Some inequalities related to two expansions of $(1+1 / x)^{x}$

Bijun Ren ${ }^{1 *}$ and Xiao Li ${ }^{2}$
*Correspondence: 13663839317@163.com
${ }^{1}$ Henan College of Finance and Taxation, Department of Information Engineering, Zhengzhou, Henan 451464, China Full list of author information is available at the end of the article

Abstract

We prove the following theorem: Let

$$
\begin{aligned}
& \left(1+\frac{1}{x}\right)^{x}=e\left(1-\sum_{k=1}^{\infty} \frac{b_{k}}{(1+x)^{k}}\right)=e\left(1-\sum_{k=1}^{\infty} \frac{d_{k}}{\left(\frac{11}{12}+x\right)^{k}}\right), \\
& \sigma_{m}(x)=\sum_{k=1}^{m} \frac{b_{k}}{(1+x)^{k}} \text { and } \quad S_{m}(x)=\sum_{k=1}^{m} \frac{d_{k}}{\left(\frac{11}{12}+x\right)^{k}} .
\end{aligned}
$$

(1) If $m \geq 6$ is even, we have $S_{m}(x)>\sigma_{m}(x)$ for all $x>0$.
(2) If $m \geq 7$ is odd, we have $S_{m}(x)>\sigma_{m}(x)$ for all $x>1$.

This provides an intuitive explanation for the main result in Mortici and Hu (On an infinite series for $(1+1 / x)^{x}, 2014$, arXiv:1406.7814 [math.CA]).

MSC: 42B25; 42B35
Keywords: Carleman inequality; integral representation; series; number e

1 Introduction

The Carleman inequality [2]

$$
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty} a_{n},
$$

whenever $a_{n} \geq 0, n=1,2,3, \ldots$, with $0<\sum_{n=1}^{\infty} a_{n}<\infty$, has attracted the attention of many authors in the recent past [1, 3-10].
In [7], Yang proved

$$
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(1-\sum_{k=1}^{6} \frac{b_{k}}{(n+1)^{k}}\right) a_{n}
$$

with $b_{1}=1 / 2, b_{2}=1 / 24, b_{3}=1 / 48, b_{4}=73 / 5,760, b_{5}=11 / 1,280, b_{6}=1,945 / 580,608$, and Yang conjectured that if

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x}=e\left(1-\sum_{k=1}^{\infty} \frac{b_{k}}{(x+1)^{k}}\right), \quad x>0, \tag{1.1}
\end{equation*}
$$

then $b_{k}>0, k=1,2,3, \ldots$.

Later, this conjecture was proved by Yang [8], Gylletberg and Yan [11], and Chen [9], respectively. As an application, Yang proved for any positive integer m

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(1-\sum_{k=1}^{m} \frac{b_{k}}{(n+1)^{k}}\right) a_{n} \tag{1.2}
\end{equation*}
$$

whenever $a_{n} \geq 0, n=1,2,3, \ldots$, and $0<\sum_{n=1}^{\infty} a_{n}<\infty$, with $b_{1}=\frac{1}{2}$ and

$$
b_{n+1}=\frac{1}{n+1}\left(\frac{1}{n+2}-\sum_{k=1}^{n} \frac{b_{k}}{n+2-k}\right) .
$$

In the final part of his paper, Yang [8] remarked that in order to obtain better results, the right-hand side of (1.1) could be replaced by $e\left[1-\sum_{n=1}^{\infty}\left(d_{n} /(x+\varepsilon)^{n}\right)\right]$, where $\varepsilon \in(0,1]$ and $d_{n}=d_{n}(\varepsilon)$, but information about the values of ε are not provided.

Recently, Mortici and Hu [1] proved that $\varepsilon=11 / 12$ provides the faster series

$$
\sum_{n=1}^{\infty} \frac{d_{n}}{(x+\varepsilon)^{n}}
$$

and therefore the following inequality is better than (1.2):

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(1-\sum_{k=1}^{m} \frac{d_{k}}{\left(n+\frac{11}{12}\right)^{k}}\right) a_{n} . \tag{1.3}
\end{equation*}
$$

The proof of this conclusion is based on the following theorem [12], which is a powerful tool for measuring the speed of convergence.

Theorem $\operatorname{If}\left(\omega_{n}\right)_{n \geq 1}$ is convergent to zero and

$$
\lim _{n \rightarrow \infty} n^{k}\left(\omega_{n}-\omega_{n+1}\right)=l \in \mathbb{R}
$$

with $k>1$, then there exists the limit

$$
\lim _{n \rightarrow \infty} n^{k-1} \omega_{n}=\frac{l}{k-1}
$$

The purpose of this paper is to establish some inequalities which explain Mortici's conclusion in a quantitative way. But our proof is not based on the theorem.

Our main result is the following theorem.

Theorem 1 Let

$$
\begin{aligned}
& \left(1+\frac{1}{x}\right)^{x}=e\left(1-\sum_{k=1}^{\infty} \frac{b_{k}}{(1+x)^{k}}\right)=e\left(1-\sum_{k=1}^{\infty} \frac{d_{k}}{\left(\frac{11}{12}+x\right)^{k}}\right), \\
& \sigma_{m}(x)=\sum_{k=1}^{m} \frac{b_{k}}{(1+x)^{k}} \quad \text { and } \quad S_{m}(x)=\sum_{k=1}^{m} \frac{d_{k}}{\left(\frac{11}{12}+x\right)^{k}} .
\end{aligned}
$$

(1) If $m \geq 6$ is even, then $S_{m}(x)>\sigma_{m}(x)$ for all $x>0$.
(2) If $m \geq 7$ is odd, then $S_{m}(x)>\sigma_{m}(x)$ for all $x>1$.

2 Lemmas

In order to prove our main results we need the following lemmas, and throughout this paper we set

$$
\begin{aligned}
& g(s)=\frac{1}{\pi} s^{s}(1-s)^{1-s} \sin (\pi s) \\
& h(s, x)=\frac{1}{1-s+x}\left(\frac{s}{1+x}\right)^{m-1}-\frac{1}{s+x}\left(\frac{12 s-1}{11+12 x}\right)^{m-1} .
\end{aligned}
$$

Here $0 \leq s \leq 1, x>0$, and $m \geq 1$ is an integer.

Lemma 1 For $x>0$, let

$$
\left(1+\frac{1}{x}\right)^{x}=e\left(1-\sum_{k=1}^{\infty} \frac{b_{k}}{(1+x)^{k}}\right) .
$$

Then

$$
\begin{align*}
& b_{k}>0, \quad k=1,2, \ldots, \tag{2.1}\\
& b_{1}=\frac{1}{2} \tag{2.2}\\
& b_{n+1}=\frac{1}{n+1}\left(\frac{1}{n+2}-\sum_{j=1}^{n} \frac{b_{j}}{n+2-j}\right), \quad n=1,2, \ldots \\
& e b_{k}=\int_{0}^{1} g(s) s^{k-2} d s, \quad k=1,2, \ldots \tag{2.3}
\end{align*}
$$

Proof For (2.1) and (2.2), see [7]. For (2.3), see [13].
Remark 1 By (2.3) of Lemma 1, we have

$$
\int_{0}^{1} g(s)(s)^{n-2} d s=\int_{0}^{1} g(s)(1-s)^{n-2} d s=e b_{n} \quad(n=2,3, \ldots)
$$

Example

$$
\begin{aligned}
\int_{0}^{1} g(s) d s & =e b_{2}=\frac{e}{24}, \quad \int_{0}^{1} g(s) s d s=e b_{3}=\frac{e}{48} \\
\int_{0}^{1} \frac{1}{s} g(s) d s & =\int_{0}^{1} \frac{1}{1-s} g(s) d s \\
& =\int_{0}^{1}\left(1+s+s^{2}+\cdots\right) g(s) d s \\
& =e \sum_{n=2}^{\infty} b_{n}=e \sum_{n=1}^{\infty} b_{n}-e b_{1} \\
& =e\left(1-\frac{1}{e}\right)-\frac{e}{2}=\frac{e}{2}-1 .
\end{aligned}
$$

Lemma 2 For $x>0$, let

$$
\left(1+\frac{1}{x}\right)^{x}=e\left(1-\sum_{k=1}^{\infty} \frac{d_{k}}{\left(\frac{11}{12}+x\right)^{k}}\right)
$$

Then

$$
\begin{align*}
& d_{1}=\frac{1}{2} \tag{2.4}\\
& d_{n+1}=\frac{(-1)^{n+1}}{12^{n-1} e}\left(1+\int_{0}^{1} g(s) \frac{(12 s-1)^{n-1}}{s} d s\right), \quad n=1,2, \ldots \\
& d_{n}>0, \quad n=4,5, \ldots \tag{2.5}\\
& b_{n}>d_{n}, \quad n=2,3, \ldots \tag{2.6}
\end{align*}
$$

Proof For (2.4), see [1].
Now, we prove (2.5). If n is an odd, then d_{n+1} is obviously positive.
If n is an even, then we have for all $n \geq 4$

$$
\begin{align*}
& \int_{0}^{\frac{1}{12}} \frac{g(s)}{s}(1-12 s)^{n-1} d s \leq \int_{0}^{\frac{1}{12}} \frac{g(s)}{s}(1-12 s)^{3} d s \tag{2.7}\\
& \int_{\frac{1}{12}}^{\frac{1}{6}} \frac{g(s)}{s}(1-12 s)^{n-1} d s<0 \tag{2.8}\\
& \int_{\frac{1}{6}}^{1} \frac{g(s)}{s}(1-12 s)^{n-1} d s \leq \int_{\frac{1}{6}}^{1} \frac{g(s)}{s}(1-12 s)^{3} d s \tag{2.9}
\end{align*}
$$

From (2.7), (2.8), (2.9), and Remark 1, we get

$$
\begin{aligned}
\int_{0}^{1} \frac{g(s)}{s}(1-12 s)^{n-1} d s \leq & \int_{0}^{1}\left(\frac{1}{s}-36+432 s-1,728 s^{2}\right) g(s) d s \\
& +\int_{\frac{1}{12}}^{\frac{1}{6}}\left(1,728 s^{2}-432 s+30\right) d s \\
\leq & \left(\frac{e}{2}-1\right)-\frac{3 e}{2}+9 e-21.9 e+6 \int_{0}^{1} g(s) d s \\
= & -1-13.9 e+\frac{e}{4}<-1
\end{aligned}
$$

Thus from this and (2.4), we have $d_{n+1}>0$. This proves (2.5). The proof of (2.6) is similar to (2.5).

Remark 2 By Lemma 2, it is not obvious that $S_{m}(x)>\sigma_{m}(x)$.

Lemma 3 Let $m \geq 3$ be an integer, we have

$$
\begin{equation*}
(-1)^{m-1}+\int_{0}^{1} \frac{g(s)}{1-s}(12 s-1)^{m-1} d s>0 \tag{2.10}
\end{equation*}
$$

Proof The proof is similar to the proof of (2.5).

Lemma 4 Let $x>0$, and $m \geq 6$ be an integer. Then we have for all $\frac{1}{12} \leq s \leq \frac{1}{2}$

$$
\begin{equation*}
h(s, x)>0 . \tag{2.11}
\end{equation*}
$$

Proof Noting that $\frac{s\left(\frac{11}{12}+x\right)}{\left(s-\frac{1}{12}\right)(1+x)}>1$ for all $x>0$, the inequality (2.11) is equivalent to

$$
\begin{equation*}
\left(\frac{\left(s-\frac{1}{12}\right)(1+x)}{s\left(\frac{11}{12}+x\right)}\right)^{5}<\frac{s+x}{1-s+x} \tag{2.12}
\end{equation*}
$$

To prove (2.12), we define $h_{1}(s, x)$ as

$$
\begin{equation*}
h_{1}=\ln (1-s+x)-\ln (s+x)+5 \ln \left(s-\frac{1}{12}\right)+5 \ln (1+x)-5 \ln s-5 \ln \left(\frac{11}{12}+x\right) \tag{2.13}
\end{equation*}
$$

Easy computations reveal that

$$
\begin{align*}
& h_{1}\left(\frac{1}{2}, 0\right)=5 \ln \left(\frac{10}{11}\right)<0 \tag{2.14}\\
& \frac{\partial h_{1}(s, 0)}{\partial s}>0 \tag{2.15}\\
& \frac{\partial h_{1}(s, x)}{\partial x}<0 \tag{2.16}
\end{align*}
$$

Thus from (2.14), (2.15), and (2.16), we have

$$
h_{1}(s, x) \leq h_{1}(s, 0) \leq h_{1}\left(\frac{1}{2}, 0\right)<0
$$

which implies

$$
h(s, x)>0
$$

Lemma 5 Let $x>0$, and $m \geq 2$ be an integer, then $h(s, x)$ is a monotonic increasingfunction of s on $\left[\frac{1}{2}, 1\right]$. If m is an odd, then $h(s, x)$ is a monotonic increasing function of son $\left[0, \frac{1}{12}\right]$.

Proof It suffices to show that $\frac{\partial h(s, x)}{\partial s}>0$. Partial differentiation yields

$$
\begin{align*}
\frac{\partial h(s, x)}{\partial s} \geq & \frac{m-1}{(1+x)(1-s+x)}\left(\frac{s}{1+x}\right)^{m-2} \\
& -\frac{m-1}{(11+12 x)(s+x)}\left(\frac{12 s-1}{11+12 x}\right)^{m-2} \tag{2.17}
\end{align*}
$$

If $\frac{1}{2} \leq s \leq 1$, then for all $x>0$ and $m \geq 2$, we have

$$
\begin{aligned}
& \frac{m-1}{(1+x)(1-s+x)}>\frac{m-1}{(11+12 x)(s+x)} \\
& \frac{s}{1+x}>\frac{12 s-1}{11+12 x}
\end{aligned}
$$

Thus

$$
\frac{\partial h(s, x)}{\partial s}>0 .
$$

If m is an odd, then for $0<s<\frac{1}{12}$, we have

$$
(12 s-1)^{m-2}<0 .
$$

From this and (2.17), we get

$$
\frac{\partial h(s, x)}{\partial s}>0
$$

This completes the proof of Lemma 5.

Lemma 6 Let $m \geq 3$ be an integer, then we have for all $x \geq 1$

$$
\begin{equation*}
h\left(\frac{1}{2}, x\right)>|h(0, x)| . \tag{2.18}
\end{equation*}
$$

Proof Because of $x>1$, (2.18) is equivalent to

$$
\begin{equation*}
\left(5+\frac{1+2 x}{2+2 x}\right)^{m-1}-5^{m-1}>1+\frac{1}{2 x} \tag{2.19}
\end{equation*}
$$

The equality (2.19) follows immediately from

$$
(m-1) 5^{m-2} \frac{1+2 x}{2+2 x}>(m-1) 5^{m-2} \frac{3}{4}>\frac{3}{2} .
$$

3 Proof of Theorem 1

Proof By Lemma 1 and Lemma 2, we get for $m \geq 2$

$$
\begin{aligned}
\sigma_{m}(x)= & \frac{e / 2}{1+x}+\sum_{k=2}^{m} \int_{0}^{1} \frac{g(s)}{s^{2}}\left(\frac{s}{1+x}\right)^{k} d s \\
= & \frac{e}{2(1+x)}+\int_{0}^{1} \frac{g(s)}{s^{2}} \sum_{k=2}^{m}\left(\frac{s}{1+x}\right)^{k} d s \\
= & \frac{e}{2(1+x)}+\int_{0}^{1} \frac{g(s)}{(1+x)(1+x-s)}\left(1-\left(\frac{s}{1+x}\right)^{m-1}\right) d s \\
= & \frac{e}{2(1+x)}+\int_{0}^{1} \frac{g(s)}{(1+x)(x+s)} d s-\int_{0}^{1} \frac{g(s)}{(1+x)(1-s+x)}\left(\frac{s}{1+x}\right)^{m-1} d s, \\
S_{m}(x)= & \frac{e}{2(1+x)}+\int_{0}^{1} \frac{g(s)}{(x+s)(1+x)}+\frac{(-1)^{m-1}}{(11+12 x)^{m}(1+x)} \\
& -\int_{0}^{1} \frac{g(s)}{(1+x)(x+s)}\left(\frac{12 s-1}{11+12 x}\right)^{m-1} d s \\
& +\int_{0}^{1} \frac{g(s)}{(11+12 x)(1+x)(1-s)}\left(\frac{12 s-1}{11+12 x}\right)^{m-1} d s .
\end{aligned}
$$

To prove our result, we consider

$$
\begin{aligned}
S_{m}(x)-\sigma_{m}(x)= & \frac{1}{(11+12 x)^{m}(1+x)}\left((-1)^{m-1}+\int_{0}^{1} \frac{g(s)}{1-s}(12 s-1)^{m-1}\right) \\
& +\frac{1}{1+x} \int_{0}^{1} g(s)\left(\frac{1}{1-s+x}\left(\frac{s}{1+x}\right)^{m-1}-\frac{1}{x+s}\left(\frac{12 s-1}{11+12 x}\right)^{m-1}\right) d s \\
= & \frac{1}{(11+12 x)^{m}(1+x)}\left((-1)^{m-1}+\int_{0}^{1} \frac{g(s)}{1-s}(12 s-1)^{m-1}\right) \\
& +\frac{1}{1+x} \int_{0}^{1} g(s) h(s, x) d s .
\end{aligned}
$$

By Lemma 3, it suffices to show that

$$
\int_{0}^{1} g(s) h(s, x) d s>0 .
$$

Let first $m \geq 6$ be even. From Lemma 4 and Lemma 5, for all $x>0$, we have

$$
\int_{0}^{1} g(s) h(s, x) d s=\int_{0}^{\frac{1}{12}} g(s) h(s, x) d s+\int_{\frac{1}{12}}^{\frac{1}{2}} g(s) h(s, x) d s+\int_{\frac{1}{2}}^{1} g(s) h(s, x) d s>0
$$

Here we used the fact that if m is an even and $0 \leq s \leq 1 / 12$, then $h(s, x)>0$ for any $x>0$. Now let $m \geq 7$ be odd. From Lemma 4, Lemma 5, and Lemma 6 for all $x \geq 1$ we have

$$
\begin{aligned}
\int_{0}^{1} g(s) h(s, x) d s & =\int_{0}^{\frac{1}{12}} g(s) h(s, x) d s+\int_{\frac{1}{12}}^{\frac{1}{2}} g(s) h(s, x) d s+\int_{\frac{1}{2}}^{1} g(s) h(s, x) d s \\
& \geq \int_{0}^{\frac{1}{12}} g(s) h(0, x) d s+\int_{\frac{1}{12}}^{\frac{1}{2}} g(s) h(s, x) d s+\int_{\frac{1}{2}}^{1} g(s) h\left(\frac{1}{2}, x\right) d s \\
& \geq\left(h(0, x)+h\left(\frac{1}{2}, x\right)\right) \int_{0}^{\frac{1}{12}} g(s) d s+\int_{\frac{1}{12}}^{\frac{1}{2}} g(s) h(s, x) d s>0
\end{aligned}
$$

This completes the proof of Theorem 1.

Remark 3 By using computer simulation, we find $S_{m}(x)>\sigma_{m}(x)$ for all $x>0$ and all $m \geq 1$, but we leave as an open problem the rigorous proof of this fact.

4 Conclusions

In this paper, we have established some inequalities which explain Mortici's result in a quantitative way. The authors believe that the present analysis will lead to a significant contribution toward the study of the Carleman inequality.

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Authors' contributions

The authors completed the paper together. They each read and approved the final manuscript.

Author details

'Henan College of Finance and Taxation, Department of Information Engineering, Zhengzhou, Henan 451464, China.
${ }^{2}$ Department of Foundation, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang 310018, China.

Acknowledgements

The authors are very grateful to the anonymous referees and the Editor for their insightful comments and suggestions. The authors are grateful to Professor Hongwei Chen, Christopher Newport University, USA, for his kind help and valuable suggestions in the preparation of this paper. Supported by Foundation Lead-edga Technologies Research Project of Henan Province, No. 122300410061.

Received: 5 November 2015 Accepted: 1 December 2015 Published online: 14 December 2015

References

1. Mortici, C, Hu, Y: On an infinite series for $(1+1 / x)^{x}(2014)$. arXiv: 1406.7814 [math.CA]
2. Hardy, GH, Littlewood, JE, Polya, G: Inequalities. Cambridge University Press, London (1952)
3. Bicheng, Y, Debnath, L: Some inequalities involving the constant e and an application to Carleman's inequality. J. Math. Anal. Appl. 223, 347-353 (1998)
4. Mortici, C, Hu, Y: On some convergences to the constant e and improvements of Carleman's inequality. Carpath. J. Math. 31, 249-254 (2015)
5. Mortici, C, Yang, X: Estimates of $(1+1 / X)^{x}$ involved in Carleman's inequality and Keller's limit. Filomat 7,1535-1539 (2015)
6. Ping, Y, Guozheng, S: A strengthened Carleman's inequality. J. Math. Anal. Appl. 240, 290-293 (1999)
7. Yang, X: On Carleman's inequality. J. Math. Anal. Appl. 253, 691-694 (2001)
8. Yang, X: Approximations for constant e and their applications. J. Math. Anal. Appl. 262, 651-659 (2001)
9. Chen, H: On an infinite series for $\left(1+\frac{1}{x}\right)^{x}$ and its application. Int. J. Math. Math. Sci. 11, 675-680 (2002)
10. Liu, H, Zhu, L: New strengthened Carleman's inequality and Hardy's inequality. J. Inequal. Appl. 2007, Article ID 84104 (2007)
11. Gyllenberg, M, Yan, P: On a conjecture by Yang. J. Math. Anal. Appl. 264, 687-690 (2001)
12. Mortici, C: Product approximations via asymptotic integration. Am. Math. Mon. 117(5), 434-441 (2010)
13. Hu, Y, Mortici, C: On the coefficients of an expansion of $\left(1+\frac{1}{x}\right)^{x}$ related to Carleman's inequality (2014). arXiv:1401.2236 [math.CA]

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

