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1 Introduction
The well-known Lazarević inequality [, ] states that

(
sinh(x)

x

)p

> cosh(x) (.)

for all x >  if and only if p ≥ .
Inequality (.) was generalized by Zhu [] as follows.
Let p ∈ (–∞, /] ∪ (,∞). Then the inequality

(
sinh(x)

x

)q

> p + ( – p) cosh(x)

holds for x >  if and only if q ≥ ( – p).
For p > , Yang [] proved that the inequality

(
sinh(x)

x

)p

> cosh(px) (.)

holds for all x >  if and only if p ≥ √
/, and inequality (.) is reversed if and only if

p ≤ /.
Neuman and Sándor [] proved that the Cusa type inequality

sinh(x)
x

<
 + cosh(x)


(.)

holds for all x > .
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In [], Zhu presented a more general result which contains Lazarević inequality (.) and
Cusa type inequality (.) as follows.

Theorem A The following statements are true:
(i) If p ≥ /, then the double inequality

 – λ + λ coshp(x) <
(

sinh(x)
x

)p

<  – η + η coshp(x)

holds for all x >  if and only if λ ≤  and η ≥ /.
(ii) If p < , then the inequality

(
sinh(x)

x

)p

<  – η + η coshp(x)

holds for all x >  if and only if η ≤ /.

More inequalities for the hyperbolic sine and cosine functions can be found in the liter-
ature [–].

Let p, q ∈R and Hp,q(x) be defined on (,∞) by

Hp,q(x) =
Up( sinh(x)

x )
Uq(cosh(x))

, (.)

where the function Up(t) is defined on (,∞) by

Up(t) =
tp – 

p
(p �= ), U(t) = lim

p→

tp – 
p

= log t. (.)

The main purpose of this paper is to deal with the monotonicity of Hp,q(x) on (,∞),
generalize and improve the Lazarević and Cusa type inequalities, and present the new
bounds for certain bivariate means.

2 Monotonicity
Lemma . Let p ∈R and Up(t) be defined on (,∞) by (.). Then the function p 
→ Up(t)
is increasing on R and Up(t) >  for all t ∈ (,∞).

Proof Let p �= , then the monotonicity of the function p 
→ Up(t) follows easily from

∂Up(t)
∂p

=
tp

p

[(
t–p – 

)
– log

(
t–p)] > .

It follows from the monotonicity of the function p 
→ Up(t) that

Up(t) > lim
p→–∞ Up(t) = lim

p→–∞
tp – 

p
= . �

Lemma . (See [, ]) Let f , g : [a, b] 
→R be continuous on [a, b] and differentiable on
(a, b), and g ′ �=  on (a, b). If f ′/g ′ is increasing (decreasing) on (a, b), then the functions

f (x) – f (a)
g(x) – g(a)

,
f (x) – f (b)
g(x) – g(b)

are also increasing (decreasing) on (a, b).
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Lemma . (See []) Let {an}∞n= and {bn}∞n= be two real sequences with bn >  for n =
, , , . . . , and the power series A(t) =

∑∞
n= antn and B(t) =

∑∞
n= bntn have the radius of

convergence r > . If the non-constant sequence {an/bn}∞n= is increasing (decreasing), then
the function A(t)/B(t) is also increasing (decreasing) on (, r).

Let Shp(x) and Chp(x) be defined on (,∞) by

Shp(x) = Up

(
sinh(x)

x

)
(.)

and

Chp(x) = Up
(
cosh(x)

)
, (.)

respectively, where the function Up is defined by (.). Then from (.) and (.) we clearly
see that the function Hp,q(x) can be rewritten as

Hp,q(x) =
Shp(x)
Chp(x)

=
Shp(x) – Shp(+)
Chp(x) – Chp(+)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q
p

( sinh(x)
x )p–

coshq(x)– , pq �= ,


p

( sinh(x)
x )p–

log(cosh(x)) , p �= , q = ,

q log sinh(x)
x

coshq(x)– , p = , q �= ,
log sinh(x)

x
log(cosh(x)) , p = q = .

(.)

Let pq �= . Then it follows from (.), (.), and (.) that

Sh′
p(x)

Ch′
q(x)

=
cosh–q(x)
x sinh(x)

(
sinh(x)

x

)p–[
x cosh(x) – sinh(x)

]
=: f(x), (.)

f ′
 (x) =

f(x)
x sinh(x) coshq(x)

(
sinh(x)

x

)p

, (.)

where

f(x) = pA(x) – qB(x) + C(x) (.)

with

A(x) =
[
x cosh(x) – sinh(x)

]
cosh(x) > , (.)

B(x) = x
[
x cosh(x) – sinh(x)

]
sinh(x) > , (.)

C(x) = –x cosh(x) + x sinh(x) + cosh(x) sinh(x) > , (.)

where C(x) >  due to

C(x) = x cosh(x)
[

sinh(x)
x +

tanh(x)
x

– 
]

> 

by the Wilker type inequality given in [].



Yang and Chu Journal of Inequalities and Applications  (2015) 2015:403 Page 4 of 19

It is not difficult to verify that (.)-(.) are also true for pq = .
Let

an =
(
n – n + 

)
n– + n – n – , (.)

bn = n(n – )n– – n(n – ), (.)

cn = n – n + n – . (.)

Then making use of (.)-(.) together with the power series formulas sinh(x) =∑∞
n= xn+/(n + )! and cosh(x) =

∑∞
n= xn/(n)! we have

A(x) =
[
x cosh(x) – sinh(x)

]
cosh(x)

=



x cosh(x) +



x cosh(x) –



x sinh(x)

–



x sinh(x) +



cosh(x) –



cosh(x)

=
∞∑

n=

(n – n + )n– + n – n – 
(n)!

xn =
∞∑

n=

an

(n)!
xn, (.)

B(x) = x
[
x cosh(x) – sinh(x)

]
sinh(x)

=



x cosh(x) –



x cosh(x) –



x sinh(x) +



x sinh(x)

=
∞∑

n=

n(n – )n– – n(n – )
(n)!

xn =
∞∑

n=

bn

(n)!
xn, (.)

C(x) = –x cosh(x) + x sinh(x) + cosh(x) sinh(x)

= –x cosh(x) + x sinh(x) +



cosh(x) –



cosh(x)

=
∞∑

n=

n – n + n – 
(n)!

xn =
∞∑

n=

cn

(n)!
xn. (.)

In order to investigate the monotonicity of the function Hp,q, we need Lemma ..

Lemma . Let A(x), B(x), and C(x) be, respectively, defined by (.), (.), and (.), f be
defined on (,∞) by

f(x) =
pA(x) – qB(x)

C(x)
+ , (.)

I = {q = , p > } ∪
{

q > ,
p
q

≥ 


}
∪

{
q < ,

p
q

≤ 
}

, (.)

and

I = {q = , p < } ∪
{

q > ,
p
q

≤ 
}

∪
{

q < ,
p
q

≥ 


}
. (.)

Then the following statements are true:
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(i) f is increasing from (,∞) onto ((p – q)/ + ,∞) if (p, q) ∈ I;
(ii) f is decreasing from (,∞) onto (–∞, (p – q)/ + ) if (p, q) ∈ I.

Proof Let an, bn, and cn be, respectively, defined by (.), (.), and (.). Then it follows
from (.)-(.) that

f(x) –  =
∑∞

n=
pan–qbn

(n)! xn

∑∞
n=

cn
(n)! xn , (.)

pan–qbn
(n)!

cn
(n)!

=
pan – qbn

cn
, (.)

pan+ – qbn+

cn+
–

pan – qbn

cn

=
p(an+cn – ancn+) – q(bn+cn – bncn+)

cncn+

=
pvn – qun

cncn+
=

{
p vn

cncn+
, q = ,

vn
cncn+

q( p
q – un

vn
), q �= ,

(.)

where

un = bn+cn – bncn+

=  × n–[(n – )n –
(
n – n – n + n – 

)]
+ 

(
n + n – 

)
, (.)

vn = an+cn – ancn+

=  × n–[(n – )n –
(
n – ,n + ,n)]

+  × [
(n + )n –

(
n + n + 

)]
. (.)

We claim that

cn >  (.)

and

vn >  (.)

for n ≥ .
Indeed, making use of the binomial expansion we have

cn = n – n + n –  = ( + )n – n + n – 

>  + n +
n(n – )


 – n + n –  = ,

(n – )n –
(
n – ,n + ,n)

> (n – )
(

 + n +
n(n – )


 +

n(n – )(n – )



)



Yang and Chu Journal of Inequalities and Applications  (2015) 2015:403 Page 6 of 19

–
(
n – ,n + ,n)

= ,(n – ) + ,(n – ) + ,(n – ) + ,(n – ) + , > ,

(n + )n –
(
n + n + 

)
> (n + )( + n) –

(
n + n + 

)
= n + n +  > 

for n ≥ .
We divide the proof into two cases.
Case . q = . Then (.)-(.), (.), (.), and Lemma . lead to the conclusion

that f(x) is increasing on (,∞) if p >  and decreasing on (,∞) if p < . Therefore, we
have p/ +  < limx→+ f(x) < f(x) < limx→∞ f(x) = ∞ for p > , f(x) =  for p = , and
–∞ < limx→∞ f(x) < f(x) < limx→+ f(x) = p/ +  for p < .

Case . q �= . We first prove that un/vn is decreasing for n ≥ . From (.) we know
that it suffices to show that unvn+ – un+vn >  for n ≥ . It follows from (.) and (.)
that

unvn+ – un+vn

=
cn+


[
n+ –

(
,n – ,n + ,n + 

)
n

+
(
,n + ,n + ,n + 

)
n – 

]
. (.)

Note that

n+ –
(
,n – ,n + ,n + 

)

>  + (n + ) +
(n + )(n + )


 +

(n + )(n + )n




+
(n + )(n + )n(n – )


 +

(n + )(n + )n(n – )(n – )




–
(
,n – ,n + ,n + 

)
= ,(n – ) + ,(n – ) + ,(n – )

+ ,(n – ) + ,(n – ) + , >  (.)

for n ≥ .
Therefore, unvn+ – un+vn >  for n ≥  follows from (.), (.), and (.).
From (.), (.), (.), and the monotonicity of un/vn we clearly see that

 = lim
n→∞

un

vn
<

un

vn
≤ u

v
=




,

pan+ – qbn+

cn+
–

pan – qbn

cn
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

> , q > , p
q ≥ 

 ,
< , q < , p

q ≥ 
 ,

< , q > , p
q ≤ ,

> , q < , p
q ≤ .

(.)
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Therefore, the desired results follows easily from (.), (.), (.), and Lemma .
together with the facts that

lim
x→+

f(x) =
p – q


+ ,

lim
x→∞ f(x) =

{
∞, q > , p

q ≥ 
 or q < , p

q ≤ ,
–∞, q < , p

q ≥ 
 or q > , p

q ≤ . �

From Lemma ., we get the monotonicity of Hp,q as follows.

Proposition . Let I and I be defined, respectively, by (.) and (.), and Hp,q(x) be
defined on (,∞) by (.). Then the following statements are true:

(i) Hp,q(x) is increasing on (,∞) if (p, q) ∈ I ∪ (, ) ∩ {(p – q)/ +  ≥ };
(ii) Hp,q(x) is decreasing on (,∞) if (p, q) ∈ I ∩ {(p – q)/ +  ≤ }.

Proof Let f(x) and f(x) be defined by (.) and (.), respectively.
(i) If (p, q) ∈ I ∪ (, )∩{(p– q)/ +  ≥ }, then Hp,q(x) is increasing on (,∞) follows

easily from (.)-(.), (.), (.), Lemma ., and Lemma .(i).
(ii) If (p, q) ∈ I ∩{(p – q)/ +  ≤ }, then Hp,q(x) is decreasing on (,∞) follows easily

from (.)-(.), (.), (.), Lemma ., and Lemma .(ii). �

It is easily to verify that (p, q) ∈ I ∪ (, ) ∩ {(p – q)/ +  ≥ } is equivalent to

p ≥

⎧⎪⎨
⎪⎩

q – /, q ∈ [/,∞),
q/, q ∈ [, /),
q, q ∈ (–∞, )

or

q ≤

⎧⎪⎨
⎪⎩

p/ + /, p ∈ [/,∞),
p/, p ∈ [, /),
p, p ∈ (–∞, ),

and (p, q) ∈ I ∩ {(p – q)/ +  ≤ } is equivalent to

p ≤
{

q, q ∈ [/,∞),
q – /, q ∈ (–∞, /)

or

q ≥
{

p, p ∈ [/,∞),
p/ + /, p ∈ (–∞, /).

Therefore, Proposition . can be restated as Propositions . and ..

Proposition . Let Hp,q(x) be defined on (,∞) by (.). Then the following statements
are true:

(i) If q ∈ [/,∞), then Hp,q(x) is increasing on (,∞) for p ≥ q – / and
decreasing for p ≤ q.
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(ii) If q ∈ [/, /), then Hp,q(x) is increasing on (,∞) for p ≥ q/ and
decreasing for p ≤ q.

(iii) If q ∈ (, /), then Hp,q(x) is increasing on (,∞) for p ≥ q/ and decreasing for
p ≤ q – /.

(iv) If q ∈ (–∞, ], then Hp,q(x) is increasing on (,∞) for p ≥ q and decreasing for
p ≤ q – /.

Proposition . Let Hp,q(x) be defined on (,∞) by (.). Then the following statements
are true:

(i) If p ∈ [/,∞), then Hp,q(x) is increasing on (,∞) for q ≤ p/ + / and
decreasing for q ≥ p.

(ii) If p ∈ [/, /), then Hp,q(x) is increasing on (,∞) for q ≤ p/ and
decreasing for q ≥ p.

(iii) If p ∈ (, /), then Hp,q(x) is increasing on (,∞) for q ≤ p/ and decreasing for
q ≥ p/ + /.

(iv) If p ∈ (–∞, ], then Hp,q(x) is increasing on (,∞) for q ≤ p and decreasing for
q ≥ p/ + /.

Let p = kq, then Proposition . leads to the following corollary.

Corollary . Let Hp,q(x) be defined on (,∞) by (.). Then the following statements are
true:

(i) If k ∈ (,∞), then Hkq,q(x) is increasing on (,∞) for q ≥  and decreasing for
q ≤ /[( – k)].

(ii) If k = , then Hkq,q(x) is increasing on (,∞) for all q ∈R.
(iii) If k ∈ [/, ), then Hkq,q(x) is increasing on (,∞) for  ≤ q ≤ /[( – k)].
(iv) If k ∈ (, /), then Hkq,q(x) is increasing on (,∞) for q = .
(v) If k ∈ (–∞, ], then Hkq,q(x) is increasing on (,∞) for q ≤  and decreasing for

q ≥ /[( – k)].

Let I and I be defined by (.) and (.), respectively. If (p – q)/ +  = , then we
clearly see that

I ∪ {, } ∩
{

p – q


+  = 
}

=
{

q ≥ 


, p = q –



}
=

{
p ≥ 


, q =

p + 


}
,

I ∩
{

p – q


+  = 
}

=
{

q ≤ 


, p = q –



}
=

{
p ≤ 


, q =

p + 


}
,

and Proposition . leads to the following corollary.

Corollary . Let Hp,q(x) be defined on (,∞) by (.). Then Hq–/,q(x) is increasing on
(,∞) if q ≥ / and decreasing if q ≤ /. In other words, Hp,(p+)/(x) is increasing on
(,∞) if p ≥ / and decreasing if p ≤ /.

3 Main results
In this section, we present several Lazarević and Cusa type inequalities involving the hy-
perbolic sine and cosine functions with two parameters.



Yang and Chu Journal of Inequalities and Applications  (2015) 2015:403 Page 9 of 19

Let Shp(x), Chp(x), Hp,q(x), I, and I be, respectively, defined by (.), (.), (.), (.),
and (.). Then it is not difficult to verify that

I ∪ {, } ∩
{

p – q


+  ≥ 
}

=
{

 ≤ q ≤ min

(
p


,
p + 



)}
∪

{
q ≤ min

(
, p,

p + 


)}
,

I ∩
{

p – q


+  ≤ 
}

=
{

max

(
p


,
p + 



)
≤ q < 

}
∪

{
q ≥ max

(
, p,

p + 


)}
,

Hp,q
(
+)

=



.

From Proposition ., we get Theorem . immediately.

Theorem .
(i) If  ≤ q ≤ min{p/, (p + )/} or q ≤ min{, p, (p + )/}, then the inequalities

( sinh(x)
x )p – 

p
>




coshq(x) – 
q

(pq �= ), (.)

log

(
sinh(x)

x

)
>




coshq(x) – 
q

(p = , q �= ), (.)

( sinh(x)
x )p – 

p
>




log
[
cosh(x)

]
(p �= , q = ), (.)

log

(
sinh(x)

x

)
>




log
[
cosh(x)

]
(p = q = ), (.)

hold for x ∈ (,∞) with the best possible constant /.
(ii) If max{p/, (p + )/} ≤ q <  or q ≥ max{, p, (p + )/}, then all the

inequalities (.)-(.) are reversed.

For clarity of expression, in the following we directly write Shp(x), Chp(x), and Hp,q(x),
and so on. For their general formulas, if pq = , then we regard them as limit at p =  or
q = , unless otherwise specified.

Lemma . will be used to establish sharp inequalities for hyperbolic functions.

Lemma . Let Shp and Chq be, respectively, defined on (,∞) by (.) and (.), and Dp,q

be defined on (,∞) by

Dp,q(x) = Shp(x) –



Chq(x) =
( sinh(x)

x )p – 
p

–
coshq(x) – 

q
. (.)

Then we have

lim
x→+

Dp,q(x)
x =




(
p – q +




)
, (.)
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lim
x→+

Dq–/,q(x)
x =




(
q –




)
, (.)

lim
x→∞

[
e–qxDp,q(x)

]
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞, p > q ≥ ,
∞, p ≥ q = ,
– –q

q , q ≥ p > ,
– –q

q , q > p = ,

(.)

lim
x→∞ Dp,q(x) =

⎧⎪⎨
⎪⎩

∞, p ≥ , q < ,
–∞, p < , q ≥ ,


q – 

p , p < , q < .
(.)

Proof Let x → +, then making use of power series formulas and (.) we get

Dp,q(x) =
p – q + 


x +

p – p – q + q – 
,

x + o
(
x). (.)

Therefore, (.) and (.) follows easily from (.).
We divide the proof of (.) into four cases.
Case . p > , q > . Then (.) leads to

lim
x→∞

[
e–qxDp,q(x)

]

= lim
x→∞

[

p

e(p–q)x

xp

(
 – e–x



)p

–


q

(
 + e–x



)q

–
(


p

–


q

)
e–qx

]

=

{
∞, p > q > ,
– –q

q , q ≥ p > .

Case . p = , q > . Then it follows from (.) that

lim
x→∞

[
e–qxD,q(x)

]

= lim
x→∞

[
xe–qx + e–qx log

(
 – e–x



)
– e–qx log x –


q

(
 + e–x



)q

+
e–qx

q

]

= –
–q

q
.

Case . p = , q = . Then (.) leads to

lim
x→∞ D,(x) = lim

x→∞

[
x
(




–
log x

x

)
+ log

(
 – e–x



)
–

 + e–x



]
= ∞.

Case . p > , q = . Then it follows from Lemma . and (.) that

Dp,(x) > D,(x) (.)

for x ∈ (,∞).
Therefore,

lim
x→∞ Dp,(x) = ∞

follows from Case  and (.).
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Equation (.) follows easily from (.) and the fact that

lim
x→∞ Up(x) =

{
∞, p ≥ ,
– 

p , p < . �

Making use of Proposition . and Lemma . we get Theorems . and ..

Theorem . The following statements are true:
(i) If q ∈ [/,∞), then the double inequality

( sinh(x)
x )p – 

p
<

coshq(x) – 
q

<
( sinh(x)

x )p – 
p

(.)

holds for x ∈ (,∞) if and only if p ≥ q – / and p ≤ q.
(ii) If q ∈ [/, /), then the second inequality of (.) holds for x ∈ (,∞) if

p ≥ q/, and the first inequality of (.) holds for x ∈ (,∞) if and only if
p ≤ q.

(iii) If q ∈ (, /), then the second inequality of (.) holds for x ∈ (,∞) if p ≥ q/,
and the first inequality of (.) holds for x ∈ (,∞) if and only if p ≤ q – /.

(iv) If q ∈ (–∞, ], then the second inequality of (.) holds for x ∈ (,∞) if p ≥ q, and
the first inequality of (.) holds for x ∈ (,∞) if and only and p ≤ q – /.

Proof All the sufficiencies in (i)-(iv) follow from Proposition . and Hp,q(+) = /. Next,
we prove the necessities in (i)-(iv).

(i) If q ∈ [/,∞) and the second inequality of (.) holds for all x ∈ (,∞), then (.)
and (.) lead to the conclusion that p ≥ q –/. If q ∈ [/,∞) and the first inequality
of (.) holds for all x ∈ (,∞), then we claim that p ≤ q, otherwise, p > q ∈ [/,∞)
and the first inequality (.) imply that Dp,q(x) <  for all x ∈ (,∞), which contradicts
with (.).

(ii) If q ∈ [/, /) and the first inequality of (.) holds for x ∈ (,∞), then the proof
of p ≤ q is similar to part two of (i).

(iii) If q ∈ (, /) and the first inequality of (.) holds for x ∈ (,∞), then the proof of
p ≤ q – / is similar to part one of (i).

(iv) If q ∈ (–∞, ] and the first inequality of (.) holds for x ∈ (,∞), then (.) and
(.) lead to the conclusion that p ≤ q – /. �

Theorem . The following statements are true:
(i) If p ∈ [/,∞), then the double inequality

coshq (x) – 
q

<
( sinh(x)

x )p – 
p

<
coshq (x) – 

q
(.)

holds for all x ∈ (,∞) if and only if q ≤ (p + )/ and q ≥ p.
(ii) If p ∈ [/, /), then the first inequality of (.) holds for all x ∈ (,∞) if

q ≤ p/, and the second inequality of (.) holds for all x ∈ (,∞) if and only if
q ≥ p.
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(iii) If p ∈ (, /), then the first inequality of (.) holds for all x ∈ (,∞) if
q ≤ p/, and the second inequality of (.) holds for all x ∈ (,∞) if and only if
q ≥ (p + )/.

(iv) If p ∈ (–∞, ], then the first inequality of (.) holds for all x ∈ (,∞) if q ≤ p, and
the second inequality of (.) holds for all x ∈ (,∞) if and only if q ≥ (p + )/.

Remark . Let q = . Then Theorem .(i) leads to the conclusion that the inequality

(
sinh(x)

x

)(–p)

> p + ( – p) cosh(x) (.)

holds for all x ∈ (,∞) if and only if p ≤ /, and inequality (.) is reversed if and only
if p ≥ /.

Remark . Let t ∈ (,∞), and �p,q and M(t; p, q) be, respectively, defined by

�p,q =
{

(p, q) : p ≥ 
} ∪ {

(p, q) : q ≤ p < 
}

(.)

and

M(t; p, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( – p
q + p

q tq)/p, pq �= , (p, q) ∈ �p,q,
e(tq–)/(q), p = , q �= ,
( p

 log t + )/p, p > , q = ,
t/, p = q = .

(.)

Then we clearly see that Hp,q(x) < (>) Hp,q(+) = / for all x ∈ (,∞) is equivalent to
sinh(x)/x > (<) M(cosh(x); p, q). Moreover, it is not difficult to verify that M(t; p, q) is de-
creasing with respect to p and increasing with respect to q if (p, q) ∈ �p,q.

Remark . From Remark . we know that Theorems . and . are also true if (p, q) ∈
�p,q and replacing (.) and (.), respectively, with

(
 –

p

q
+

p

q
coshq(x)

)/p

<
sinh(x)

x
<

(
 –

p

q
+

p

q
coshq(x)

)/p

and

(
 –

p
q

+
p

q
coshq (x)

)/p

<
sinh(x)

x
<

(
 –

p
q

+
p

q
coshq (x)

)/p

.

Let q = , then Theorem . leads to Corollary ..

Corollary . The double inequality

(
 –

p


+

p


cosh(x)

)/p

<
sinh(x)

x
<

(
 –

p


+

p


cosh(x)

)/p

holds for all x ∈ (,∞) if and only if p ≥ / and  ≤ p ≤ .
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Remark . Letting p = /, /, ,  and making use of the monotonicity of M(cosh(x);
p, q) with respect to p, then Corollary . leads to the inequalities

cosh/(x) <
(




+



cosh(x)
)/

<
(




+



cosh(x)
)/

<
(




+



cosh(x)
)/

<
sinh(x)

x
<




+



cosh(x)

for x ∈ (,∞), which is better than the inequalities given in (.) of [].

Let p = , , then Theorem . leads to Corollary ..

Corollary . Let x ∈ (,∞). Then the double inequality

e(coshq (x)–)/(q) <
sinh(x)

x
< e(coshq (x)–)/(q)

holds if and only if q ≤  and q ≥ /, and the double inequality

 –


q
+


q

coshq (x) <
sinh(x)

x
<  –


q

+


q
coshq (x) (.)

holds if and only if q ≤ / and q ≥ .

Remark . Letting q = /, /, /, /, /,  and making use of the monotonicity of
M(cosh(x); p, q) with respect to q, then inequality (.) leads to




log
[
cosh(x)

]
+  <  cosh/(x) –  < cosh/(x) <




+



cosh/(x)

<



+



cosh/(x) <



+



cosh/(x)

<
sinh(x)

x
<




+



cosh(x)

for x ∈ (,∞).

Let p = kq, then (.) and (.) become

�kq,q =
{

(k, q) : k, q ≥ 
} ∪ {

(k, q) : k, q < 
} ∪ {

(k, q) :  < k ≤ , q ≤ 
}

,

M(t; kq, q) =

⎧⎪⎪⎨
⎪⎪⎩

( – k
 + k

 tq)/(kqt), kq �= , (k, q) ∈ �kq,q,

e
tq–

q , q �= , k = ,
t/, q = .

Remark . It is not difficult to verify that M(t; kq, q) is decreasing (increasing) with re-
spect to q if k > (<) , and M(t; kq, q) is decreasing (increasing) with respect to k if q > (<) .

Theorem . Let x ∈ (,∞) and k ∈ [, ). Then the following statements are true:
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(i) If k ∈ [/, ), then the inequality

sinh(x)
x

>
(

 –
k


+
k


coshq(x)
)/(kq)

(.)

holds if and only if q ≤ /[( – k)].
(ii) If k ∈ (, ], then the double inequality

(
 –

k


+
k


coshq (x)
)/(kq)

<
sinh(x)

x
<

(
 –

k


+
k


coshq (x)
)/(kq)

(.)

holds if and only if q ≤  and q ≥ /[( – k)].

Proof (i) If k ∈ [/, ), then it follows from Corollary .(iii) that Hkq,q(x) > Hkq,q(+) =
/ and (.) holds for  ≤ q ≤ /[( – k)]. For q < , we have Mk(cosh(x); kq, q) <
Mk(cosh(x); , ) due to Mk(cosh(x); kq, q) is a weighted qth power mean of cosh(x) and
, so (.) still holds.

If (.) holds, then Dkq,q(x) >  and (.) leads to

lim
x→+

Dkq,q(x)
x =




(
kq – q +




)
≥ 

and q ≤ /[( – k)].
(ii) If k ∈ (, ], then it follows from Corollary .(v) that Hkq,q (x) > Hkq,q (+) = /,

Hkq,q (x) < Hkq,q (+) = /, and (.) holds for q ≤  and q ≥ /[( – k)].
If the second inequality of (.) holds, then Dkq,q (x) <  and (.) leads to q ≥ /[(–

k)].
Next, we prove that the condition q ≤  is necessary such that the first inequality of

(.) holds for all x ∈ (,∞). Indeed, the first inequality of (.) leads to Dkq,q (x) <  for
all x ∈ (,∞). If q >  and k ∈ (, ], then  < kq ≤ q and (.) leads to

lim
x→∞

[
e–qxDkq,q (x)

]
= –

–q

q
< ,

which implies that there exists large enough X >  such that Dkq,q (x) <  for x ∈ (X,∞).
�

Let k = , /, , then Theorem . leads to Corollary ..

Corollary . The inequalities

(



+



coshp (x)
)/p

<
sinh(x)

x
<

(



+



coshp (x)
)/p

, (.)

sinh(x)
x

>
(




+



coshp(x)
)/(p)

, (.)

and

sinh(x)
x

>
(




+



coshq(x)
)/(q)

(.)

hold for all x ∈ (,∞) if and only if p ≤ , p ≥ /, p ≤ /, and q ≤ /.
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Let p = q – /, then (.) and (.) become

�q–/,q =
{

q : q ≥ 


}
,

M
(

t; q –



, q
)

=

{
( 

q + ( – 
q )tq)/(q–), q > 

 ,
e(t/–)/, q = 

 .

It is easy to prove that M(t; q – /, q) is decreasing with respect to q on the interval
[/,∞) and

lim
q→∞ M

(
t; q –




, q
)

= t/.

Theorem . Let q > /. Then the inequality

sinh(x)
x

>
[


q

+
(

 –


q

)
coshq(x)

]/(q–)

(.)

holds for all x ∈ (,∞) if and only if q ≥ /, and inequality (.) is reversed if and only
if q ≤ /.

Proof The sufficiency can be derived from Corollary .. If inequality (.) holds, then
Dq–/,q(x) >  and (.) leads to the conclusion that q ≥ /.

Next, we prove that q ≤ / if the reversed inequality (.) holds.
If there exists q > / such that the reversed inequality (.) holds, then Dq–/,q(x) < ,

q – / > q > /, and (.) leads to

lim
x→∞

[
e–qxDq–/,q(x)

]
= ∞, (.)

which contradicts with Dq–/,q(x) < . �

Let q = /, , /, /, /, ,∞ and /, /, /, /, /+. Then Theorem .
leads to Corollary ..

Corollary . The inequalities

cosh/(x) <
(




cosh(x) +



)/

<
(




cosh/(x) +



)/

<
(




cosh/(x) +



)/

<
(




cosh/(x) +



)/

<
(




cosh(x) +



)/

<
(




cosh/(x) +



)/

<
sinh(x)

x
<

(



cosh/(x) +



)/

<
(




cosh/(x) +



)

<
(




cosh/(x) +



)/

< e(cosh/(x)–)/

hold for all x ∈ (,∞).
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4 Applications
Let a, b > . Then the geometric mean G(a, b), arithmetic mean A(a, b), quadratic mean
Q(a, b), logarithmic mean L(a, b), Neuman-Sándor mean M(a, b) [] and second Yang
mean V (a, b) [] are defined by

G(a, b) =
√

ab, A(a, b) =
a + b


, Q(a, b) =

√
a + b


,

and

L(a, b) =
b – a

log b – log a
(a �= b), L(a, a) = a,

M(a, b) =
b – a

 sinh–( b–a
b+a )

(a �= b), M(a, a) = a,

V (a, b) =
b – a√

 sinh–( b–a√
ab

)
= V (a, b) (a �= b), V (a, a) = a,

respectively.
The Schwab-Borchardt mean SB(a, b) [, , ] of a ≥  and b >  is given by

SB(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

√
b–a

arccos(a/b) , a < b,
a, a = b,√

a–b

cosh–(a/b) , a > b,

where cosh–(x) = log(x +
√

x – ) is the inverse hyperbolic cosine function.
Let p, q ∈R and the function t → Sh(p, q, t) be defined on (,∞) by

Sh(p, q, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

( q
p

sinh(pt)
sinh(qt) )/(p–q), pq(p – q) �= ,

( sinh(pt)
pt )/p, p �= , q = ,

( sinh(qt)
qt )/q, p = , q �= ,

et coth(pt)–/p, p = q, pq �= ,
, p = q = .

Recently, Yang [] proved that Shp,q(b, a), defined by

Shp,q(b, a) =

{
a × Sh[p, q, cosh–(b/a)], a < b,
a, a = b,

is a mean of a and b for all b ≥ a >  if (p, q) ∈ {(p, q) : p > , q > , p + q ≤ , L(p, q) ≤
/ log } ∪ {(p, q) : p < ,  ≤ p + q ≤ } ∪ {(p, q) : q < ,  ≤ p + q ≤ }.

In particular, Sh,(b, a) = a sinh[cosh–(b/a)]/ cosh–(b/a) = SB(b, a) for all b ≥ a > . Let
t = cosh–(b/a), then Theorems .-. lead to Theorems .-..

Theorem . Let b ≥ a >  and (p, q) ∈ {(p, q) : p ≥ } ∪ {(p, q) : q ≤ p < }. Then the
following statements are true:
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(i) If q ∈ [/,∞), then the double inequality

[(
 –

p

q

)
aq +

p

q
bq

]/p

a–q/p

< SB(b, a) <
[(

 –
p

q

)
aq +

p

q
bq

]/p

a–q/p (.)

holds if and only if p ≥ q – / and p ≤ q.
(ii) If q ∈ [/, /), then the first inequality of (.) holds for p ≥ q/, and the

second inequality of (.) holds if and only if p ≤ q.
(iii) If q ∈ (, /), then the first inequality of (.) holds for p ≥ q/, and the second

inequality of (.) holds if and only if p ≤ q – /.
(iv) If q ∈ (–∞, ], then the first inequality of (.) holds for p ≥ q, and the second

inequality of (.) holds if and only if p ≤ q – /.

Theorem . Let b ≥ a >  and (p, q) ∈ {(p, q) : p ≥ } ∪ {(p, q) : q ≤ p < }. Then the
following statements are true:

(i) If p ∈ [/,∞), then the double inequality

[(
 –

p
q

)
aq +

p
q

bq

]/p

a–q/p

< SB(b, a) <
[(

 –
p

q

)
aq +

p
q

bq

]/p

a–q/p (.)

holds if and only if q ≤ (p + )/ and q ≥ p.
(ii) If p ∈ [/, /), then the first inequality of (.) holds for q ≤ p/, and the

second inequality of (.) holds if and only if q ≥ p.
(iii) If p ∈ (, /), then the first inequality of (.) holds for q ≤ p/, and the second

inequality of (.) holds if and only if q ≥ (p + )/.
(iv) If p ∈ (–∞, ], then the first inequality of (.) holds for q ≤ p, and the second

inequality of (.) holds if and only if q ≥ (p + )/.

Theorem . Let b ≥ a >  and k ∈ [, ). Then the following statements are true:
(i) If k ∈ [/, ), then the inequality

SB(b, a) >
[(

 –
k


)
aq +

k


bq
]/(kq)

a–/k

holds if and only if q ≤ /[( – k)].
(ii) If k ∈ [, ], then the double inequality

[(
 –

k


)
aq +

k


bq

]/(kq)

a–/k

< SB(b, a) <
[(

 –
k


)
aq +

k


bq

]/(kq)

a–/k

holds if and only if q ≤  and q ≥ /[( – k)].
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Theorem . Let b ≥ a >  and p, q > /. Then the double inequality

[


p
ap +

(
 –


p

)
bp

]/(p–)

a–p/(p–)

< SB(b, a) <
[


q

aq +
(

 –


q

)
bq

]/(q–)

a–q/(q–)

holds if and only if p ≥ / and q ≤ /.

Remark . Let a, b >  with a �= b. Then we clearly see that

Sh,
[
A(a, b), G(a, b)

]
= SB

[
A(a, b), G(a, b)

]
=

b – a
log b – log a

= L(a, b),

Sh,
[
Q(a, b), A(a, b)

]
= SB

[
Q(a, b), A(a, b)

]
=

b – a
 sinh–( b–a

b+a )
= M(a, b),

Sh,
[
Q(a, b), G(a, b)

]
= SB

[
Q(a, b), G(a, b)

]
=

b – a√
 sinh–( b–a√

ab
)

= V (a, b),

and Theorems .-. still hold true if we replace (b, a, SB(a, b)) with (A(a, b), G(a, b),
L(a, b)), (Q(a, b), A(a, b), M(a, b)) and (Q(a, b), G(a, b), V (a, b)).
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