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Abstract
In this paper, we give some inequalities with power exponential functions derived
from the left hand side of Becker-Stark’s inequality:

8
π 2 – 4x2

<
tan x
x

<
π 2

π 2 – 4x2

for 0 < x < π /2.
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1 Introduction
Becker-Stark’s inequality is well known:


π – x <

tan x
x

<
π

π – x (.)

for  < x < π/. The research of Becker-Stark’s inequality is one of the active areas in math-
ematical analysis [–]. Recently, Zhu [] gave the following refinement of Becker-Stark’s
inequality: For  < x < π/, the inequalities


π – x +


π –

π – 
π

(
π – x) <

tan x
x

(.)

and

tan x
x

<


π – x +

π –

 – π

π

(
π – x) (.)

hold, where the constants –(π – )/(π) and –( – π)/π are the best possible. More-
over, from the right hand side of the inequality (.), Chen and Cheung [] gave the fol-
lowing inequality: For  < x < π/, the inequality

(
π

π – x

)θ

<
tan x

x
<

(
π

π – x

)ϑ

(.)
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holds, where the constants θ = π/ and ϑ =  are the best possible. In [], Sun and Zhu
gave a simple proof of the results. The above inequality (.) is created based on the right
hand side of Becker-Stark’s inequality (.). However, in this paper we establish some in-
equalities created based on the left hand side of the inequality (.).

2 Results and discussion
Motivated by (.), in this paper, we give some inequalities with power exponential func-
tions derived from the left hand side of Becker-Stark’s inequality (.). Since we note that
/(π – x) <  for  < x < (

√
π – )/ and /(π – x) >  for (

√
π – )/ < x < π/, we

obtain the two inequalities as follows.

Theorem . For  < x < (
√

π – )/, we have

(


π – x

)θ

<
tan x

x
<

(


π – x

)ϑ(x)

with the best possible constant θ =  and the function

ϑ(x) =


x –
√

π – 
+

√
π – 

.

Theorem . For (
√

π – )/ < x < π/, we have

(


π – x

)θ

<
tan x

x
<

(


π – x

)ϑ(x)

with the best possible constant θ =  and the function

ϑ(x) =


x –
√

π – 
–

√
π –  – π + 
π –

√
π – 

.

From Theorems . and ., we have the best possible constant θ such that

(


π – x

)θ

<
tan x

x
.

If  < x < (
√

π – )/, the constant θ must be θ <  in order to satisfy  ≤ tan x/x < (/(π –
x))θ . On the other hands, if (

√
π – )/ < x < π/, the constant θ must be  < θ in order

to satisfy /(π – x) ≤ tan x/x < (/(π – x))θ . Here, we obtain the two inequalities as
follows.

Theorem . For / < x < (
√

π – )/, we have

(


π – x

) ϑ(x)


<
tan x

x
,

where the function ϑ(x) is in Theorem ..
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Corollary . For  < x < π/, we do not have the best possible constant ϑ such that

tan x
x

<
(


π – x

)ϑ

.

3 Proofs of main theorems
3.1 Proof of Theorem 2.1

Proof of Theorem . We set

f (x) =
(


π – x

) 
x–

√
π–

+ √
π– –

tan x
x

.

From


x –

√
π – 

+
√

π – 
< 

for  < x < (
√

π – )/, by Bernoulli’s inequality, we have

(


π – x

) 
x–

√
π–

+ √
π– >  +

(


π – x – 
)(


x –

√
π – 

+
√

π – 

)
.

By the right hand side of the inequality (.), for  < x < (
√

π – )/,

f (x) >  +
(


π – x – 

)(


x –
√

π – 
+

√
π – 

)
–

π

π – x

=
x(

√
π – x – x – πx + x + π – )√

π – (π – x)(
√

π –  – x)(x + π )

=
xg(x)√

π – (π – x)(
√

π –  – x)(x + π )
,

where

g(x) = 
√

π – x – x – πx + x + π – .

From
√

π –  – x >  for  < x < (
√

π – )/, it suffices to show that

g(x) > .

Here, the derivative of g(x) is

g ′(x) =  – π + 
(√

π –  – 
)
x.

By  – π <  and
√

π –  –  < , we have g ′(x) <  for any  < x < (
√

π – )/. Since g(x)
is strictly decreasing for  < x < (

√
π – )/, we have

g(x) > g
(√

π – 


)
= .
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Therefore, we can get

tan x
x

<
(


π – x

)ϑ(x)

,

where

ϑ(x) =


x –
√

π – 
+

√
π – 

.

Since tan x/x is strictly increasing for  < x < π/, we have


π – x <  <

tan x
x

for any  < x < (
√

π – )/. Hence, for  < x < (
√

π – )/, we obtain

(


π – x

)θ

<
tan x

x
<

(


π – x

)ϑ(x)

,

where the constant θ = . Since ϑ(x) is strictly decreasing for  < x < (
√

π – )/ and

ϑ(x) < ϑ() = ,

the constant θ =  is the best possible. Therefore, the proof of Theorem . is com-
plete. �

3.2 Proof of Theorem 2.2

Proof of Theorem . We set

f (x) =
(


π – x

) 
x–

√
π–

–
√

π––π+
π–

√
π– –

tan x
x

.

From


x –

√
π – 

–
√

π –  – π + 
π –

√
π – 

> 

for (
√

π – )/ < x < π/, by Bernoulli’s inequality, we have

(


π – x

) 
x–

√
π–

–
√

π––π+
π–

√
π–

>  +
(


π – x – 

)(


x –
√

π – 
–

√
π –  – π + 
π –

√
π – 

)
.
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By the inequality (.), for (
√

π – )/ < x < π/,

f (x) >  +
(


π – x – 

)(


x –
√

π – 
–

√
π –  – π + 
π –

√
π – 

)

–
(


π – x +


π –

 – π

π

(
π – x)

)

=
g(x)

π(
√

π –  – π )(
√

π –  – x)(x + π )
,

where

g(x) = πx – π
√

π – x + 
√

π – x – πx

+ πx – πx – π
√

π – x + π
√

π – x + x

+ πx – πx + π
√

π – x + πx

– πx + πx – πx + π
√

π – x

– π
√

π – x – π – π + π + π

– π + π
√

π –  – π
√

π – .

From (
√

π –  – π )(
√

π –  – x) >  for (
√

π – )/ < x < π/, it suffices to show that

g(x) > .

We have the derivatives

g ′(x) = 
(
πx – π

√
π – x + 

√
π – x – πx

+ πx – πx – π
√

π – x + π
√

π – x + x

+ πx – πx + π
√

π – x + πx

– π + π – π + π
√

π –  – π
√

π – 
)

= h(x)

and

h′(x) = 
(
πx – π

√
π – x + 

√
π – x – πx

+ πx – πx – π
√

π – x + π
√

π – x + x

+ π – π + π
√

π –  + π
)

= k(x).

From

–
(
π – 

)(√
π –  – π

) ∼= –. < 
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and

–
(
π – 

)(
π

√
π –  – π + 

) ∼= –. < ,

we have

k(x) = –
(
π – 

)(√
π –  – π

)
x – 

(
π – 

)(
π

√
π –  – π + 

)
x

+ π
√

π –  + π – π + π

> –
(
π – 

)(√
π –  – π

)
(

π



)

– 
(
π – 

)(
π

√
π –  – π + 

)
(

π



)

+ π
√

π –  + π – π + π

∼= ..

Since h(x) is strictly increasing for (
√

π – )/ < x < π/, we have

h(x) > h
(√

π – 


)
∼= ..

Thus, g(x) is strictly increasing for (
√

π – )/ < x < π/ and we have

g(x) > g
(√

π – 


)
= .

Therefore, we can get

tan x
x

<
(


π – x

)ϑ(x)

,

where

ϑ(x) =


x –
√

π – 
–

√
π –  – π + 
π –

√
π – 

.

Since we have

 <


π – x <
tan x

x

for any (
√

π – )/ < x < π/, we obtain

(


π – x

)θ

<
tan x

x
<

(


π – x

)ϑ(x)

,

where the constant θ = . Since ϑ(x) is strictly decreasing for (
√

π – )/ < x < π/ and

ϑ(x) > ϑ

(
π



)
= ,

the constant θ =  is the best possible. Hence, the proof of Theorem . is complete. �
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3.3 Proof of Theorem 2.3 and Corollary 2.4
We need two lemmas to prove Theorem ..

Lemma . For –/ < t < , we have

ln(t + ) >



t.

Proof We set

f (x) = ln(t + ) –



t,

then

f ′(t) = –
t + 

(t + )
.

From f ′(t) >  for –/ < t < –/ and f ′(t) <  for –/ < t < , f (t) is strictly increasing for
–/ < t < –/ and f (t) is strictly decreasing for –/ < t < . Since

f
(

–



)
=




– ln

(



)
∼= .

and

f () = ,

we can get f (t) >  for –/ < t < . �

Lemma . For  < s < /, we have

ln(s + ) >



s.

Proof We set

f (s) = ln(s + ) –



s,

then

f ′(s) = –
s – 

(s + )
.

From f ′(s) >  for  < s < / and f ′(s) <  for / < s < /, f (s) is strictly increasing for
 < s < / and f (s) is strictly decreasing for / < s < /. Since

f
(




)
= ln

(



)
–




∼= .

and

f () = ,

we can get f (s) >  for  < s < /. �
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Proof of Theorem . We set

f (x) = ln
tan x

x
–

(
ϑ(x)



)
ln


π – x

= ln
tan x

x
–

(


x – 
√

π – 
+



√

π – 

)
ln


π – x .

If

t = – +


π – x ,

then –/ < t <  for / < x < (
√

π – )/, by Lemma ., we can get

ln


π – x >



(
– +


π – x

)
.

If

s = – +


π – x +

π –

π – 
π

(
π – x),

then  < s < / for / < x < (
√

π – )/, by Lemma . and the inequality (.), we can
get

ln
tan x

x
> ln

(


π – x +

π –

π – 
π

(
π – x)

)

>



(
– +


π – x +


π –

π – 
π

(
π – x)

)
.

Since


x – 

√
π – 

+



√

π – 
< 

and




(
– +


π – x

)
< ln


π – x < 

for / < x < (
√

π – )/, we obtain

f (x) >



(
– +


π – x +


π –

π – 
π

(
π – x)

)

–
(


x – 

√
π – 

+



√

π – 

)
× 



(
– +


π – x

)

=
g(x)

π
√

π – (π – x)(
√

π –  – x)(π + x)
,
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where

g(x) = –,
√

π – x + ,π
√

π – x

– ,x + ,πx – ,πx

+ πx + ,π
√

π – x – ,π
√

π – x

+ ,πx – ,πx + ,πx

+ ,πx – πx – ,π
√

π – x + π
√

π – x

– ,π + ,π – π.

It suffices to show that g(x) >  for / < x < (
√

π – )/. We have derivatives

g ′(x) = –,
√

π – x + ,π
√

π – x

– ,x + ,πx – ,πx

+ ,πx + ,π
√

π – x – ,π
√

π – x

+ ,πx – ,πx + ,πx

+ ,π – π – ,π
√

π –  + π
√

π – ,

g ′′(x) = 
(
–,

√
π – x + ,π

√
π – x

– ,x + ,πx – ,πx

+ πx + ,π
√

π – x – ,π
√

π – x

+ ,π – ,π + π)

= h(x),

and
h′(x)


= –,

√
π – x + ,π

√
π – x

– ,x + ,πx – ,πx

+ π + ,π
√

π –  – ,π
√

π – 

< –,
√

π – 
(




)

+ ,π
√

π – 
(



√

π – 
)

– ,
(




)
+ ,π

(


√

π – 
)

– ,π
(




)

+ π + ,π
√

π –  – ,π
√

π – 

= –, + ,π – π + π
(

, +



√

π – 
)

∼= –,..

Thus, h(x) is strictly decreasing for / < x < (
√

π – )/. From

h
(




)
∼= –,,
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we have g ′′(x) <  for / < x < (
√

π – )/. Therefore, g ′(x) is strictly decreasing for x <
x < (

√
π – )/. From

g ′
(




)
∼= ,.

and

g ′
(√

π – 


)
∼= –,,

there exists uniquely a real number x with / < x < (
√

π – )/ such that g ′(x) = .
Hence, g(x) is strictly increasing for / < x < x and g(x) is strictly decreasing for x < x <
(
√

π – )/. From

g
(




)
∼= ,

and

g
(√

π – 


)
= ,

we can get g(x) >  for / < x < (
√

π – )/. Hence, the proof of Theorem . is com-
plete. �

Proof of Corollary . By Theorem ., for / < x < (
√

π – )/, we have the following:

ln tan x
x

ln 
π–x

<


x – 
√

π – 
+



√

π – 

=
(

–



)(
x√

π – 

)(


√
π–

 – x

)
.

Therefore

lim
x→(

√
π–)/–

ln tan x
x

ln 
π–x

= –∞.

The proof of Corollary . is complete. �

4 Conclusions
In this paper, we gave four inequalities derived from the left hand side of Becker-Stark’s
inequality (.), which are natural generalizations of the inequality (.). Since the value of
/(π – x) is less than  for  < x < (

√
π – )/ and the value of /(π – x) is larger

than  for (
√

π – )/ < x < π/, we established the inequalities in Theorems . and ..
By Theorem ., we obtained Corollary . immediately.
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