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Abstract
In this paper, the authors present necessary and sufficient conditions for the
complete elliptic integrals of the first and second kind to be convex or concave with
respect to the Lehmer mean.
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1 Introduction and main results
1.1 Legendre’s complete elliptic integrals
For r ∈ [, ], Legendre’s complete elliptic integrals of the first and second kind [, ] are
defined by

K(r) =
∫ π/



(
 – r sin θ

)–/ dθ (.)

and

E(r) =
∫ π/



(
 – r sin θ

)/ dθ , (.)

respectively. Note that K() = E() = π/ and K() = ∞, E() = .
It is well known that the complete elliptic integrals have many important applications in

geometric function theory, theory of mean values, number theory, and many other areas
of mathematics, as well as physics and engineering [–].

Because of the importance of the complete elliptic integrals, they have been studied
extensively by many researchers from different points. The asymptotic behavior of K(r)
near the singularity r =  has been explored by Kühnau [], and Alzer and Qiu []. Many
remarkable inequalities and monotonicity properties for K(r) and E(r) can be found in
the literature [, –]. The generalization of the complete elliptic integrals was first
introduced by Vuorinen et al. in [], and subsequently they were studied intensively in
[–].

1.2 Generalized convexity
In order to introduce the generalized convexity, we first recall the definition of mean func-
tion and several classical means.
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Definition . ([], Definition .) A function M : (,∞) × (,∞) → (,∞) is said to be
a mean function if

() min(x, y) ≤ M(x, y) ≤ max (x, y),
() M(x, x) = x,
() M(x, y) = M(y, x),
() M(ax, ay) = aM(x, y) for all a > .

Example .
() A(x, y) = (x + y)/ is the arithmetic mean;
() G(x, y) = √xy is the geometric mean;
() H(x, y) = xy/(x + y) is the harmonic mean;
() Hp(x, y) = [(xp + yp)/]/p if p �= , and H(x, y) = G(x, y) = √xy is the pth Hölder

(power) mean;
() Lp(x, y) = (xp+ + yp+)/(xp + yp) is the pth Lehmer mean.

Definition . ([], Definition .) Let I be a subinterval of (,∞), f : I → (,∞) be
a continuous function, and M and N be any two mean functions. Then f is said to be
(M, N)-convex (concave) on I if

f
(
M(x, y)

) ≤ (≥)N
(
f (x), f (y)

)
(.)

for all x, y ∈ I . Moreover, if the inequality (.) is strict except for x = y, then f is said to be
strictly (M, N)-convex (concave) on I .

In particular, if both M and N are Hölder means, then (.) reduces to

f
(
Hp(x, y)

) ≤ (≥)Hq
(
f (x), f (y)

)
, (.)

and f is said to be Hp,q-convex (concave) on I . Also, if inequality (.) is strict except for
x = y, then f is said to be strictly Hp,q-convex (concave) on I .

Recently, the generalized convexity or concavity has attracted the attention of many
mathematicians [–]. Baricz [] proved that K(r) is strictly Hp,p-convex on (, ) for
p ∈ (, ]. Zhang et al. [] improved Baricz’s result and proved that K(r) is strictly Hp,q-
convex on (, ) for (p, q) ∈ {(p, q)|p ≤ , q ≥ }. In [], the authors presented the least
value p and greatest value p such that Hp(K(x),K(y)) ≥ K(Hp(x, y)) or Hp(E(x),E(y)) ≤
E(Hp(x, y)) for all p ∈ [p, p] and x, y ∈ (, ). Very recently, the Hp,q-convexity and Hp,q-
concavity of the complete elliptic integrals are discussed in [, ].

Theorem . ([], Theorem .) Let

C(q) = inf
r∈(,)

{
(q – )

(
E – r′K

)
/
(
r′K

)
+ r(E – r′K

)
/
[
r′(E – r′K

)]}

be a continuous function with C(q) =  for all q ≥ –/ and C(q) <  for all q < –/. Then
the complete elliptic integrals of the first kind K(r) is strictly Hp,q-convex if and only if

(p, q) ∈ D =
{

(p, q)|p ≤ C(q)
}

,

and there are no values of p and q for which K(r) is Hp,q-concave on (, ).
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Theorem . ([], Theorem .) Let

D(q) = inf
r∈(,)

{
rE/

[
r′(K – E)

]
+ ( – q)(K – E)/E

}

be a continuous function with D(q) =  for all q ≤ / and D(q) <  for all q > /. Then the
complete elliptic integrals of the second kind E(r) is strictly Hp,q-concave if and only if

(p, q) ∈ D∗ =
{

(p, q)|p ≤ D(q)
}

,

and there are no values of p and q for which E(r) is Hp,q-convex on (, ).

The main purpose of this short note is to establish the necessary and sufficient condi-
tions for the convexity or concavity of the complete elliptic integrals of the first and second
kind with respect to the Lehmer mean. Our main results are as follows.

Theorem . The complete elliptic integral of the first kind K(r) is strictly Lλ,λ-convex on
(, ) if and only if λ ∈ [–, ].

Theorem . The complete elliptic integral of the second kind E(r) is strictly Lλ,λ-concave
on (, ) if and only if λ ∈ (–∞, ].

2 A lemma
In order to prove our main results we need a lemma, which we present in this section.

Lemma . (see []) The inequality

Ht+(x, y) ≤ Lt(x, y) (.)

holds for all x, y ∈ R
+ if t ∈ (–, –/) ∪ (, +∞), and the inequality

Ht+(x, y) ≥ Lt(x, y) (.)

holds for all x, y ∈ R
+ if t ∈ (–∞, –)∪(–/, ). Inequality (.) or (.) becomes an equality

for all x, y ∈R
+ if t = –, –/, or ; otherwise inequality (.) or (.) becomes an equality

only when x = y. Moreover, Ht+(x, y) is the best possible lower (or upper) Hölder mean
bound for Lt(x, y) in (.) (or (.)).

3 Proofs of main results

Proof of Theorem . Since

L(x, y) = A(x, y) = H(x, y), L–/(x, y) = G(x, y) = H(x, y)

and

L–(x, y) = H(x, y) = H–(x, y).
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Therefore, Theorem . and (.) show that {(p, q)|(–, –), (, ), (, )} ⊂ D, namely, for
λ = , –/ or –, the inequality

K
(
Lλ(x, y)

)
< Lλ

(
K(x),K(y)

)

holds for all x, y ∈ (, ) with x �= y. Thus K(r) is strictly Lλ,λ-convex on (, ) for λ = , –/
and –.

Next, we divide the proof into four cases.
Case . –/ < λ < . Then it follows from Theorem . and (.) that (λ + , ) ∈ D.

Making use of Lemma . together with the monotonicity of K(r) on (, ), one has

K
(
Lλ(x, y)

)
< K

(
Hλ+(x, y)

)
< H

(
K(x),K(y)

)
< Lλ

(
K(x),K(y)

)

for all x, y ∈ (, ) with x �= y.
Therefore, K(r) is strictly Lλ,λ-convex on (, ) for –/ < λ < .
Case . – < λ < –/. Similarly, by Theorem . and Lemma . we have (, λ + ) ∈ D

and

K
(
Lλ(x, y)

)
< K

(
H(x, y)

)
< Hλ+

(
K(x),K(y)

)
< Lλ

(
K(x),K(y)

)

for all x, y ∈ (, ) with x �= y. This implies that K(r) is strictly Lλ,λ-convex on (, ) for
– < λ < –/.

Case . λ > . For any  < y < , letting x → +, then we have

K
(
Lλ(x, y)

)
– Lλ

(
K(x),K(y)

)
= K

(
xλ+ + yλ+

xλ + yλ

)
–
Kλ+(x) + Kλ+(y)
Kλ(x) + Kλ(y)

→ (π/)λ[K(y) – π/]
(π/)λ + Kλ(y)

> . (.)

It follows from (.) that there exists x = x(y) ∈ (, ) such that K(Lλ(x, y)) > Lλ(K(x),
K(y)) for all x ∈ (, x). Thus K(r) is not Lλ,λ-convex on (, ) for λ > .

Case . λ < –. For  < x < , letting y → –, then one has

K
(
Lλ(x, y)

)
– Lλ

(
K(x),K(y)

) →K
(

 + xλ+

 + xλ

)
– K(x) > ,

where we unitize ( + xλ+)/( + xλ) > x.
Making use of the analogous arguments in Case  we conclude that K(r) is not Lλ,λ-

convex on (, ) for λ < –. �

Proof of Theorem . Clearly, by Theorem . we know that

{
(p, q)|(–, –), (, ), (, )

} ⊂ D∗.

Thus, E(r) is strictly Lλ,λ-concave on (, ) for λ = , –/ or –.
Next, we divide the proof into three cases.
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Case I. –/ < λ <  or λ < –. Then it is easy to check that (λ + , λ + ) ∈ D∗. Thus
Theorem . and Lemma . together with the monotonicity of E(r) lead to the conclusion
that

E
(
Lλ(x, y)

)
> E

(
Hλ+(x, y)

)
> Hλ+

(
E(x),E(y)

)
> Lλ

(
E(x),E(y)

)

for all x, y ∈ (, ) with x �= y.
Therefore, E(r) is strictly Lλ,λ-concave on (, ) for –/ < λ <  or λ < –.
Case II. – < λ < –/. Then by Theorem . and Lemma . we get

E
(
Lλ(x, y)

)
> E

(
H(x, y)

)
> H

(
E(x),E(y)

)
> Lλ

(
E(x),E(y)

)

for all x, y ∈ (, ) with x �= y.
Therefore, E(r) is strictly Lλ,λ-concave on (, ) for – < λ < –/.
Case III. λ > . For any  < y < , letting x → +, then we have

E
(
Lλ(x, y)

)
– Lλ

(
E(x),E(y)

)
= E

(
xλ+ + yλ+

xλ + yλ

)
–
Eλ+(x) + Eλ+(y)
Eλ(x) + Eλ(y)

→ (π/)λ[E(y) – π/]
(π/)λ + Eλ(y)

< . (.)

It follows from (.) that there exists x = x(y) ∈ (, ) such that E(Lλ(x, y)) < Lλ(E(x),E(y))
for all x ∈ (, x). Thus E(r) is not Lλ,λ-concave on (, ) for λ > . �
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