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Abstract
In majorization theory, the well-known majorization theorem plays a very important
role. A more general result was obtained by Sherman. In this paper, concerning
2n-convex functions, we get generalizations of these results applying Lidstone’s
interpolating polynomials and the Čebyšev functional. Using the obtained results, we
generate a new family of exponentially convex functions. The results are some new
classes of two-parameter Cauchy type means.
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1 Introduction
For fixed m ≥ , let x = (x, . . . , xm) and y = (y, . . . , ym) denote two m-tuples. Let

x[] ≥ x[] ≥ · · · ≥ x[m], y[] ≥ y[] ≥ · · · ≥ y[m],

x() ≤ x() ≤ · · · ≤ x(m), y() ≤ y() ≤ · · · ≤ y(m)

be their ordered components. We say that x majorizes y or y is majorized by x and write

y ≺ x

if

k∑

i=

y[i] ≤
k∑

i=

x[i], k = , . . . , m – ,

m∑

i=

yi =
m∑

i=

xi.

(.)

Note that (.) is equivalent to

m∑

i=m–k+

y(i) ≤
m∑

i=m–k+

x(i), k = , . . . , m – .
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The following notion of Schur-convexity generalizes the definition of a convex function
via the notion of majorization.

A function F : S ⊆ R
m →R is called Schur-convex on S if

F(y) ≤ F(x) (.)

for every x, y ∈ S such that

y ≺ x.

A relation between a one-dimensional convex function and an m-dimensional Schur-
convex function is included in the following majorization theorem proved by Hardy et al.
(see [], [], p.).

Theorem  (Majorization theorem) Let I ⊂ R be an interval and x = (x, . . . , xm), y =
(y, . . . , ym) ∈ Im. Let f : I → R be continuous function. Then a function F : Im → R, de-
fined by

F(x) =
m∑

i=

f (xi),

is Schur-convex on Im iff f is convex on I .

The following theorem gives a weighted generalization of the majorization theorem (see
[], [], p.).

Theorem  (Fuchs’ theorem) Let x = (x, . . . , xm), y = (y, . . . , ym) ∈ Im be two decreasing
m-tuples and p = (p, . . . , pm) be a real m-tuple such that

k∑

i=

piyi ≤
k∑

i=

pixi, k = , . . . , m – ,

m∑

i=

piyi =
m∑

i=

pixi.

Then for every continuous convex function f : I →R, we have

m∑

i=

pif (yi) ≤
m∑

i=

pif (xi).

The Jensen inequality in the form

f

(


Pm

m∑

i=

pixi

)
≤ 

Pm

m∑

i=

pif (xi) (.)

for a convex function f , where p = (p, . . . , pm) is a nonnegative m-tuple such that Pm =∑m
i= pi > , can be obtained as a special case of the previous result putting y = y = · · · =

ym = 
Pm

∑m
i= pixi.
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A natural problem of interest is the extension of the notation from m-tuples (vectors)
to m × l matrices A = (aij) ∈Mml(R). Thus we introduce the notion of row stochastic and
double stochastic matrices.

A matrix A = (aij) ∈ Mml(R) is called row stochastic if all of its entries are greater or
equal to zero, i.e. aij ≥  for i = , . . . , m, j = , . . . , l and the sum of the entries in each row
is equal to , i.e.

∑l
j= aij =  for i = , . . . , m. A square matrix A = (aij) ∈ Ml(R) is called

double stochastic if all of its entries are greater or equal to zero (nonnegative), i.e. aij ≥ 
for i, j = , . . . , l, and the sum of the entries in each column and each row is equal to , i.e.∑l

i= aij =  for j = , . . . , l and
∑l

j= aij =  for i = , . . . , l.
It is well known that, for x, y ∈R

l ,

y ≺ x if and only if y = xA

for some double stochastic matrix A ∈Ml(R).
The next generalization was obtained by Sherman (see [, ]).

Theorem  (Sherman’s theorem) Let x = (x, . . . , xl) ∈ [α,β]l , y = (y, . . . , ym) ∈ [α,β]m, a =
(a, . . . , al) ∈ [,∞)l , b = (b, . . . , bm) ∈ [,∞)m and

y = xAT and a = bA (.)

for some row stochastic matrix A = (aij) ∈ Mml(R). Then for every convex function f :
[α,β] →R we have

m∑

i=

bif (yi) ≤
l∑

j=

ajf (xj). (.)

Remark  In a special case, from Sherman’s theorem we get Fuchs’ theorem. When m = l,
and all weights bi and aj are equal and nonnegative, the condition a = bA ensures the
stochasticity on columns, so in that case we deal with doubly stochastic matrices.

In , Lidstone [] introduced a generalization of Taylor’s series: it approximates a
given function in the neighborhood of two points instead of one. This series includes the
polynomials later called Lidstone’s polynomials. These polynomials have been studied in
the work of Boas [], Poritsky [], Widder [], and others. See also [].

Definition  Let f ∈ C∞([, ]), then the Lidstone series has the form

∞∑

k=

(
f (k)()�k( – x) + f (k)()�k(x)

)
,

where �k is polynomial of degree n +  defined by the relations

�(t) = t,

�′′
n(t) = �n–(t), (.)

�n() = �n() = , n ≥ .
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In [], Widder proved the following fundamental lemma.

Lemma  If f ∈ Cn([, ]), then

f (t) =
n–∑

k=

(
f (k)()�k( – t) + f (k)()�k(t)

)
+
∫ 


Gn(t, s)f (n)(s) ds,

where

G(t, s) = G(t, s) =

{
(t – )s, s ≤ t,
(s – )t, t ≤ s,

(.)

is a homogeneous Green’s function of the differential operator d

ds on [, ] and with the
successive iterates of G(t, s),

Gn(t, s) =
∫ 


G(t, p)Gn–(p, s) dp, n ≥ . (.)

Remark  Green’s function G defined by (.) is convex and continuous with respect to
both variables s and t.

The Lidstone polynomial can be expressed in terms of Gn(t, s) as

�n(t) =
∫ 


Gn(t, s)s ds. (.)

To complete the Introduction, we state a definition of the divided differences and n-
convexity (see for example []).

Definition  The divided difference of order n, n ∈ N, of the function f : [α,β] → R at
mutually different points x, x, . . . , xn ∈ [α,β] is defined recursively by

[xi; f ] = f (xi), i = , . . . , n,

[x, . . . , xn; f ] =
[x, . . . , xn; f ] – [x, . . . , xn–; f ]

xn – x
.

The value of [x, . . . , xn; f ] is independent of the order of the points x, . . . , xn.

This definition may be extended to include the case in which some or all the points
coincide. Assuming that f (j–)(x) exists, we define

[x, . . . , x︸ ︷︷ ︸
j-times

; f ] =
f (j–)(x)
(j – )!

. (.)

Definition  A function f : [α,β] → R is n-convex, n ≥ , if for all choices of (n + )
distinct points xi ∈ [α,β], i = , . . . , n, the inequality

[x, x, . . . , xn; f ] ≥ 

holds.
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From Definition , it follows that -convex functions are just convex functions. Further-
more, -convex functions are increasing functions and -convex functions are nonnega-
tive functions.

2 Main results
First we prove an identity related to a generalization of Sherman’s inequality using Lid-
stone’s interpolating polynomial.

Theorem  Let x = (x, . . . , xl) ∈ [α,β]l , y = (y, . . . , ym) ∈ [α,β]m, a = (a, . . . , al) ∈ R
l , b =

(b, . . . , bm) ∈R
m and φ ∈ Cn([α,β]). Then

l∑

j=

ajφ(xj) –
m∑

i=

biφ(yi)

=
n–∑

k=

(β – α)kφ(k)(α)

[ l∑

j=

aj�k

(
β – xj

β – α

)
–

m∑

i=

bi�k

(
β – yi

β – α

)]

+
n–∑

k=

(β – α)kφ(k)(β)

[ l∑

j=

aj�k

(
xj – α

β – α

)
–

m∑

i=

bi�k

(
yi – α

β – α

)]

+ (β – α)n–
∫ β

α

[ l∑

j=

ajGn

(
xj – α

β – α
,

t – α

β – α

)
–

m∑

i=

biGn

(
yi – α

β – α
,

t – α

β – α

)]

× φ(n)(t) dt. (.)

Proof By Widder’s lemma, we can represent every function φ ∈ Cn([α,β]) in the form

φ(x) =
n–∑

k=

(β – α)k
[
φ(k)(α)�k

(
β – x
β – α

)
+ φ(k)(β)�k

(
x – α

β – α

)]

+ (β – α)n–
∫ β

α

Gn

(
x – α

β – α
,

s – α

β – α

)
φ(n)(s) ds. (.)

Using (.), we have

l∑

j=

ajφ(xj) –
m∑

i=

biφ(yi)

=
l∑

j=

aj

{ n–∑

k=

(β – α)k
[
φ(k)(α)�k

(
β – xj

β – α

)
+ φ(k)(β)�k

(
xj – α

β – α

)]}

+
l∑

j=

aj

[
(β – α)n–

∫ β

α

Gn

(
xj – α

β – α
,

t – α

β – α

)
φ(n)(t) dt

]

–
m∑

i=

bi

{ n–∑

k=

(β – α)k
[
φ(k)(α)�k

(
β – yi

β – α

)
+ φ(k)(β)�k

(
yi – α

β – α

)]}

–
m∑

i=

bi

[
(β – α)n–

∫ β

α

Gn

(
yi – α

β – α
,

t – α

β – α

)
φ(n)(t) dt

]
. (.)
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By an easy calculation, from (.) we get (.). �

Using the previous result, we get the following generalizations of Sherman’s theorem for
n-convex functions.

Theorem  Let n ∈ N, x = (x, . . . , xl) ∈ [α,β]l , y = (y, . . . , ym) ∈ [α,β]m, a = (a, . . . , al) ∈
R

l and b = (b, . . . , bm) ∈R
m. If for all t ∈ [α,β] we have

m∑

i=

biGn

(
yi – α

β – α
,

t – α

β – α

)
≤

l∑

j=

ajGn

(
xj – α

β – α
,

t – α

β – α

)
, (.)

then for every n-convex function φ : [α,β] →R, we have

l∑

j=

ajφ(xj) –
m∑

i=

biφ(yi)

≥
n–∑

k=

(β – α)kφ(k)(α)

[ l∑

j=

aj�k

(
β – xj

β – α

)
–

m∑

i=

bi�k

(
β – yi

β – α

)]

+
n–∑

k=

(β – α)kφ(k)(β)

[ l∑

j=

aj�k

(
xj – α

β – α

)
–

m∑

i=

bi�k

(
yi – α

β – α

)]
. (.)

If the reverse inequality in (.) holds, then the reverse inequality in (.) holds.

Proof Since a function φ is n-convex, we may assume without loss of generality that φ is
n-times differentiable and φ(n)(t) ≥ , t ∈ [α,β] (see [], p.).

Using this fact and the assumption (.), applying Theorem  we obtain (.). �

Under the assumptions of Sherman’s theorem the following generalizations are valid.

Theorem  Let n ∈ N, x = (x, . . . , xl) ∈ [α,β]l , y = (y, . . . , ym) ∈ [α,β]m, a = (a, . . . , al) ∈
[,∞)l , b = (b, . . . , bm) ∈ [,∞)m and let (.) holds for some row stochastic matrix A =
(aij) ∈Mml(R).

(i) If n is odd, then for every n-convex function φ : [α,β] →R, we have

l∑

j=

ajφ(xj) –
m∑

i=

biφ(yi)

≥
n–∑

k=

(β – α)kφ(k)(α)

[ l∑

j=

aj�k

(
β – xj

β – α

)
–

m∑

i=

bi�k

(
β – yi

β – α

)]

+
n–∑

k=

(β – α)kφ(k)(β)

[ l∑

j=

aj�k

(
xj – α

β – α

)
–

m∑

i=

bi�k

(
yi – α

β – α

)]
. (.)

Moreover, if φ(k)(α) ≥ , φ(k)(β) ≥  for k = , , . . . , n –  and φ(k)(α) ≤ ,
φ(k)(β) ≤  for k = , , . . . , n – , then

m∑

i=

biφ(yi) ≤
l∑

j=

ajφ(xj). (.)
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(ii) If n is even, then for every n-convex function φ : [α,β] →R, the reverse inequality in
(.) holds. Moreover, if φ(k)(α) ≤ , φ(k)(β) ≤  for k = , , . . . , n –  and
φ(k)(α) ≥ , φ(k)(β) ≥  for k = , , . . . , n – , then the reverse inequality in (.)
holds.

Proof (i) From (.), it follows that G(t, s) ≤  for  ≤ t, s ≤ .
From (.), it follows that Gn(t, s) ≤  for odd n and Gn(t, s) ≥  for even n.
Now, since G is convex and Gn– is nonnegative for odd n, using (.), we conclude that

Gn is convex in first variable if n is odd. Similarly, we see that Gn is concave in the first
variable if n is even.

Hence, if n is odd, then by Sherman’s theorem we have

m∑

i=

biGn

(
yi – α

β – α
,

t – α

β – α

)
≤

l∑

j=

ajGn

(
xj – α

β – α
,

t – α

β – α

)
.

Therefore, in this case, by Theorem , the inequality (.) holds.
Using the representation (.), we also conclude that �n is convex if n is odd and concave

if n is even. Then, by Sherman’s theorem, we have

m∑

i=

bi�k

(
yi – α

β – α

)
≤

l∑

j=

aj�k

(
xj – α

β – α

)
(.)

if k is odd and the reverse inequality in (.) holds if k is even.
Moreover, if φ(k)(α) ≥ , φ(k)(β) ≥  for k = , , . . . , n –  and φ(k)(α) ≤ , φ(k)(β) ≤ 

for k = , , . . . , n – , then the right-hand side in (.) is nonnegative and (.) immediately
follows.

(ii) Similar to part (i). �

Remark  Note that as a special case of Theorem  we get Sherman’s theorem. For n = ,
with the assumptions (.) and using the fact that G(·, t) = G(·, t), t ∈ [, ], is continuous
and convex on [, ], we have

m∑

i=

biG
(

yi – α

β – α
,

t – α

β – α

)
=

m∑

i=

biG
(∑l

j= xjaij – α

β – α
,

t – α

β – α

)

≤
m∑

i=

bi

l∑

j=

aijG
(

xj – α

β – α
,

t – α

β – α

)

=
l∑

j=

( m∑

i=

biaij

)
G
(

xj – α

β – α
,

t – α

β – α

)

=
l∑

j=

ajG
(

xj – α

β – α
,

t – α

β – α

)
,

i.e. the assumption (.) holds. Then by Theorem , the inequality (.) immediately fol-
lows.
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3 Bounds for identities related to generalizations of Sherman’s inequality
For two Lebesgue integrable functions f , g : [α,β] → R, we consider the Čebyšev func-
tional:

T(f , g) :=


β – α

∫ β

α

f (t)g(t) dt –


β – α

∫ β

α

f (t) dt · 
β – α

∫ β

α

g(t) dt.

We use the following two theorems, proved in [], to obtain generalizations of the re-
sults from the previous section.

Theorem  Let f : [α,β] → R be Lebesgue integrable and g : [α,β] → R be absolutely
continuous with (· – α)(β – ·)(g ′) ∈ L[α,β]. Then

∣∣T(f , g)
∣∣ ≤ √


[
T(f , f )

] 
 √

β – α

(∫ β

α

(x – α)(β – x)
[
g ′(x)

] dx
) 


. (.)

The constant √
 in (.) is the best possible.

Theorem  Let g : [α,β] → R be monotonic nondecreasing and f : [α,β] → R be abso-
lutely continuous with f ′ ∈ L∞[α,β]. Then

∣∣T(f , g)
∣∣ ≤ 

(β – α)
∥∥f ′∥∥∞

∫ β

α

(x – α)(β – x) dg(x). (.)

The constant 
 in (.) is the best possible.

For the sake of simplicity and to avoid an overload of notations, we define two functions
as follows.

Let x = (x, . . . , xl) ∈ [α,β]l , y = (y, . . . , ym) ∈ [α,β]m, a = (a, . . . , al) ∈ R
l , b = (b, . . . ,

bm) ∈ R
m and the function Gn be defined as in (.) and (.). The function R : [α,β] →R

is defined by

R(t) =
l∑

j=

ajGn

(
xj – α

β – α
,

t – α

β – α

)
–

m∑

i=

biGn

(
yi – α

β – α
,

t – α

β – α

)
. (.)

Using the Čebyšev functional we obtain a bound for the identity (.) related to a gen-
eralization of Sherman’s inequality.

Theorem  Let φ : [α,β] → R be such that φ ∈ Cn([α,β]) for n ∈ N with (· – α)(β –
·)(φ(n+)) ∈ L[α,β]. Let the function R be defined as in (.). Then

l∑

j=

ajφ(xj) –
m∑

i=

biφ(yi)

=
n–∑

k=

(β – α)kφ(k)(α)

[ l∑

j=

aj�k

(
β – xj

β – α

)
–

m∑

i=

bi�k

(
β – yi

β – α

)]

+
n–∑

k=

(β – α)kφ(k)(β)

[ l∑

j=

aj�k

(
xj – α

β – α

)
–

m∑

i=

bi�k

(
yi – α

β – α

)]

+ (β – α)n–[φ(n–)(β) – φ(n–)(α)
] ∫ β

α

R(t) dt + κ
n(φ;α,β), (.)
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where the remainder κ
n(φ;α,β) satisfies the estimation

∣∣κ
n(φ;α,β)

∣∣ ≤ (β – α)n– 
√


[
T(R,R)

] 


(∫ β

α

(t – α)(β – t)
[
φ(n+)(t)

] dt
) 


. (.)

Proof If we apply Theorem  for f →R and g → φ(n) we obtain

∣∣∣∣


β – α

∫ β

α

R(t)φ(n)(t) dt –


β – α

∫ β

α

R(t) dt · 
β – α

∫ β

α

φ(n)(t) dt
∣∣∣∣

≤ √

[
T(R,R)

] 
 √

β – α

(∫ β

α

(t – α)(β – t)
[
φ(n+)(t)

] dt
) 


.

Therefore, we have

(β – α)n–
∫ β

α

R(t)φ(n)(t) dt

= (β – α)n–[φ(n–)(β) – φ(n–)(α)
]∫ β

α

R(t) dt + κ
n(φ;α,β),

where the remainder κ
n(φ;α,β) satisfies the estimation (.).

Now from the identity (.) we obtain (.). �

Using Theorem  we obtain the Grüss type inequality.

Theorem  Let φ : [α,β] → R be such that φ ∈ Cn([α,β]) for n ∈ N and φ(n+) ≥ 
on [α,β]. Let the function R be defined as in (.). Then the representation (.) and the
remainder κ

n(φ;α,β) satisfies the bound

∣∣κ
n(φ;α,β)

∣∣

≤ (β – α)n–∥∥R′∥∥∞

[
φ(n–)(β) + φ(n–)(α)


–

φ(n–)(β) – φ(n–)(α)
β – α

]
. (.)

Proof Applying Theorem  for f →R and g → φ(n) we obtain

∣∣∣∣


β – α

∫ β

α

R(t)φ(n)(t) dt –


β – α

∫ β

α

R(t) dt · 
β – α

∫ β

α

φ(n)(t) dt
∣∣∣∣

≤ 
(β – α)

∥∥R′∥∥∞

∫ β

α

(t – α)(β – t)φ(n+)(t) dt. (.)

Since
∫ β

α

(t – α)(β – t)φ(n+)(t) dt

=
∫ β

α

[
t – (α + β)

]
φ(n)(t) dt

= (β – α)
[
φ(n–)(β) + φ(n–)(α)

]
– 

[
φ(n–)(β) – φ(n–)(α)

]
,

using the identity (.) and the inequality (.) we deduce (.). �
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We present the Ostrowsky type inequality related to generalizations of Sherman’s in-
equality.

Theorem  Suppose that all assumptions of Theorem  hold. Assume that (p, q) is a pair
of conjugate exponents, that is,  ≤ p, q ≤ ∞, /p + /q = . Let φ(n) ∈ Lp[α,β]. Then

∣∣∣∣∣

l∑

j=

ajφ(xj) –
m∑

i=

biφ(yi)

–
n–∑

k=

(β – α)kφ(k)(α)

[ l∑

j=

aj�k

(
β – xj

β – α

)
–

m∑

i=

bi�k

(
β – yi

β – α

)]

–
n–∑

k=

(β – α)kφ(k)(β)

[ l∑

j=

aj�k

(
xj – α

β – α

)
–

m∑

i=

bi�k

(
yi – α

β – α

)]∣∣∣∣∣

≤ (β – α)n–∥∥φ(n)∥∥
p

×
[∫ β

α

∣∣∣∣∣

l∑

j=

ajGn

(
xj – α

β – α
,

t – α

β – α

)
–

m∑

i=

biGn

(
yi – α

β – α
,

t – α

β – α

)∣∣∣∣∣

q

dt

] 
q

. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and the best possible for
p = .

Proof Let us denote

S(t) = (β – α)n–

[ l∑

j=

ajGn

(
xj – α

β – α
,

t – α

β – α

)
–

m∑

i=

biGn

(
yi – α

β – α
,

t – α

β – α

)]
.

Using the identity (.) and applying the well-known Hölder inequality, we obtain
∣∣∣∣∣

l∑

j=

ajφ(xj) –
m∑

i=

biφ(yi)

–
n–∑

k=

(β – α)kφ(k)(α)

[ l∑

j=

aj�k

(
β – xj

β – α

)
–

m∑

i=

bi�k

(
β – yi

β – α

)]

–
n–∑

k=

(β – α)kφ(k)(β)

[ l∑

j=

aj�k

(
xj – α

β – α

)
–

m∑

i=

bi�k

(
yi – α

β – α

)]∣∣∣∣∣

=
∣∣∣∣
∫ β

α

S(t)φ(n)(t) dt
∣∣∣∣ ≤

∥∥φ(n)∥∥
p

(∫ β

α

∣∣S(t)
∣∣q dt

) 
q

.

For the proof of the sharpness of the constant (
∫ β

α
|S(t)|q dt)


q , let us find a function φ for

which the equality in (.) is obtained.
For  < p < ∞ take φ to be such that

φ(n)(t) = sgnS(t)
∣∣S(t)

∣∣ 
p– .

For p = ∞ take φ(n)(t) = sgnS(t).
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For p =  we prove that

∣∣∣∣
∫ β

α

S(t)φ(n)(t) dt
∣∣∣∣ ≤ max

t∈[α,β]

∣∣S(t)
∣∣
(∫ β

α

∣∣φ(n)(t)
∣∣dt

)
(.)

is the best possible inequality.
Suppose that |S(t)| attains its maximum at t ∈ [α,β].
First we assume S(t) > . For ε small enough we define φε(t) by

φε(t) =

⎧
⎪⎨

⎪⎩

, α ≤ t ≤ t,


εn! (t – t)n, t ≤ t ≤ t + ε,

n! (t – t)n–, t + ε ≤ t ≤ β .

Then for ε small enough

∣∣∣∣
∫ β

α

S(t)φ(n)(t) dt
∣∣∣∣ =

∣∣∣∣
∫ t+ε

t

S(t)

ε

dt
∣∣∣∣

=

ε

∫ t+ε

t

S(t) dt.

Now from the inequality (.) we have


ε

∫ t+ε

t

S(t) dt ≤ S(t)
∫ t+ε

t


ε

dt = S(t).

Since

lim
ε→


ε

∫ t+ε

t

S(t) dt = S(t),

the statement follows.
In the case S(t) < , we define φε(t) by

φε(t) =

⎧
⎪⎨

⎪⎩


n! (t – t – ε)n–, α ≤ t ≤ t,
– 

εn! (t – t – ε)n, t ≤ t ≤ t + ε,
, t + ε ≤ t ≤ β ,

and the rest of the proof is the same as above. �

4 Mean value theorems and exponential convexity
In this section, we present mean-value theorems of Lagrange and Cauchy type using re-
sults from the previous section. We also use the so-called exponential convexity method,
established in [], in order to interpret our results in the form of exponentially convex
functions or in the special case logarithmically convex functions. For some related results
see also [, ].

Motivated by the inequality (.), we define the linear functional as follows.
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Under the assumptions of Theorem , equipped with condition (.), we define

A(φ) =
l∑

j=

ajφ(xj) –
m∑

i=

biφ(yi)

–
n–∑

k=

(β – α)kφ(k)(α)

[ l∑

j=

aj�k

(
β – xj

β – α

)
–

m∑

i=

bi�k

(
β – yi

β – α

)]

–
n–∑

k=

(β – α)kφ(k)(β)

[ l∑

j=

aj�k

(
xj – α

β – α

)
–

m∑

i=

bi�k

(
yi – α

β – α

)]
. (.)

Remark  It should be noticed that if φ : [α,β] →R is n-convex, by Theorem , we have

A(φ) ≥ .

Theorem  Let A be the linear functional defined as in (.). Let φ ∈ Cn([α,β]). Then
there exists ξ ∈ [α,β] such that

A(φ) = φ(n)(ξ )A(ϕ),

where ϕ(x) = xn/(n)!.

Proof Our proof proceeds similarly to the proof of Theorem . in []. �

Theorem  Let A be the linear functional defined as in (.). Let φ,ψ ∈ Cn([α,β]). Then
there exists ξ ∈ [α,β] such that

φ(n)(ξ )
ψ (n)(ξ )

=
A(φ)
A(ψ)

, (.)

assuming neither of the denominators is equal to zero.

Proof This is standard proof as in the Cauchy mean-value theorem. �

Remark  If φ(n)

ψ (n) is an invertible function, then from (.) it follows that

ξ =
(

φ(n)

ψ (n)

)–( A(φ)
A(ψ)

)
.

Throughout the rest of this paper, I denotes an open interval in R.
The notation of n-exponential convexity is introduced in [].

Definition  For fixed n ∈N, a function f : I →R is n-exponentially convex in the Jensen
sense on I if

n∑

i,j=

pipjf
(

xi + xj



)
≥ 

holds for all choices pi ∈R and xi ∈ I , i = , . . . , n.
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A function f : I →R is n-exponentially convex on I if it is n-exponentially convex in the
Jensen sense and continuous on I .

Remark  From Definition  it follows that -exponentially convex functions in the
Jensen sense are exactly nonnegative functions. Also, n-exponentially convex functions
in the Jensen sense are k-exponentially convex in the Jensen sense for every k ∈N, k ≤ n.

Definition  A function f : I → R is exponentially convex in the Jensen sense on I if it is
n-exponentially convex in the Jensen sense for all n ∈N.

Definition  A function f : I → (,∞) is said to be logarithmically convex in the Jensen
sense if

f
(

x + y


)
≤ √

f (x)f (y)

holds for all x, y ∈ I .

Definition  A function f : I → (,∞) is said to be logarithmically convex or log-convex
if

f
(
( – λ)s + λt

) ≤ f (s)–λf (t)λ

holds for all s, t ∈ I , λ ∈ [, ].

Remark  If a function is continuous and log-convex in the Jensen sense then it is also
log-convex. We can also easily see that for positive functions exponential convexity implies
log-convexity (consider Definition  for n = ).

The following two lemmas are equivalent to the definition of convexity (see [], p.).

Lemma  Let f : I →R be a convex function. Then for any x, x, x ∈ I such that x < x <
x the following is valid:

(x – x)f (x) + (x – x)f (x) + (x – x)f (x) ≥ .

Lemma  Let f : I →R be a convex function. Then for any x, x, y, y ∈ I such that x ≤ y,
x ≤ y, x �= x, y �= y the following is valid:

f (x) – f (x)
x – x

≤ f (y) – f (y)
y – y

.

In order to obtain results regarding the exponential convexity, we define the families of
functions as follows.

For every choice of l +  mutually different points z, z, . . . , zl ∈ [α,β] we define
• F = {ft : [α,β] → R : t ∈ I and t → [z, z, . . . , zl; ft] is n-exponentially convex in the

Jensen sense on I};
• F = {ft : [α,β] →R : t ∈ I and t → [z, z, . . . , zl; ft] is exponentially convex in the

Jensen sense on I};
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• F = {ft : [α,β] → R : t ∈ I and t → [z, z, . . . , zl; ft] is -exponentially convex in the
Jensen sense on I}.

Theorem  Let A be the linear functional defined as in (.) associated with family F.
Then the following statements hold:

(i) The function t → A(ft) is n-exponentially convex in the Jensen sense on I .
(ii) If the function t → A(ft) is continuous on I , then it is n-exponentially convex on I .

Proof Our proof proceeds similarly to the proof of Theorem . in []. �

The following corollary is an easy consequence of the previous theorem.

Corollary  Let A be the linear functional defined as in (.) associated with family F.
Then the following statements hold:

(i) The function t → A(ft) is exponentially convex in the Jensen sense on I .
(ii) If the function t → A(ft) is continuous on I , then it is exponentially convex on I .

Corollary  Let A be the linear functional defined as in (.) associated with family F.
Then the following statements hold:

(i) If the function t → A(ft) is continuous on I , then it is -exponentially convex on I . If
t → A(ft) is additionally positive, then it is also log-convex on I . Furthermore, for
every choice r, s, t ∈ I , such that r < s < t, we have

[
A(fs)

]t–r ≤ [
A(fr)

]t–s[A(fr)
]s–r .

(ii) If the function t → A(ft) is positive and differentiable on I , then for all r, s, u, v ∈ I
such that r ≤ u, s ≤ v, we have

Mr,s(A,F) ≤ Mu,v(A,F),

where

Mr,s(A,F) =

⎧
⎨

⎩
( A(fr )

A(fs) ) 
r–s , r �= s,

exp(
d
dr (A(fr))

A(fr) ), r = s.
(.)

Proof (i) The first part of statement is an easy consequence of Theorem  and the second
one of Remark .

Since the function t → A(ft) is log-convex on I , i.e. the function t → log A(ft) is convex
on I , applying Lemma  we have

(r – t) log A(ft) + (t – s) log A(fr) + (s – r) log A(fr) ≥ 

for every choice r, s, t ∈ I , such that r < s < t. Therefore, we have

[
A(fs)

]t–r ≤ [
A(fr)

]t–s[A(fr)
]s–r .
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(ii) Applying Lemma  to the convex function t → log A(ft), we get

log A(fr) – log A(fs)
r – s

≤ log A(fu) – log A(fv)
u – v

(.)

for r ≤ u, s ≤ v, r �= u, s �= v. Therefore, we have

Mr,s(A,F) ≤ Mu,v(A,F).

The case r = s, u = v follows from (.) as a limit case. �

Remark  Note that, with the assumption that the functions from F, F, F are differ-
entiable, the results from Theorem , Corollary , and Corollary  still hold when two
of the points z, z, . . . , zl ∈ [α,β] coincide. Further, if the functions from F, F, F are
l-times differentiable, the results still hold when all points coincide. These results can
easily be proved using (.) and some facts as regards the exponential convexity.

5 Applications to means
Using some families of convex functions which are given below, we construct different
examples of exponentially convex functions. As consequences, applying the mean-value
theorem of Cauchy type from the previous section to these special families of functions,
we establish new classes of two-parameter Cauchy type means that are symmetric and
have monotone properties over both parameters.

Throughout this section id denotes the identity function, i.e. id(x) = x for each x ∈R.

Example  Consider the family of functions

� =
{
ϕt : (,∞) →R : t ∈ R

}

defined by

ϕt(x) =

⎧
⎨

⎩

xt

t(t–)···(t–n+) , t /∈ {, , . . . , n – },
xj log x

(–)n––j j!(n––j)! , t = j ∈ {, , . . . , n – }.

Since dnϕt
dxn (x) = xt–n = e(t–n) log x > , t ∈ R, it follows that ϕt is n-convex on (,∞) for

every t ∈ R and t → dnϕt
dxn (x) is exponentially convex (for more explanations see []).

Therefore, using the same arguments as in the proof of Theorem  we conclude that
the function t → [z, z, . . . , zl;ϕt] is exponentially convex (and so exponentially convex in
the Jensen sense). Then from Corollary  it follows that t → A(ϕt) is exponentially convex
in the Jensen sense. It is easy to verify that the function t → A(ϕt) is continuous. Then
from Corollary  it follows that t → A(ϕt) is exponentially convex. In this case we assume
that [α,β] ⊂ (,∞).

For this family of functions, with the assumption that t → A(ϕt) is positive, (.) be-
comes

Mr,s(A,�) =

⎧
⎪⎪⎨

⎪⎪⎩

( A(ϕr)
A(ϕs) ) 

r–s , r �= s,
exp(–(n – )! A(ϕr ·ϕ)

A(ϕr ) +
∑n–

i=


i–r ), r = s /∈ {, , . . . , n – },
exp(–(n – )! A(ϕr ·ϕ)

A(ϕr ) +
∑n–

i=,i�=r


i–r ), r = s ∈ {, , . . . , n – }.
(.)

Here we obtain extensions by continuity for a different choice of parameters r, s ∈R.
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Applying Theorem  to the functions f = ϕr and g = ϕs, where r, s ∈ R, r �= s, r, s �= , 
and setting α = mini,j{xj, yi} and β = maxi,j{xj, yi}, it follows that there exists a unique ξ ∈
[α,β] such that

ξ r–s =
A(ϕr)
A(ϕs)

,

i.e. since the function ξ → ξ r–s is invertible, we obtain

ξ =
(

A(ϕr)
A(ϕs)

) 
r–s

which represents a mean of the interval [α,β].
This shows that (.) represents the new class of two-parameter Cauchy type means

which are obviously symmetric. Monotonicity over the two parameters r and s follows
from part (ii) of Corollary .

Example  Consider the family of functions

� =
{
ψt : R→ [,∞) : t ∈R

}

defined by

ψt(x) =

{ etx

tn , t �= ,
xn

(n)! , t = .

Since dnψt
dxn (x) = etx > , t ∈R, it follows that ψt is n-convex on R for every t ∈R and t →

dnψt
dxn (x) = etx is exponentially convex by definition. Therefore, using the same arguments

as in the previous example, we see that the function t → A(ψt) is exponentially convex.
For this family of functions, with the assumption that t → A(ψt) is positive, (.) be-

comes

Mr,s(A,�) =

⎧
⎪⎪⎨

⎪⎪⎩

( A(ψr )
A(ψs) ) 

r–s , r �= s,

exp( A(id·ψr)
A(ψr ) – n

r ), r = s �= ,

exp( 
n+

A(id·ψ)
A(ψ) ), r = s = .

Applying Theorem  to this family of functions, it follows that

Mr,s(A,�) := log Mr,s(A,�)

represents the new class of two-parameter Cauchy type means of interval [α,β]. The
means from this class Mr,s(A,�) are obviously symmetric. Monotonicity over both pa-
rameters follows from part (ii) of Corollary .

Example  Consider the family of functions

� =
{
λt : (,∞) → (,∞) : t ∈ (,∞)

}
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defined by

λt(x) =

{ t–x

(log t)n , t �= ,
xn

(n)! , t = .

Since t → dnλt
dxn (x) = t–x > , t ∈ (,∞), it follows that λt is n-convex on (,∞) for every

t ∈ (,∞) and t → dnλt
dxn (x) = t–x is exponentially convex since it is the Laplace transform

of a nonnegative function (for more explanations see [, ]). Therefore, using the same
arguments as in the previous example, we see that the function t → A(λt) is exponentially
convex. In this case we assume that [α,β] ⊂ (,∞).

For this family of functions, with the assumption that t → A(ϕt) is positive, (.) be-
comes

Mr,s(A,�) =

⎧
⎪⎪⎨

⎪⎪⎩

( A(λr)
A(λs) ) 

r–s , r �= s,

exp(– A(id·λr)
rA(λr) – n

r log r ), r = s �= ,

exp(– 
n+

A(id·λ)
A(λ) ), r = s = .

For this family of functions, applying Theorem , we define the new class of two-
parameter Cauchy type means as follows:

Mr,s(A,�) := –L(r, s) log Mr,s(A,�).

Here L(r, s) represents the logarithmic mean which is defined as follows:

L(r, s) =

{
r–s

log r–log s , r �= s,
s, r = s.

The means from this class are obviously symmetric. Monotonicity with respect to the two
parameters follows from part (ii) of Corollary .

Example  Consider the family of functions

� =
{
κt : (,∞) → (,∞) : t ∈ (,∞)

}

defined by

κt(x) =
e–x

√
t

tn .

Since t → dnκt
dxn (x) = e–x

√
t , t ∈ (,∞), it follows that κt is n-convex on (,∞) for every t ∈

(,∞) and t → dnκt
dxn (x) = e–x

√
t is exponentially convex since it is the Laplace transform of

a nonnegative function (for more details see [, ]). Therefore, using the same arguments
as in the previous example, we see that the function t → A(κt) is exponentially convex. In
this case we assume that [α,β] ⊂ (,∞).

For this family of functions, with the assumption that t → A(ϕt) is positive, (.) be-
comes

Mr,s(A,�) =

⎧
⎨

⎩
( A(κr)

A(κs) ) 
r–s , r �= s,

exp(– A(id·κr)

√

rA(κr) – n
r ), r = s.
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For this family of functions, applying Theorem , we define the new class of two-
parameter Cauchy type means as follows:

Mr,s(A,�) := –(
√

r +
√

s) log Mr,s(A,�),

and the means from this class are obviously symmetric. Monotonicity with respect to the
two parameters follows from part (ii) of Corollary .

6 Conclusions
In this paper we give generalizations of Sherman’s theorem from which a majorization
theorem follows as a special case. Our results hold for real, not necessarily nonnegative
entries of vectors a, b and matrix A, as is the case of Sherman’s theorem, and for n-convex
functions which are in a special case convex in the usual sense. The methods used are
based on classical real analysis and the application of Lidstone’s interpolating polynomi-
als and exponential convexity method and can be extended to the investigation of other
inequalities.
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