnB∗(Aun – Bvn)

)∥∥. (.)

Adding the inequalities (.) and (.), using k = max{k, k} and Ax = By, we get

‖xn+ – x‖ + ‖yn+ – y‖

≤ ‖xn – x‖ + ‖yn – y‖ +
(
λAγ 

n + λBγ 
n
)‖Aun – Bvn‖ – γn‖Aun – Bvn‖

– αn( – k – αn)
{∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

+
∥
∥(

vn + γnB∗(Aun – Bvn)
)

– Q
(
vn + γnB∗(Aun – Bvn)

)∥∥}

= ‖xn – x‖ + ‖yn – y‖ – γn
(
 – γn(λA + λB)

)‖Aun – Bvn‖

– αn( – k – αn)
{∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

+
∥
∥(

vn + γnB∗(Aun – Bvn)
)

– Q
(
vn + γnB∗(Aun – Bvn)

)∥∥}. (.)

Now, put 
n(x, y) = ‖xn – x‖ + ‖yn – y‖. Therefore from (.), we have


n+(x, y) ≤ 
n(x, y) – γn
(
 – γn(λA + λB)

)‖Aun – Bvn‖

– αn( – k – αn)
{∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

+
∥
∥(

vn + γnB∗(Aun – Bvn)
)

– Q
(
vn + γnB∗(Aun – Bvn)

)∥∥}. (.)

As αn ∈ (k, ) and γn ∈ (ε, 
λA+λB

– ε), we have  – γn(λA + λB) >  and ( – k – αn) > . It
follows from (.) that


n+(x, y) ≤ 
n(x, y).

Hence, the sequence {
n(x, y)} is non-increasing and lower bounded by . Therefore, it
converges to some finite limit, say σ (x, y). So, condition (i) of Lemma . is satisfied with
μn = (xn, yn), μ∗ = (x, y), and W = 
. It follows from inequality (.) and the convergence
of the sequence {
n(x, y)} that

lim
n→∞‖Aun – Bvn‖ = , (.)

lim
n→∞

∥∥(
un – γnA∗(Aun – Bvn)

)
– P

(
un – γnA∗(Aun – Bvn)

)∥∥ = , (.)

and

lim
n→∞

∥
∥(

vn + γnB∗(Aun – Bvn)
)

– Q
(
vn + γnB∗(Aun – Bvn)

)∥∥ = . (.)

Moreover, as {
n(x, y)} converges to a finite limit and ‖xn – x‖ ≤ 
n(x, y), ‖yn –
y‖ ≤ 
n(x, y), we see that {xn} and {yn} are bounded and lim supn→∞ ‖xn – x‖ and
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lim supn→∞ ‖yn – y‖ exist. From (.) and (.), we get lim supn→∞ ‖un – x‖ and
lim supn→∞ ‖vn – y‖ also exist. Let x∗ and y∗ be weak limit points of the sequences
{xn} and {yn}, respectively. Also, {un – γnA∗(Aun – Bvn)} weakly converges to x∗ and
{vn + γnB∗(Aun – Bvn)} weakly converges to y∗. Using Lemma ., we have

‖xn+ – xn‖ = ‖xn+ – x – xn + x‖

= ‖xn+ – x‖ – ‖xn – x‖ – 〈xn+ – xn, xn – x〉
= ‖xn+ – x‖ – ‖xn – x‖ – 

〈
xn+ – x∗, xn – x

〉

+ 
〈
xn – x∗, xn – x

〉
.

Therefore,

lim sup
n→∞

‖xn+ – xn‖ = .

Similarly, we obtain

lim sup
n→∞

‖yn+ – yn‖ = .

We conclude that

lim
n→∞‖xn+ – xn‖ =  (.)

and

lim
n→∞‖yn+ – yn‖ = . (.)

From Lemma ., we have un = JF ,T
rn (xn) and un+ = JF ,T

rn+ (xn+). Therefore, for all u ∈ C, we
have

F
(
λun + ( – λ)b, u

)
+

〈
T(un), u – un

〉

+ φ(u) – φ(un) +

rn

〈u – un, un – xn〉 ≥  (.)

and

F
(
λun+ + ( – λ)b, u

)
+

〈
T(un+), u – un+

〉

+ φ(u) – φ(un+) +


rn+
〈u – un+, un+ – xn+〉 ≥ . (.)

Putting u = un in (.) and u = un+ in (.), and adding together the resulting inequali-
ties, we have

 ≤ F
(
λun+ + ( – λ)b, un

)
+ F

(
λun + ( – λ)b, un+

)
+

〈
T(un+), un – un+

〉

+
〈
T(un), un+ – un

〉
+


rn+

〈un – un+, un+ – xn+〉 +

rn

〈un+ – un, un – xn〉.
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By using (A)-(A), we have

 ≤ 
rn+

〈un – un+, un+ – xn+〉 +

rn

〈un+ – un, un – xn〉

≤
〈
un+ – un,

un – xn

rn
–

un+ – xn+

rn+

〉

=
〈
un+ – un, un – xn –

rn

rn+
(un+ – xn+)

〉

=
〈
un+ – un, un – un+ + un+ – xn –

rn

rn+
(un+ – xn+)

〉

= 〈un+ – un, un – un+〉 +
〈
un+ – un, xn+ – xn +

(
 –

rn

rn+

)
(un+ – xn+)

〉

= –‖un+ – un‖ +
〈
un+ – un, xn+ – xn +

(
 –

rn

rn+

)
(un+ – xn+)

〉
,

which implies that

‖un+ – un‖ ≤ ‖un+ – un‖
{
‖xn+ – xn‖ +

∣
∣∣
∣ –

rn

rn+

∣
∣∣
∣‖un+ – xn+‖

}
.

Thus,

‖un+ – un‖ ≤ ‖xn+ – xn‖ +
∣
∣∣
∣ –

rn

rn+

∣
∣∣
∣‖un+ – xn+‖. (.)

Using (.) and condition (ii) of the hypothesis, (.) implies that

lim
n→∞‖un+ – un‖ = . (.)

Similarly, using the same arguments as above, we have

lim
n→∞‖vn+ – vn‖ = . (.)

From (.) and (.), we have

‖xn+ – x‖

≤ ‖un – x‖ + λAγ 
n ‖Aun – Bvn‖ – γn〈Aun – Bvn, Aun – Ax〉

– αn( – k – αn)
∥
∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥ (.)

and

‖yn+ – y‖

≤ ‖vn – y‖ + λBγ 
n ‖Aun – Bvn‖ + γn〈Aun – Bvn, Bvn – By〉

– αn( – k – αn)
∥
∥(

vn + γnB∗(Aun – Bvn)
)

– Q
(
vn + γnB∗(Aun – Bvn)

)∥∥. (.)
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Adding the inequalities (.) and (.), using k = max{k, k} and Ax = By, we obtain

‖xn+ – x‖ + ‖yn+ – y‖

≤ ‖un – x‖ + ‖vn – y‖ – γn
(
 – γn(λA + λB)

)‖Aun – Bvn‖

– αn( – k – αn)
{∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

+
∥∥(

vn + γnB∗(Aun – Bvn)
)

– Q
(
vn + γnB∗(Aun – Bvn)

)∥∥}, (.)

where

‖un – x‖ =
∥
∥JF ,T

rn (xn) – JF ,T
rn (x)

∥
∥ ≤ 〈xn – x, un – x〉

=


{‖xn – x‖ + ‖un – x‖ – ‖xn – un‖} (.)

and

‖vn – y‖ =
∥
∥JG,S

rn (yn) – JG,S
rn (y)

∥
∥ ≤ 〈yn – y, vn – y〉

=


{‖yn – y‖ + ‖vn – y‖ – ‖yn – vn‖}. (.)

From (.)-(.), we conclude that

‖xn – un‖ + ‖yn – vn‖

≤ ‖xn – x‖ – ‖xn+ – x‖ + ‖yn – y‖ – ‖yn+ – y‖

– γn
(
 – γn(λA + λB)

)‖Aun – Bvn‖

– αn( – k – αn)
{∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

+
∥∥(

vn + γnB∗(Aun – Bvn)
)

– Q
(
vn + γnB∗(Aun – Bvn)

)∥∥}. (.)

By using (.)-(.), we have

lim
n→∞‖xn – un‖ = , (.)

lim
n→∞‖yn – vn‖ = . (.)

Hence, un ⇀ x∗ and vn ⇀ y∗, respectively.
Since P is k-demi-contractive mapping and (I – P) is demi-closed at , we have

‖un – Pun‖
= ‖un – xn+ + xnn +  – Pun‖
≤ ‖un – xn+‖ + ‖xnn +  – Pun‖
= ‖un – un+ + un+ – xn+‖

+
∥
∥( – αn)

(
un – γnA∗(Aun – Bvn)

)
+ αnP

(
un – γnA∗(Aun – Bvn)

)
– Pun

∥
∥

≤ ‖un – un+‖ + ‖un+ – xn+‖ +
∥∥(

un – γnA∗(Aun – Bvn)
)

– Pun
∥∥
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+ αn
∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥

≤ ‖un – un+‖ + ‖un+ – xn+‖ +
 +

√
k

 –
√

k
{|γn|

∥∥A∗∥∥‖Aun – Bvn‖
}

+ αn
∥∥(

un – γnA∗(Aun – Bvn)
)

– P
(
un – γnA∗(Aun – Bvn)

)∥∥.

Using (.), (.), (.), and (.), we have

lim
n→∞‖un – Pun‖ = . (.)

Similarly, using the same steps as above for Q, we have

lim
n→∞‖vn – Qvn‖ = . (.)

Since

‖xn – Pxn‖ = ‖xn – un + un – Pun + Pun – Pxn‖
≤ ‖xn – un‖ + ‖un – Pun‖ + ‖Pun – Pxn‖

≤ ‖xn – un‖ + ‖un – Pun‖ +
 +

√
k

 –
√

k
‖un – xn‖

=


 –
√

k
‖xn – un‖ + ‖un – Pun‖,

it follows from (.) and (.) that

lim
n→∞‖xn – Pxn‖ = . (.)

Similarly, we have

lim
n→∞‖yn – Qyn‖ = . (.)

As {xn} and {yn} weakly converge to x∗ and y∗, respectively, and (I – P) and (I – Q) are
demi-closed at , it follows from (.) and (.) that x∗ ∈ Fix(P) and y∗ ∈ Fix(Q). Every
Hilbert space satisfies Opial’s condition, which shows that the weakly subsequential limit
of {(xn, yn)} is unique.

Now, we show that x∗ ∈ GMEP(F , T ,φ) and y∗ ∈ GMEP(G, S,ϕ). Since un = JF ,T
rn (xn), we

have, for all b, u ∈ C and λ ∈ (, ],

F
(
λun + ( – λ)b, u

)
+

〈
T(un), u – un

〉
+ φ(u) – φ(un) +


rn

〈u – un, un – xn〉 ≥ .

Using (A) and (A), we get

φ(u) – φ(un) +

rn

〈u – un, un – xn〉 ≥ –F
(
λun + ( – λ)b, u

)
–

〈
T(un), u – un

〉

≥ F
(
λu + ( – λ)b, un

)
+

〈
T(u), un – u

〉
,
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and hence

φ(u) – φ(unk ) +


rnk

〈u – unk , unk – xnk 〉 ≥ F
(
λu + ( – λ)b, unk

)
+

〈
T(u), unk – u

〉
.

From (.), we have unk ⇀ x∗. It shows that limk→∞
‖unk –xnk ‖

rnk
= , and from the lower

semicontinuity of φ, we have

F
(
λu + ( – λ)b, x∗) +

〈
T(u), x∗ – u

〉
+ φ

(
x∗) – φ(u) ≤ , ∀b, u ∈ C. (.)

Set ut = tu + ( – t)x∗, for all t ∈ (, ] and u ∈ C. Since C is a convex set, ut ∈ C. Hence
from (.), we have

F
(
λut + ( – λ)b, x∗) +

〈
T(ut), x∗ – ut

〉
+ φ

(
x∗) – φ(ut) ≤ . (.)

Using the conditions (A)-(A), convexity of φ, and (.), we get

 = F
(
λut + ( – λ)b, ut

)
+ ( – t)

〈
T(ut), ut – ut

〉
+ φ(ut) – φ(ut)

≤ tF
(
λut + ( – λ)b, u

)
+ ( – t)F

(
λut + ( – λ)b, x∗) + tφ(u) + ( – t)φ

(
x∗)

– φ(ut) + ( – t)
〈
T(ut), ut – x∗〉 + ( – t)

〈
T(ut), x∗ – ut

〉

= t
{

F
(
λut + ( – λ)b, u

)
+ ( – t)

〈
T(ut), u – x∗〉 + φ(u) – φ(ut)

}

× ( – t)
{

F
(
λut + ( – λ)b, x∗) +

〈
T(ut), x∗ – ut

〉
+ φ

(
x∗) – φ(ut)

}

≤ t
{

F
(
λut + ( – λ)b, u

)
+ ( – t)

〈
T(ut), u – x∗〉 + φ(u) – φ(ut)

}
,

which implies that

F
(
λut + ( – λ)b, u

)
+ ( – t)

〈
T(ut), u – x∗〉 + φ(u) – φ(ut) ≥ , ∀u, b ∈ C.

Let t →  and therefore ut → x∗. Using the conditions (A)-(A) and proper lower semi-
continuity of φ, we have

F
(
λx∗ + ( – λ)b, u

)
+

〈
T

(
x∗), u – x∗〉 + φ(u) – φ

(
x∗) ≥ , ∀u, b ∈ C,

which shows that x∗ ∈ GMEP(F , T ,φ). Using the equivalent assertions to the above, we
obtain y∗ ∈ GMEP(G, S,ϕ).

Since A : H −→ H and B : H −→ H are bounded linear mappings, and {un} and {vn}
converges weakly to x∗ and y∗, respectively, for arbitrary f ∈ H∗

 , we have

f (Aun) = (f ◦ A)(un) −→ (f ◦ A)
(
x∗) = f

(
Ax∗).

Likewise,

f (Bvn) = (f ◦ B)(vn) −→ (f ◦ B)
(
y∗) = f

(
By∗).
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Therefore, we have

Aun – Bvn ⇀ Ax∗ – By∗,

which implies that

∥∥Ax∗ – By∗∥∥ ≤ lim inf
n→∞ ‖Aun – Bvn‖ = ,

so that Ax∗ = By∗. This implies that (x∗, y∗) ∈ SEMEP(F , G, T , S,φ,ϕ). Therefore,
(x∗, y∗) ∈ 
.

Finally, we conclude that
. for each (x∗, y∗) ∈ 
, limn→∞(‖xn – x∗‖ + ‖yn – y∗‖) exists;
. each weak cluster point of the sequence ‖(x∗, y∗)‖ belongs to 
.
On taking H = H × H with the norm ‖(x, y)‖ =

√
(‖x‖ + ‖y‖), W = 
, μn = (xn, yn),

and μ = (x∗, y∗) in Lemma ., we see that there exists (x̄, ȳ) ∈ 
 such that xn ⇀ x̄ and
yn ⇀ ȳ. Therefore, the sequence {(xn, yn)} generated by the iterative scheme (.) weakly
converges to a solution of problem (.) in 
. This completes the proof of conjecture (I).

We now prove the strong convergence conjecture (II).
Since P and Q are demi-compact, {xn} and {yn} are bounded, and limn→∞ ‖xn – Pxn‖ = ,

limn→∞ ‖yn – Qyn‖ = , there exist (without loss of generality) subsequences {xnk } of {xn}
and {ynk } of {yn} such that {xnk } and {ynk } converge strongly to some points u∗ and v∗,
respectively. Since {xnk } and {ynk } converge weakly to x∗ and y∗, respectively, this implies
that x∗ = u∗ and y∗ = v∗. It follows from the demi-closedness of P and Q that x∗ ∈ Fix(P)
and y∗ ∈ Fix(Q). Using similar steps to the previous ones, we get x∗ ∈ GMEP(F , T ,φ) and
y∗ ∈ GMEP(G, S,ϕ). Thus, we have

∥
∥Ax∗ – By∗∥∥ = lim

k→∞
‖Axnk – Bynk ‖ = .

This implies that Ax∗ = By∗. Hence (x∗, y∗) ∈ 
. On the other hand, since 
n(x, y) = ‖xn –
x‖ + ‖yn – y‖, for any (x, y) ∈ 
, we know that limk→∞ 
n(x∗, y∗) = . From conjecture
(I), we see that limn→∞ 
n(x∗, y∗) exists, therefore limn→∞ 
n(x∗, y∗) = . So, the iterative
scheme (.) converges strongly to a solution of problem (.). This completes the proof
of the conjecture (II). �

Remark . The convergence theorem, Theorem ., generalizes, extends, and unifies
some well-known weak and strong convergence results of Moudafi et al. [], Ma et al.
[], Ma et al. [] and Chidume et al. [] as we considered the class of demi-contractive
mappings, which is much larger than the class of nonexpansive mappings, firmly quasi-
nonexpansive mappings. Also, we studied the split equality generalized equilibrium prob-
lem (.), which is a more general problem than the split equality problem (.), the split
equality mixed equilibrium problem (.), etc.

On taking F = G = , T = S = , and φ = ϕ =  in Theorem ., we get the following
convergence theorem for the split equality problem (.).

Corollary . Let H, H, and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be the
nonempty closed convex subsets of H and H, respectively. Let P : H −→ H and Q : H −→
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H be two demi-contractive mappings with constants k and k, respectively, with the con-
dition k ∈ (, ), where k = max{k, k} such that (I – P) and (I – Q) are demi-closed at zero,
and Fix(P) �= ∅ and Fix(Q) �= ∅. Let A : H −→ H and B : H −→ H be bounded linear
mappings. Assume that (x, y) ∈ C × Q and the iteration scheme {(xn, yn)} is defined as
follows:

⎧
⎨

⎩
xn+ = ( – αn)(xn – γnA∗(Axn – Byn)) + αnP(xn – γnA∗(Axn – Byn));

yn+ = ( – αn)(yn + γnB∗(Axn – Byn)) + αnQ(yn + γnB∗(Axn – Byn)),

where λA and λB denote the spectral radii of A∗A and B∗B, respectively, {γn} is a positive
real sequence such that γn ∈ (ε, 

λA+λB
– ε) (for ε small enough), {αn} is a sequence in (k, )

such that for some α,β ∈ (, ),  < α ≤ αn ≤ β < .
If 
 := Fix(P) ∩ Fix(Q) ∩ SEP �= ∅, then:
(I) The sequence {(xn, yn)} weakly converges to a solution of problem (.).

(II) In addition, if P and Q are demi-compact, then {(xn, yn)} strongly converges to a
solution of problem (.).

On taking B = I and H = H in Corollary ., we obtain the following convergence the-
orem for the split feasibility problem (.).

Corollary . Let H and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of H and H, respectively. Let P : H −→ H and Q : H −→ H be
two demi-contractive mappings with constants k and k, respectively, with the condition
k ∈ (, ), where k = max{k, k} such that (I – P) and (I – Q) are demi-closed at zero, and
Fix(P) �= ∅ and Fix(Q) �= ∅. Let A : H −→ H be a bounded linear mapping. Assume that
(x, y) ∈ C × Q and the iteration scheme {(xn, yn)} is defined as follows:

⎧
⎨

⎩
xn+ = ( – αn)(xn – γnA∗(Axn – yn)) + αnP(xn – γnA∗(Axn – yn));

yn+ = ( – αn)(yn + γn(Axn – yn)) + αnQ(yn + γn(Axn – yn)),

where λA denotes the spectral radii of A∗A, {γn} is a positive real sequence such that γn ∈
(ε, 

λA
– ε) (for ε small enough), {αn} is a sequence in (k, ) such that for some α,β ∈ (, ),

 < α ≤ αn ≤ β < .
If 
 := Fix(P) ∩ Fix(Q) ∩ SFP �= ∅, then:
(I) The sequence {(xn, yn)} weakly converges to a solution of problem (.).

(II) In addition, if P and Q are demi-compact, then {(xn, yn)} strongly converges to a
solution of problem (.).

4 Applications
4.1 Application to the split equality convex differentiable optimization problem
The familiar problem

⎧
⎨

⎩
minimize ψ(x)

subject to x ∈ C,
(.)
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in which ψ : C −→ C is convex and differentiable has a special optimality criterion. A vec-
tor x∗ solves (.) if and only if it solves the following variational inequality problem: find
x∗ ∈ C such that

〈∇ψ
(
x∗), y – x∗〉 ≥ , ∀y ∈ C. (.)

By putting F(x∗, y) = 〈∇ψ(x∗), y–x∗〉 in (.), we see that the variational inequality problem
(.) and the equilibrium problem (.) have the same set of solutions.

In , Ma et al. [] introduced the so-called split equality mixed variational inequality
problem which is finding x∗ ∈ C and y∗ ∈ Q such that

〈
ψ

(
x∗), x – x∗〉 + φ(x) – φ

(
x∗) ≥ , ∀x ∈ C,

〈
ζ
(
y∗), y – y∗〉 + ϕ(y) – ϕ

(
y∗) ≥ , ∀y ∈ Q, and

Ax∗ = By∗,

where ψ : C −→ H and ζ : Q −→ H are the mappings.
The split equality mixed convex differentiable optimization problem can be viewed as

analogous to the problem of finding x∗ ∈ C and y∗ ∈ Q such that

〈∇ψ
(
x∗), x – x∗〉 +

〈
T

(
x∗), x – x∗〉 + φ(x) – φ

(
x∗) ≥ , ∀x ∈ C,

〈∇ζ
(
y∗), y – y∗〉 +

〈
S
(
y∗), y – y∗〉 + ϕ(y) – ϕ

(
y∗) ≥ , ∀y ∈ Q, and (.)

Ax∗ = By∗,

where ψ : C −→ H and ζ : Q −→ H are convex and differentiable mappings. The set of
solutions of the split equality mixed convex differentiable optimization problem (.) is
denoted by SEMCDOP(ψ , ζ , T , S,φ,ϕ).

If B = I and H = H, then the split mixed convex differentiable optimization problem
can be viewed as analogous to the problem of finding x∗ ∈ C such that

〈∇ψ
(
x∗), x – x∗〉 +

〈
T

(
x∗), x – x∗〉 + φ(x) – φ

(
x∗) ≥ , ∀x ∈ C,

and such that y∗ = Ax∗ ∈ Q solves

〈∇ζ
(
y∗), y – y∗〉 +

〈
S
(
y∗), y – y∗〉 + ϕ(y) – ϕ

(
y∗) ≥ , ∀y ∈ Q. (.)

The set of solutions of the split mixed convex differentiable optimization problem (.) is
denoted by SMCDOP(ψ , ζ , T , S,φ,ϕ).

By setting F(x∗, x) = 〈∇ψ(x∗), x – x∗〉 and G(y∗, y) = 〈∇ζ (y∗), y – y∗〉, for λ = λ = , it is
easy to see that F and G satisfy all the conditions (A)-(A) since the gradients ∇ψ and
∇ζ are monotone mappings due to convexity and differentiability of ψ and ζ , respectively.
Then from Theorem ., we have the following result.

Theorem . Let H, H, and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of H and H, respectively. Suppose that the mappings ψ : C −→ H

and ζ : Q −→ H are convex and differentiable with optimality criterion, and the mappings
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T : C −→ C and S : Q −→ Q satisfy the conditions (A), (A), (A). Let φ : C −→R∪{+∞}
and ϕ : Q −→ R ∪ {+∞} be proper lower semicontinuous and convex mappings such that
C ∩ domφ �= ∅ and Q ∩ domϕ �= ∅. Let P : H −→ H and Q : H −→ H be two demi-
contractive mappings with constants k and k, respectively, with the condition k ∈ (, ),
where k = max{k, k} such that (I – P) and (I – Q) are demi-closed at zero, and Fix(P) �= ∅
and Fix(Q) �= ∅. Let A : H −→ H and B : H −→ H be bounded linear mappings. Assume
that (x, y) ∈ C × Q and the iteration scheme {(xn, yn)} is defined as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈∇ψ(un), u – un〉 + 〈T(un), u – un〉 + φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ ;

〈∇ζ (vn), v – vn〉 + 〈S(vn), v – vn〉 + ϕ(v) – ϕ(vn) + 
rn

〈v – vn, vn – yn〉 ≥ ;

xn+ = ( – αn)(un – γnA∗(Aun – Bvn)) + αnP(un – γnA∗(Aun – Bvn));

yn+ = ( – αn)(vn + γnB∗(Aun – Bvn)) + αnQ(vn + γnB∗(Aun – Bvn)),

for every u ∈ C, v ∈ Q and n ≥  where λA and λB denote the spectral radii of A∗A and
B∗B, respectively, {γn} is a positive real sequence such that γn ∈ (ε, 

λA+λB
– ε) (for ε small

enough), {αn} is a sequence in (k, ), and {rn} ⊂ (,∞) satisfying the following conditions:
(i) for some α,β ∈ (, ),  < α ≤ αn ≤ β < ;

(ii) lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .
If 
 := Fix(P) ∩ Fix(Q) ∩ SEMCDOP(ψ , ζ , T , S,φ,ϕ) �= ∅, then:

(I) The sequence {(xn, yn)} weakly converges to a solution of problem (.).
(II) In addition, if P and Q are demi-compact, then {(xn, yn)} strongly converges to a

solution of problem (.).

If we take B = I and H = H in Theorem ., then we have the following convergence
result for the split mixed convex differentiable optimization problem (.).

Corollary . Let H and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of H and H, respectively. Suppose that the mappings ψ : C −→ H

and ζ : Q −→ H are convex and differentiable with optimality criterion, and the mappings
T : C −→ C and S : Q −→ Q satisfy the conditions (A), (A), (A). Let φ : C −→R∪{+∞}
and ϕ : Q −→ R ∪ {+∞} be proper lower semicontinuous and convex mappings such that
C ∩ domφ �= ∅ and Q ∩ domϕ �= ∅. Let P : H −→ H and Q : H −→ H be two demi-
contractive mappings with constants k and k, respectively, with the condition k ∈ (, ),
where k = max{k, k} such that (I – P) and (I – Q) are demi-closed at zero, and Fix(P) �= ∅
and Fix(Q) �= ∅. Let A : H −→ H be a bounded linear mapping. Assume that (x, y) ∈
C × Q and the iteration scheme {(xn, yn)} is defined as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈∇ψ(un), u – un〉 + 〈T(un), u – un〉 + φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ ;

〈∇ζ (vn), v – vn〉 + 〈S(vn), v – vn〉 + ϕ(v) – ϕ(vn) + 
rn

〈v – vn, vn – yn〉 ≥ ;

xn+ = ( – αn)(un – γnA∗(Aun – vn)) + αnP(un – γnA∗(Aun – vn));

yn+ = ( – αn)(vn + γn(Aun – vn)) + αnQ(vn + γn(Aun – vn)),

for every u ∈ C, v ∈ Q, and n ≥  where λA denotes the spectral radius of A∗A, {γn} is a
positive real sequence such that γn ∈ (ε, 

λA
– ε) (for ε small enough), {αn} is a sequence in

(k, ), and {rn} ⊂ (,∞) satisfying the following conditions:
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(i) for some α,β ∈ (, ),  < α ≤ αn ≤ β < ;
(ii) lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .

If 
 := Fix(P) ∩ Fix(Q) ∩ SMCDOP(ψ , ζ , T , S,φ,ϕ) �= ∅, then:
(I) The sequence {(xn, yn)} weakly converges to a solution of problem (.).

(II) In addition, if P and Q are demi-compact, then {(xn, yn)} strongly converges to a
solution of problem (.).

4.2 Application to the split equality convex minimization problem
Problem (.) is called a split equality convex minimization problem. From Theorem .,
we can conclude to the following convergence result for problem (.).

Theorem . Let H, H, and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of H and H, respectively. Let φ : C −→ R ∪ {+∞} and ϕ : Q −→
R ∪ {+∞} be proper lower semicontinuous and convex mappings such that C ∩ domφ �= ∅
and Q∩domϕ �= ∅. Let P : H −→ H and Q : H −→ H be two demi-contractive mappings
with constants k and k, respectively, with the condition k ∈ (, ), where k = max{k, k}
such that (I – P) and (I – Q) are demi-closed at zero, and Fix(P) �= ∅ and Fix(Q) �= ∅. Let
A : H −→ H and B : H −→ H be bounded linear mappings. Assume that (x, y) ∈ C ×Q
and the iteration scheme {(xn, yn)} is defined as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;

ϕ(v) – ϕ(vn) + 
rn

〈v – vn, vn – yn〉 ≥ , ∀v ∈ Q;

xn+ = ( – αn)(un – γnA∗(Aun – Bvn)) + αnP(un – γnA∗(Aun – Bvn));

yn+ = ( – αn)(vn + γnB∗(Aun – Bvn)) + αnQ(vn + γnB∗(Aun – Bvn)), n ≥ ,

where λA and λB denote the spectral radii of A∗A and B∗B, respectively, {γn} is a positive
real sequence such that γn ∈ (ε, 

λA+λB
– ε) (for ε small enough), {αn} is a sequence in (k, ),

and {rn} ⊂ (,∞) satisfying the following conditions:
(i) for some α,β ∈ (, ),  < α ≤ αn ≤ β < ;

(ii) lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .
If 
 := Fix(P) ∩ Fix(Q) ∩ SECMP(φ,ϕ) �= ∅, then:

(I) The sequence {(xn, yn)} weakly converges to a solution of problem (.).
(II) In addition, if P and Q are demi-compact, then {(xn, yn)} strongly converges to a

solution of problem (.).

If we take B = I and H = H in Theorem ., then we have the following convergence
result for the split convex minimization problem (.).

Corollary . Let H and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of H and H, respectively. Let φ : C −→ R ∪ {+∞} and ϕ : Q −→
R ∪ {+∞} be proper lower semicontinuous and convex mappings such that C ∩ domφ �= ∅
and Q∩domϕ �= ∅. Let P : H −→ H and Q : H −→ H be two demi-contractive mappings
with constants k and k, respectively, with the condition k ∈ (, ), where k = max{k, k}
such that (I – P) and (I – Q) are demi-closed at zero, and Fix(P) �= ∅ and Fix(Q) �= ∅. Let
A : H −→ H be a bounded linear mapping. Assume that (x, y) ∈ C × Q and the iteration
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scheme {(xn, yn)} is defined as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;

ϕ(v) – ϕ(vn) + 
rn

〈v – vn, vn – yn〉 ≥ , ∀v ∈ Q;

xn+ = ( – αn)(un – γnA∗(Aun – Bvn)) + αnP(un – γnA∗(Aun – Bvn));

yn+ = ( – αn)(vn + γnB∗(Aun – Bvn)) + αnQ(vn + γnB∗(Aun – Bvn)), n ≥ ,

where λA denotes the spectral radii of A∗A, {γn} is a positive real sequence such that γn ∈
(ε, 

λA
– ε) (for ε small enough), {αn} is a sequence in (k, ), and {rn} ⊂ (,∞) satisfying the

following conditions:
(i) for some α,β ∈ (, ),  < α ≤ αn ≤ β < ;

(ii) lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .
If 
 := Fix(P) ∩ Fix(Q) ∩ SCMP(φ,ϕ) �= ∅, then:

(I) The sequence {(xn, yn)} weakly converges to a solution of problem (.).
(II) In addition, if P and Q are demi-compact, then {(xn, yn)} strongly converges to a

solution of problem (.).

4.3 Application to the split equality mixed equilibrium problem
It is easy to see that on taking λ = λ =  and T = S =  in problem (.), then the split
equality generalized mixed equilibrium problem (.) becomes the split equality mixed
equilibrium problem (.), which was considered by Ma et al. []. The following is the
convergence result for problem (.).

Theorem . Let H, H, and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of H and H, respectively. Suppose that the bi-mappings F : C ×
C −→ R and G : Q × Q −→ R satisfy the conditions (A), (A), (A), (A), and (A). Let
φ : C −→ R ∪ {+∞} and ϕ : Q −→ R ∪ {+∞} be proper lower semicontinuous and convex
mappings such that C ∩ domφ �= ∅ and Q ∩ domϕ �= ∅. Let P : H −→ H and Q : H −→ H

be two demi-contractive mappings with constants k and k, respectively, with the condi-
tion k ∈ (, ), where k = max{k, k} such that (I – P) and (I – Q) are demi-closed at zero,
and Fix(P) �= ∅ and Fix(Q) �= ∅. Let A : H −→ H and B : H −→ H be bounded linear
mappings. Assume that (x, y) ∈ C × Q and the iteration scheme {(xn, yn)} is defined as
follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F(un, u) + φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;

G(vn, v) + ϕ(v) – ϕ(vn) + 
rn

〈v – vn, vn – yn〉 ≥ , ∀v ∈ Q;

xn+ = ( – αn)(un – γnA∗(Aun – Bvn)) + αnP(un – γnA∗(Aun – Bvn));

yn+ = ( – αn)(vn + γnB∗(Aun – Bvn)) + αnQ(vn + γnB∗(Aun – Bvn)), n ≥ ,

where λA and λB denote the spectral radii of A∗A and B∗B, respectively, {γn} is a positive
real sequence such that γn ∈ (ε, 

λA+λB
– ε) (for ε small enough), {αn} is a sequence in (k, ),

and {rn} ⊂ (,∞) satisfying the following conditions:
(i) for some α,β ∈ (, ),  < α ≤ αn ≤ β < ;

(ii) lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .
If 
 := Fix(P) ∩ Fix(Q) ∩ SEMEP(F , G,φ,ϕ) �= ∅, then:
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(I) The sequence {(xn, yn)} weakly converges to a solution of problem (.).
(II) In addition, if P and Q are demi-compact, then {(xn, yn)} strongly converges to a

solution of problem (.).
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