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1 Introduction and preliminaries
The stability of functional equations was originally raised in a famous talk given by Ulam
[] at Wisconsin University in . The problem posed by Ulam was the following:

Let G be a group and let G be a metric group with the metric d. Given ε > , does there
exist a δ >  such that if a function h : G → G satisfies the inequality

d
(
h(xy), h(x)h(y)

)
< δ

for all x, y ∈ G, then there exists a homomorphism H : G → G with

d
(
h(x), H(x)

)
< ε

for all x ∈ G?
A partial answer to Ulam’s question in the case of Banach spaces was given by Hyers

[] in . Later, Aoki [] studied this problem for additive mappings and Rassias []
generalized Hyers’ theorem for the stability of unbounded Cauchy equations. Since then
the rapid growth of the study of stability of functional equations has been developed at a
high rate by several authors in the last decades; for more details, we refer the readers to
[–] and references therein.

Let (E,‖·‖) be a normed space over a fieldK (either R orC), I = [a, b] be a closed interval
in R and c ∈ I . Let G : I × I × E → E, s : I → K and κ : I → E be mappings. In this paper,
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we study the nonlinear generalized Volterra integral equation given by

y(x) = κ(x) + s(x)
∫ x

c
G

(
x, τ , y(τ )

)
dτ , ∀x ∈ I, (.)

where y : I → E is unknown mapping.

Definition . We say that the nonlinear generalized Volterra integral equation (.) has
the Hyers-Ulam stability, if for any ε >  and any mapping ϕ : I → E satisfying the inequal-
ity

∥
∥∥∥ϕ(x) – κ(x) – s(x)

∫ x

c
G

(
x, τ ,ϕ(τ )

)
dτ

∥
∥∥∥ ≤ ε, ∀x ∈ I,

there exists a solution mapping y : I → E of the integral equation (.) such that

∥∥ϕ(x) – y(x)
∥∥ ≤ ξε, ∀x ∈ I,

for some constant ξ > .

In fact, (.) contains several important integral equations as special cases. For example,
let λ ∈K with λ �=  and take c := a. Define the mapping s : I →K by

s(x) = λ for all x ∈ I.

Then (.) will reduce to the following nonlinear Volterra integral equation studied by
Akkouchi []:

y(x) = κ(x) + λ

∫ x

a
G

(
x, τ , y(τ )

)
dτ , ∀x ∈ I.

If we take c := a, E := C, s(x) =  for all x ∈ I and let κ be a zero function in (.), then (.)
will reduce to the following nonlinear Volterra integral equation studied by Castro and
Ramos []:

y(x) =
∫ x

a
G

(
x, τ , y(τ )

)
dτ , ∀x ∈ I.

Let X be a nonempty set. Recall that a function p : X ×X → [,∞] is called a generalized
metric [–] on X (defined by Luxemburg []), if the following conditions hold:

(GM) p(x, y) =  if and only if x = y;
(GM) p(x, y) = p(y, x) for all x, y ∈ X ;
(GM) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X .

The pair (X, p) is then called a generalized metric space.
We remark that the only one difference of the generalized metric from the usual metric

is that the range of the former is permitted to include the infinity. A generalized Banach
contraction principle in a complete generalized metric space proved by Diaz and Margolis
[] has played an important role in the study of stability of functional equations.
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Theorem . (Diaz and Margolis []) Let (X, p) be a complete generalized metric space
and T : X → X be a selfmapping on X. Assume that there exists a nonnegative real number
λ <  such that

p(Tx, Ty) ≤ λp(x, y) for all x, y ∈ X.

Denote T = I , the identity mapping. Then, for a given element u ∈ X, exactly one of the
following assertions is true:

(a) p(Tnu, Tn+u) = ∞ for all n ∈N∪ {},
(b) there exists a nonnegative integer 
 such that p(Tnu, Tn+u) < ∞ for all n ≥ 
.
Actually, if the assertion (b) holds, then
(b) the sequence {Tnu}n∈N∪{} is convergent to a fixed point ŷ of T ;
(b) ŷ is the unique fixed point of T in the set S , where

S =
{

x ∈ X : p
(
T
u, x

)
< ∞}

;

(b) p(x, ŷ) ≤ 
–λ

p(x, Tx) for all x ∈ S .

Let T be a mapping with domain D(T) and range R(T) in a normed space (E,‖ ·‖). Recall
that T is said to be Lipschitzian (or to satisfy the Lipschitz condition) if there is a constant
L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖ for all x, y ∈ E. (.)

The smallest constant L satisfying (.) is called the Lipschitz constant for T . It is known
that the Lipschitz condition is very important for the study of the stability of functional
equations. Till now, to the best of my knowledge, the Lipschitz condition with Lipschitz
constant L was almost assumed to satisfy γ L <  for some positive real number γ in the
literature on the stability of functional equations. In this work, some weak conditions are
utilized instead of the Lipschitz condition in the study of the stability of functional equa-
tions.

The main aim of this paper is the study of the existence theorem of the Hyers-Ulam
stability for a general class of the nonlinear Volterra integral equations in Banach spaces.
In Section , we first establish some properties for generalized metric spaces and present
a generalization of Diaz-Margolis’s fixed point theorem. As interesting applications of the
generalized Diaz-Margolis fixed point theorem, we establish some existence theorems of
the Hyers-Ulam stability for a general class of the nonlinear Volterra integral equations in
Banach spaces in Section . Our new results improve and extend some known results in
the literature.

2 A generalization of Diaz-Margolis’s fixed point theorem for MT -functions
In the present section, we shall establish a generalization of Diaz-Margolis’s fixed point
theorem (i.e. Theorem .) for MT -functions in the setting of complete generalized met-
ric spaces. We may begin with the following definitions.

Definition . Let (X, p) be a generalized metric space, x ∈ X and {xn}n∈N a sequence
in X.
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(i) {xn} is said to p-converge to x if for any ε >  there exists a natural number n such
that p(xn, x) < ε for all n ≥ n. We denote this by p-limn→∞ xn = x or xn

p−→ x as
n → ∞ and call x the limit of {xn}.

(ii) {xn} is said to be a p-Cauchy sequence if for any ε >  there exists a natural number
N such that p(xn, xm) < ε for all n, m ≥ N.

(iii) (X, p) is said to be complete if every p-Cauchy sequence in X is p-convergent.

Definition . Let A be a nonempty subset of a generalized metric space (X, p).
(i) The p-closure of A, denoted clp(A), is defined by

clp(A) =
{

x ∈ X : ∃ {xn} ⊂ A such that xn
p−→ x as n → ∞}

.

Obviously, A ⊆ clp(A).
(ii) A is said to be p-closed if A = clp(A).

(iii) A is said to be p-open if the complement X \ A of A is p-closed.

Theorem . Let (X, p) be a generalized metric space and let

Tp =
{

U ⊆ X : U is p-open in (X, p)
}

.

Then Tp is a topology on (X, p) induced by p.

Proof It is obvious that ∅ and X are p-closed in (X, p). So X and ∅ are p-open in (X, p).
Hence ∅, X ∈ Tp. Let U, U ∈ Tp. Then V = X \ U and V = X \ U are p-closed in (X, p).
We show U ∩ U ∈ Tp. Indeed, let x ∈ clp(V ∪ V). Then there exists {xn} ⊂ V ∪ V such

that xn
p−→ x as n → ∞. Without loss of generality, we may assume that there exists a

subsequence {xnk } of {xn} ∩ V. Since xnk

p−→ x as k → ∞, we get

x ∈ clp(V) = V ⊆ V ∪ V.

So clp(V ∪ V) ⊆ V ∪ V and hence V ∪ V is p-closed in (X, p). Due to

U ∩ U = X \ (V ∪ V),

we know that U ∩ U is p-open in (X, p). Hence U ∩ U ∈ Tp.
Let I be any index set and let {Ui}i∈I ⊂ Tp. We verify

⋃
i∈I Ui ∈ Tp. For each i ∈ I , let

Vi = X \ Ui. Thus Vi is p-closed in X for all i ∈ I . Let z ∈ clp(
⋂

i∈I Vi). Then there exists

{zn} ⊆ ⋂
i∈I Vi such that zn

p−→ z as n → ∞. For each i ∈ I , since {zn} ⊂ Vi and zn
p−→ z, we

have

z ∈ clp(Vi) = Vi.

Hence z ∈ ⋂
i∈I Vi. So we get

clp

(⋂

i∈I

Vi

)
⊆

⋂

i∈I

Vi
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which implies
⋂

i∈I Vi is p-closed in (X, p). Since

⋃

i∈I

Ui = X \
⋂

i∈I

Vi,

we know that
⋃

i∈I Ui is p-open in (X, p) and hence
⋃

i∈I Ui ∈ Tp.
Therefore, from the above, we prove that Tp is a topology on (X, p). �

According to Theorem ., we can give the definition of continuity of a mapping in gen-
eralized metric spaces. Actually, the definition of continuity can transfer essentially un-
changed from classical metric spaces to generalized metric spaces as follows.

Definition . Let (X, pX) and (Y , pX) be generalized metric spaces and x̂ ∈ X. A mapping
f : X → Y is called continuous at x̂ if for any ε > , there exists a δ := δ(x, ε) such that

pY
(
f (x), f (̂x)

)
< ε whenever x ∈ X with pX(x, x̂) < δ.

f is called continuous on X if f is continuous at every point of X.

The following characterization of continuous functions can easily be verified.

Theorem . Let (X, pX) and (Y , pY ) be generalized metric spaces and x ∈ X. Then a
mapping f : X → Y is continuous at x̂ if and only if xn

pX−→ x̂ implies f (xn)
pY−→ f (̂x) as

n → ∞.

The following useful auxiliary result is crucial to our proofs.

Theorem . Let (X, p) be a generalized metric space and c ∈ X. Let

W =
{

x ∈ X : p(c, x) < ∞}
.

Define the function f : W → [,∞) by

f (x) = p(c, x).

Then the following statements hold:
(a) p(u, v) < ∞ for all u, v ∈W ;
(b) W is p-closed in (X, p);
(c) |f (x) – f (y)| ≤ p(x, y) for any x, y ∈W ;
(d) f is uniformly continuous on W .

Proof Let u, v ∈W be given. Then

p(u, v) ≤ p(u, c) + p(c, v) < ∞

and hence (a) is proved. Next, we show (b). Let a ∈ clp(W). Then there exists a sequence

{an} ⊂ W such that an
p−→ a as n → ∞. So p(c, an) < ∞ for all n ∈ N and there exists a
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natural number n such that p(an, a) <  for all n ≥ n. By (GM), we have

p(c, a) ≤ p(c, an ) + p(an , a) < p(c, an ) +  < ∞,

which implies a ∈ W . Thus clp(W) ⊆ W and hence W is p-closed in (X, p). To see (c), let
x, y ∈W be given. Then f (x) = p(c, x) < ∞ and f (y) = p(c, y) < ∞. By (GM) and (GM), we
obtain

p(c, x) – p(c, y) ≤ p(y, x) = p(x, y). (.)

Similarly,

p(c, y) – p(c, x) ≤ p(x, y). (.)

By (.) and (.), we get

∣
∣f (x) – f (y)

∣
∣ =

∣
∣p(c, x) – p(c, y)

∣
∣ ≤ p(x, y).

Finally, we verify (d). Let ε >  be given. Take δ := ε. Then for any x, y ∈W with p(x, y) < δ,
by our conclusions (a) and (c), we have |f (x) – f (y)| < ε. So f is uniformly continuous on W .
The proof is completed. �

Theorem . Let (X, p) be a complete generalized metric space and D is a p-closed subset
of X. Then (D, p) is also complete.

Proof Let {xn} be a p-Cauchy sequence in D. By the completeness of (X, p), there exists
v ∈ X such that xn

p−→ v as n → ∞. By the p-closedness of D, v ∈ clp(D) = D. Hence we
prove that (D, p) is complete. �

Definition . [–] A function α : [,∞) → [, ) is said to be an MT -function or
R-function if

(∗) lim sup
s→t+

α(s) <  for all t ∈ [,∞).

Remark . In fact, Reich used the property (∗) in []. In [], p., he proved that a
mapping T : X → K(X) has a fixed point in X if it satisfies H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) for
all x, y ∈ X with x �= y, where K(X) denotes the family of all nonempty compact subsets
of X and ϕ : (,∞) → [, ) satisfies lim sups→t+ ϕ(s) <  for every t ∈ (,∞). One of the
conjectures made by Reich in [, ] asked whether or not the range of T can be relaxed.
In , Reich posed the following famous open question [] (see also []): Let (X, d)
be a complete metric space and T : X → CB(X) be a multivalued mapping, where CB(X)
denotes the family of all nonempty closed and bounded subsets of X. Suppose that

H(Tx, Ty) ≤ ϕ
(
d(x, y)

)
d(x, y) for all x, y ∈ X,

where H is the Hausdorff metric on CB(X) induced by the metric d on X and ϕ : [,∞) →
[, ) satisfies the property (∗) except for t = . Does T have a fixed point? Mizoguchi
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and Takahashi were the first to give a partial answer to Reich’s open question in  (see
[]). A number of partial answers to Reich’s open question have been investigated by
many authors; see, e.g., [–, , , ] and references therein.

It is obvious that if ϕ : [,∞) → [, ) is a nondecreasing function or a nonincreasing
function, then ϕ is an MT -function. So the set of MT -functions is a rich class. In ,
Du [] established the following characterizations of MT -functions.

Theorem . ([], Theorem .) Let ϕ : [,∞) → [, ) be a function. Then the following
statements are equivalent.

(a) ϕ is an MT -function.
(b) For each t ∈ [,∞), there exist r()

t ∈ [, ) and ε
()
t >  such that ϕ(s) ≤ r()

t for all
s ∈ (t, t + ε

()
t ).

(c) For each t ∈ [,∞), there exist r()
t ∈ [, ) and ε

()
t >  such that ϕ(s) ≤ r()

t for all
s ∈ [t, t + ε

()
t ].

(d) For each t ∈ [,∞), there exist r()
t ∈ [, ) and ε

()
t >  such that ϕ(s) ≤ r()

t for all
s ∈ (t, t + ε

()
t ].

(e) For each t ∈ [,∞), there exist r()
t ∈ [, ) and ε

()
t >  such that ϕ(s) ≤ r()

t for all
s ∈ [t, t + ε

()
t ).

(f ) For any nonincreasing sequence {xn}n∈N in [,∞), we have  ≤ supn∈N ϕ(xn) < .
(g) ϕ is a function of contractive factor; that is, for any strictly decreasing sequence

{xn}n∈N in [,∞), we have  ≤ supn∈N ϕ(xn) < .

The main result of this section is formulated in the following new fixed theorem in com-
plete generalized metric spaces, which generalize and improve Diaz-Margolis’s fixed point
theorem.

Theorem . Let (X, p) be a complete generalized metric space and T : X → X be a self-
mapping on X. Assume that there exists an MT -function α : [,∞) → [, ) such that

p(Tx, Ty) ≤ α
(
p(x, y)

)
p(x, y) for all x, y ∈ X with p(x, y) < ∞. (.)

Denote T = I , the identity mapping. Then, for a given element u ∈ X, exactly one of the
following assertions is true:

(a) p(Tnu, Tn+u) = ∞ for all n ∈N∪ {};
(b) there exists a nonnegative integer 
 such that p(Tnu, Tn+u) < ∞ for all n ≥ 
.
Actually, if the assertion (b) holds, then
(b) the sequence {Tnu}n∈N∪{} is convergent to a fixed point v of T ;
(b) v is the unique fixed point of T in the set L, where

L =
{

x ∈ X : p
(
T
u, x

)
< ∞}

;

(b) p(x, v) ≤ 
–α(p(x,v)) p(x, Tx) for all x ∈L.

Proof Let u ∈ X be given. Define x = u and xn = Txn– = Tnu for each n ∈ N. Suppose that
(a) does not hold. Then there exists a nonnegative integer 
 such that

p(x
, x
+) = p
(
T
u, T
+u

)
< ∞. (.)
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By (.), we have

p(x
+, x
+) = p(Tx
, Tx
+) ≤ α
(
p(x
, x
+)

)
p(x
, x
+) < p(x
, x
+) < ∞. (.)

So, it follows from (.) and (.) that

p(x
, x
+) ≤ p(x
, x
+) + p(x
+, x
+) < ∞. (.)

Let wn = xn+
– for each n ∈ N. Then w = x
 = T
u. From (.), (.), and (.), we have
p(w, w), p(w, w) < ∞ and

w, w, w ∈L =
{

x ∈ X : p(w, x) < ∞}
.

By induction, we obtain, for any n ∈N:
(i) wn ∈L,

(ii) p(wn, wn+) < ∞,
(iii) p(wn+, wn+) ≤ α(p(wn, wn+))p(wn, wn+).
From (ii), we obtain the conclusion (b). We now verify that (b), (b), and (b) are true.

By (iii), we know that {p(wn,wn+)}n∈N is a strictly decreasing sequence in [,∞). Since α

is an MT -function, by (g) of Theorem ., we have

 ≤ sup
n∈N

α
(
p(wn, wn+)

)
< .

Let γ := supn∈N α(p(wn, wn+)). So γ ∈ [, ). By (iii) again, we get

p(wn+, wn+) < α
(
p(wn, wn+)

)
p(wn, wn+)

≤ γ p(wn, wn+)

< γ p(wn–, wn)

< · · ·
< γ np(w, w) for each n ∈ N. (.)

Let λn = γ n–

–γ
p(w, w), n ∈N. For m > n with m, n ∈N, by (.), we get

p(wn, wm) ≤
m–∑

j=n

p(wj, wj+) < λn.

Since γ ∈ [, ), we obtain limn→∞ λn =  and hence limn→∞ sup{p(wn, wm) : m > n} = .
So, {wn}n∈N is a p-Cauchy sequence in L. Applying Theorems . and ., we conclude
that (L, p) is also a complete generalized metric space. So, there exists v ∈ L such that
wn

p−→ v as n → ∞.
We now show that v ∈F (T). Let

W =
{

x ∈ X : p(v, x) < ∞}
.
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Clearly, v ∈W . Note that v, wn ∈L implies wn ∈W for all n ∈ N. For each n ∈N, we obtain

p(v, Tv) ≤ p(v, wn+) + p(wn+, Tv)

≤ p(v, wn+) + α
(
p(wn, v)

)
p(wn, v)

< p(v, wn+) + p(wn, v).

Applying Theorem . again, we know that the function x �→ p(v, x) is continuous on the
set W . So, by taking the limit at both sides of the previous inequality and applying Theo-
rem ., we get p(v, Tv) =  or Tv = v.

Next, we want to show the uniqueness of fixed point of T inL (i.e.F (T)∩L is a singleton
set). We have shown v ∈ F (T) ∩ L, so it suffices to show that F (T) ∩ L = {v}. Let z ∈
F (T) ∩L. Since z, v ∈L, we know p(z, v) < ∞ from Theorem .. By (.), we obtain

p(z, v) = p(Tz, Tv) ≤ α
(
p(z, v)

)
p(z, v),

which implies

(
 – α

(
p(z, v)

))
p(z, v) ≤ .

Since α(p(z, v)) ∈ [, ), from the last inequality one deduces p(z, v) =  or z = v. So we must
have F (T) ∩L = {v}.

Finally, we verify the inequality p(x, v) ≤ 
–α(p(x,v)) p(x, Tx) for all x ∈L. Let x ∈L be given.

Since v ∈L, we know p(x, v) < ∞. By (.), we have

p(Tx, Tv) ≤ α
(
p(x, v)

)
p(x, v).

Since

p(x, v) – α
(
p(x, v)

)
p(x, v) ≤ p(x, v) – p(Tx, Tv)

= p(x, v) – p(Tx, v)

≤ p(x, Tx),

we deduce

p(x, v) ≤ 
 – α(p(x, v))

p(x, Tx).

The proof is completed. �

3 Existence of the Hyers-Ulam stability for generalized Volterra integral
equations

In this section, we study the existence theorem of the Hyers-Ulam stability for a general
class of the nonlinear Volterra integral equations in Banach spaces by applying Theo-
rem ..

Theorem . Let (E,‖ · ‖) be a Banach space over a field K (either R or C). Let a and b be
given real numbers with a < b and let I = [a, b]. Let c ∈ I and let μ : R → R be a function
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and s : I →K be a continuous mapping with maxx∈I |s(x)| := λ > . Assume that the function
μ : R →R is nondecreasing on [,∞) satisfying

μ
(
[,∞)

) ⊆
[

,
δ

λ(b – a)

]
, (.)

for some constant  < δ < , and G : I × I × E → E is a continuous mapping satisfying

∥∥G(x, τ , y) – G(x, τ , z)
∥∥ ≤ μ

(‖y – z‖)‖y – z‖ for any x, τ ∈ I and y, z ∈ E. (.)

If there exist two continuous mappings ϕ,κ : I → E satisfying

∥
∥∥
∥ϕ(x) – κ(x) – s(x)

∫ x

c
G

(
x, τ ,ϕ(τ )

)
dτ

∥
∥∥
∥ ≤ ε (.)

for each x ∈ I and some constant ε ≥ , then there exists a unique continuous mapping
y : I → Esuch that

y(x) = κ(x) + s(x)
∫ x

c
G

(
x, τ , y(τ )

)
dτ

and

∥
∥ϕ(x) – y(x)

∥
∥ ≤ ε

 – δ

for all x ∈ I .

Proof Let X := C(I, E) denote the set of all continuous functions from I to E. Define a
function p̂ : X × X → [,∞] by

p̂(f , g) = inf
{

M ≥  :
∥∥f (x) – g(x)

∥∥ ≤ M for all x ∈ I
}

,

where we adopt the usual convention that inf∅ = ∞. Clearly, ‖f (x) – g(x)‖ ≤ p̂(f , g) for all
x ∈ I . Following a similar argument as in the proof of [], Theorem ., or [], Theorem .,
one can verify that (X, p̂) is a complete generalized metric space. Let us now introduce the
operator T : X → X, which is defined by

(Tf )(x) = κ(x) + s(x)
∫ x

c
G

(
x, τ , f (τ )

)
dτ (.)

for all f ∈ X and x ∈ I . Then Tf ∈ X for all f ∈ X. Indeed, let f ∈ X be given. For any
x, x ∈ I , since maxx∈I |s(x)| = λ, we have

∥
∥(Tf )(x) – (Tf )(x)

∥
∥

=
∥
∥∥
∥κ(x) + s(x)

∫ x

c
G

(
x, τ ,ϕ(τ )

)
dτ – κ(x) – s(x)

∫ x

c
G

(
x, τ , f (τ )

)
dτ

∥
∥∥
∥

≤ ∥
∥κ(x) – κ(x)

∥
∥ +

∣
∣s(x)

∣
∣
∥∥
∥∥

∫ x

c
G

(
x, τ , f (τ )

)
dτ –

∫ x

c
G

(
x, τ , f (τ )

)
dτ

∥∥
∥∥
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+
∣
∣s(x) – s(x)

∣
∣
∥∥
∥∥

∫ x

c
G

(
x, τ , f (τ )

)
dτ

∥∥
∥∥

+
∣
∣s(x)

∣
∣
∥∥
∥∥

∫ x

c
G

(
x, τ , f (τ )

)
dτ –

∫ x

c
G

(
x, τ , f (τ )

)
dτ

∥∥
∥∥

≤ ∥∥κ(x) – κ(x)
∥∥ + λ

∣
∣∣
∣

∫ x

c

∥∥G
(
x, τ , f (τ )

)
– G

(
x, τ , f (τ )

)∥∥dτ

∣
∣∣
∣

+
∣∣s(x) – s(x)

∣∣
∥
∥∥
∥

∫ x

c
G

(
x, τ , f (τ )

)
dτ

∥
∥∥
∥ + λ

∥
∥∥
∥

∫ x

x

G
(
x, τ , f (τ )

)
dτ

∥
∥∥
∥.

Since s, κ , G, and f are continuous, the last inequality implies that

(Tf )(x) → (Tf )(x) as x → x.

So Tf is continuous and hence Tf ∈ X for all f ∈ X.
Now, we claim that there exists an MT -function α : [,∞) → [, ) such that

p̂(Tf , Tg) ≤ α
(
p̂(f , g)

)
p̂(f , g) for all f , g ∈ X with p̂(f , g) < ∞.

Indeed, according to the inequality (.) and the function μ is nondecreasing on [,∞),
we can define an MT -function α : [,∞) → [, ) by

α(t) = λ(b – a)μ(t). (.)

Let f , g ∈ X with p̂(f , g) < ∞. Given ε > . Since

p̂(f , g) < p̂(f , g) +
ε

 + α(̂p(f , g))
,

there exists Mfg ≥  such that

Mfg < p̂(f , g) +
ε

 + α(̂p(f , g))
(.)

and

∥
∥f (x) – g(x)

∥
∥ ≤ Mfg for all x ∈ I. (.)

On the other hand, since μ is nondecreasing on [,∞) and ‖f (x) – g(x)‖ ≤ p̂(f , g) for all
x ∈ I , we have

μ
(∥∥f (x) – g(x)

∥
∥) ≤ μ

(
p̂(f , g)

)
for all x ∈ I. (.)

For any x ∈ I , by taking into account (.), (.), (.), (.), (.), and (.), we get

∥∥(Tf )(x) – (Tg)(x)
∥∥ =

∣∣s(x)
∣∣
∥
∥∥
∥

∫ x

c

(
G

(
x, τ , f (τ )

)
– G

(
x, τ , g(τ )

))
dτ

∥
∥∥
∥

≤ λ

∣∣
∣∣

∫ x

c
μ

(∥∥f (τ ) – g(τ )
∥
∥)∥∥f (τ ) – g(τ )

∥
∥dτ

∣∣
∣∣
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≤ λμ
(
p̂(f , g)

)
∣∣
∣∣

∫ x

c

∥
∥f (τ ) – g(τ )

∥
∥dτ

∣∣
∣∣

≤ λ(b – a)μ
(
p̂(f , g)

)
Mfg

< α
(
p̂(f , g)

)
(

p̂(f , g) +
ε

 + α(̂p(f , g))

)

< α
(
p̂(f , g)

)
p̂(f , g) + ε.

Hence p̂(Tf , Tg) ≤ α(̂p(f , g))̂p(f , g) + ε. Since ε is arbitrary, we can conclude that

p̂(Tf , Tg) ≤ α
(
p̂(f , g)

)
p̂(f , g).

Next, we prove that p̂(Tf , f ) < ∞ for all f ∈ X. Let f ∈ X be given. Since Tf ∈ X, we know
that the function x �→ ‖(Tf )(x) – f (x)‖ is continuous on I . Then there exists a constant
M ≥  such that

∥
∥(Tf )(x) – f (x)

∥
∥ ≤ M for all x ∈ I.

From the last inequality one deduces that p̂(Tf , f ) ≤ M < ∞.
Take h ∈ X. Then p̂(Th, h) < ∞. We will now verify that

{
f ∈ X : p̂(h, f ) < ∞}

= X.

Indeed, it suffices to show that X ⊆ {f ∈ X : p̂(h, f ) < ∞}. For any f ∈ X, since f and h are
continuous on I , there exists a constant γ ≥  such that

∥
∥h(x) – f (x)

∥
∥ ≤ γ for any x ∈ I

which implies p̂(h, f ) ≤ γ < ∞. Hence we prove

X ⊆ {
f ∈ X : p̂(h, f ) < ∞}

.

Applying Theorem .(b), there exists a unique y ∈ X (that is, y : I → E is a continuous
funtion) such that

Tnh
p̂−→ y as n → ∞,

Ty = y, (.)

and

p̂(f , y) ≤ 
 – α(̂p(f , y))

p̂(f , Tf ) for all f ∈ X. (.)

From (.), we have

y(x) = κ(x) + s(x)
∫ x

c
G

(
x, τ , y(τ )

)
dτ for all x ∈ I.
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By (.), we get

p̂(ϕ, Tϕ) ≤ ε. (.)

Since μ(̂p(ϕ, y)) ≤ δ
λ(b–a) , by taking into account (.), (.), and the last inequality, we

obtain

p̂(ϕ, y) ≤ 
 – α(̂p(ϕ, y))

p̂(ϕ, Tϕ) ≤ ε

 – δ
,

which implies

∥∥ϕ(x) – y(x)
∥∥ ≤ ε

 – δ
for all x ∈ I.

The proof is completed. �

The following conclusions are immediately drawn from Theorem ..

Corollary . Let (E,‖ · ‖) be a Banach space over a field K (either R or C). Let a and b be
given real numbers with a < b and let I = [a, b]. Let c ∈ I and let s : I → K be a continuous
mapping with maxx∈I |s(x)| := λ > . Let L be a positive constant with  < λL(b – a) < . Let
c : I →K be a continuous mapping. Assume that G : I × I ×E → E is a continuous mapping
which satisfies the following Lipschitz condition:

∥
∥G(x, τ , y) – G(x, τ , z)

∥
∥ ≤ L‖y – z‖ for any x, τ ∈ I and y, z ∈ E.

If there exist two continuous mappings ϕ,κ : I → E satisfying

∥
∥∥
∥ϕ(x) – κ(x) – s(x)

∫ x

c
G

(
x, τ ,ϕ(τ )

)
dτ

∥
∥∥
∥ ≤ ε

for each x ∈ I and some constant ε ≥ , then there exists a unique continuous mapping
y : I → E such that

y(x) = κ(x) + s(x)
∫ x

c
G

(
x, τ , y(τ )

)
dτ

and

∥∥ϕ(x) – y(x)
∥∥ ≤ ε

 – λL(b – a)

for all x ∈ I .

Proof Let V : R→R be any function. Define μ : R →R by

μ(t) =

{
L, for t ≥ ,
V (t), otherwise.
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Put δ := λL(b – a). Then μ is nondecreasing on [,∞), satisfying

μ
(
[,∞)

) ⊆
[

,
δ

λ(b – a)

]
.

So one can get the thesis by applying Theorem .. �

Remark .
(a) Corollary . actually implies Theorem .. Indeed, under the hypotheses of

Theorem ., we set L := δ
λ(b–a) . Due to (.), (.), and  < δ < , we get the following:

• ‖G(x, τ , y) – G(x, τ , z)‖ ≤ L‖y – z‖ for any x, τ ∈ I and y, z ∈ E;
•  < λL(b – a) < .

So all the hypotheses of Corollary . are fulfilled. It is therefore possible to apply Corol-
lary . to get the conclusion of Theorem ..

(b) [], Theorem ., and [], Theorem ., are special cases of Theorem ..

Corollary . Let (E,‖ · ‖) be a Banach space over a field K (either R or C) and ζ ∈K with
ζ �= . Let a and b be given real numbers with a < b and let I = [a, b]. Let c ∈ I . Assume that
the function μ : R →R is nondecreasing on [,∞) satisfying

μ
(
[,∞)

) ⊆
[

,
δ

|ζ |(b – a)

]
,

for some constant  < δ < , and G : I × I × E → E is a continuous mapping satisfying

∥∥G(x, τ , y) – G(x, τ , z)
∥∥ ≤ μ

(‖y – z‖)‖y – z‖ for any x, τ ∈ I and y, z ∈ E.

If there exist two continuous mappings ϕ,κ : I → E satisfying

∥∥
∥∥ϕ(x) – κ(x) – ζ

∫ x

c
G

(
x, τ ,ϕ(τ )

)
dτ

∥∥
∥∥ ≤ ε

for each x ∈ I and some constant ε ≥ , then there exists a unique continuous mapping
y : I → E such that

y(x) = κ(x) + ζ

∫ x

c
G

(
x, τ , y(τ )

)
dτ

and

∥
∥ϕ(x) – y(x)

∥
∥ ≤ ε

 – δ

for all x ∈ I .

Proof Define a continuous function s : I →K by

s(x) = ζ for all x ∈ I.

Thus λ := maxx∈I |s(x)| = |ζ | > . Therefore the desired conclusion follows from Theo-
rem . immediately. �
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Remark . Recently, Jung et al. obtained an interesting result on Hyers-Ulam stability of
the linear functional equation in a single variable f (φ(x)) = g(x) · f (x) on a complete metric
group (for more details, see []). The results in this paper can be generalized further in
the spirit of complete metric groups as in [].
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