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Abstract
We prove the following theorem: Let
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dk
( 1112 + x)k

.

(1) Ifm ≥ 6 is even, we have Sm(x) > σm(x) for all x > 0.
(2) Ifm ≥ 7 is odd, we have Sm(x) > σm(x) for all x > 1.

This provides an intuitive explanation for the main result in Mortici and Hu (On an
infinite series for (1 + 1/x)x , 2014, arXiv:1406.7814 [math.CA]).
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1 Introduction
The Carleman inequality []
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(aa · · ·an)/n < e
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n= an < ∞, has attracted the attention of many
authors in the recent past [, –].

In [], Yang proved
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with b = /, b = /, b = /, b = /,, b = /,, b = ,/,, and
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Later, this conjecture was proved by Yang [], Gylletberg and Yan [], and Chen [],
respectively. As an application, Yang proved for any positive integer m
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(aa · · ·an)/n < e
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(
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(n + )k

)
an, (.)

whenever an ≥ , n = , , , . . . , and  <
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n= an < ∞, with b = 
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)
.

In the final part of his paper, Yang [] remarked that in order to obtain better results, the
right-hand side of (.) could be replaced by e[ –

∑∞
n=(dn/(x + ε)n)], where ε ∈ (, ] and

dn = dn(ε), but information about the values of ε are not provided.
Recently, Mortici and Hu [] proved that ε = / provides the faster series

∞∑
n=

dn

(x + ε)n

and therefore the following inequality is better than (.):
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(
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 )k

)
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The proof of this conclusion is based on the following theorem [], which is a powerful
tool for measuring the speed of convergence.

Theorem If (ωn)n≥ is convergent to zero and

lim
n→∞ nk(ωn – ωn+) = l ∈ R,

with k > , then there exists the limit

lim
n→∞ nk–ωn =

l
k – 

.

The purpose of this paper is to establish some inequalities which explain Mortici’s conclu-
sion in a quantitative way. But our proof is not based on the theorem.

Our main result is the following theorem.
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() If m ≥  is even, then Sm(x) > σm(x) for all x > .
() If m ≥  is odd, then Sm(x) > σm(x) for all x > .

2 Lemmas
In order to prove our main results we need the following lemmas, and throughout this
paper we set

g(s) =

π

ss( – s)–s sin(πs),

h(s, x) =


 – s + x

(
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 + x

)m–

–
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(
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)m–

.

Here  ≤ s ≤ , x > , and m ≥  is an integer.
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Proof For (.) and (.), see []. For (.), see []. �

Remark  By (.) of Lemma , we have
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Lemma  For x > , let
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Proof For (.), see [].
Now, we prove (.). If n is an odd, then dn+ is obviously positive.
If n is an even, then we have for all n ≥ 
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From (.), (.), (.), and Remark , we get
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Thus from this and (.), we have dn+ > . This proves (.). The proof of (.) is similar
to (.). �

Remark  By Lemma , it is not obvious that Sm(x) > σm(x).

Lemma  Let m ≥  be an integer, we have

(–)m– +
∫ 



g(s)
 – s

(s – )m– ds > . (.)

Proof The proof is similar to the proof of (.). �
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Lemma  Let x > , and m ≥  be an integer. Then we have for all 
 ≤ s ≤ 



h(s, x) > . (.)

Proof Noting that s( 
 +x)

(s– 
 )(+x)

>  for all x > , the inequality (.) is equivalent to

( (s – 
 )( + x)

s( 
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. (.)

To prove (.), we define h(s, x) as
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Easy computations reveal that
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Thus from (.), (.), and (.), we have
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h(s, x) > . �

Lemma  Let x > , and m ≥  be an integer, then h(s, x) is a monotonic increasing function
of s on [ 

 , ]. If m is an odd, then h(s, x) is a monotonic increasing function of s on [, 
 ].

Proof It suffices to show that ∂h(s,x)
∂s > . Partial differentiation yields
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Thus

∂h(s, x)
∂s

> .

If m is an odd, then for  < s < 
 , we have

(s – )m– < .

From this and (.), we get
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This completes the proof of Lemma . �
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3 Proof of Theorem 1

Proof By Lemma  and Lemma , we get for m ≥ 
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To prove our result, we consider
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( + x)m( + x)
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By Lemma , it suffices to show that
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Let first m ≥  be even. From Lemma  and Lemma , for all x > , we have
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Now let m ≥  be odd. From Lemma , Lemma , and Lemma  for all x ≥  we have
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This completes the proof of Theorem . �

Remark  By using computer simulation, we find Sm(x) > σm(x) for all x >  and all m ≥ ,
but we leave as an open problem the rigorous proof of this fact.

4 Conclusions
In this paper, we have established some inequalities which explain Mortici’s result in a
quantitative way. The authors believe that the present analysis will lead to a significant
contribution toward the study of the Carleman inequality.
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