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Abstract
In this paper, a nonlinear integral system is considered in critical space. Some
important properties of positive solutions such as symmetry, monotonicity,
integrability, and asymptotic behaviors, are obtained. Moreover, by comparison and
analysis, we discover that those properties are an important tool to characterize the
tightness of the system.
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1 Introduction
In this paper, we consider the following nonlinear integral system involving the weighted
Riesz potentials:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x) =
∫

Rn
vp(y)uq(y)wr(y)

|x–y|λ


|y|β dy,

v(x) =
∫

Rn
vr (y)up(y)wq(y)

|x–y|λ


|y|β dy,

w(x) =
∫

Rn
vq(y)ur(y)wp(y)

|x–y|λ


|y|β dy,

(.)

where  < λ < n,  < β + λ < n, and p, q, r ≥  satisfying p + q + r = (n – λ – β)/λ.
Recently, there has been tremendous interest in studying integral systems. Because the

integral equation(s) not only formulate abstractly many laws and relations in science, en-
gineering, economics, and other fields of applied science, but also they provide a special
technique to investigate the global properties of the corresponding differential equation(s)
due to the fact that the integral equation(s), under certain integrability conditions, is (are)
equivalent to differential equation(s). We recall some related background and investiga-
tions as follows.

As u(x) = v(x) = w(x) and  < β < n – λ, p + q + r = (n – β)/λ – , the system (.) can be
reduced to the following single equation:

u(x) =
∫

Rn

up+q+r(y)
|x – y|λ|y|β dy. (.)

Lu and Zhu in [] obtained some regularity results and showed that every positive solu-
tion u(x) is radially symmetric about the origin and strictly decreasing in Ln/λ(Rn). Sub-
sequently, under the same conditions, Lei in [] showed that for  < p + q + r ≤ (n – β)/λ,
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equation (.) has no positive solution and that for p + q + r > (n – β)/λ, all of positive
solution of (.), u ∈ Ln/λ(Rn) is bounded and decays fast with rate |x|–λ.

When β = , λ = n –  and w(x) = v(x), the system (.) can be rewritten as

⎧
⎨

⎩

u(x) =
∫

Rn
vq (y)up (y)

|x–y|λ dy,

v(x) =
∫

Rn
up (y)vp (y)

|x–y|λ dy.
(.)

The equations (.), under some integrability condition, is equivalent to the following dif-
ferential system:

⎧
⎨

⎩

–�u(x) = vq (x)up (x) in R
n,

–�v(x) = up (x)vq (x) in R
n,

(.)

which are closely related to stationary Schrödinger system with critical exponents for
the Bose-Einstein condensate. Li and Ma in [] showed that for n ≥ ,  ≤ p, q ≤
(n + )/(n – ), and p + q = (n + )/(n – ), any positive solution pair (u, v) of system
(.) in Ln/(n–)(Rn) × Ln/(n–)(Rn) is radially symmetric and unique.

Later on, Zhao and Lei in [] considered the following weighted nonlinear system:

⎧
⎨

⎩

u(x) =
∫

Rn
vq (y)up (y)
|x–y|λ|y|β dy,

v(x) =
∫

Rn
up (y)vp (y)
|x–y|λ|y|β dy.

(.)

The authors in [] showed that as λ+β < n,  ≤ β < λ and p +q = (n–λ–β)/(λ+β), any
positive solution pair (u, v) of equation (.) is in Ln/(λ+β)(Rn)×Ln/(λ+β)(Rn). Additionally,
if (n – λ)(λ + β) ≥ nβ , then the positive solution pair (u, v) of system (.) is bounded and
satisfies

lim|x|→∞ |x|λu(x) =
∫

Rn

uq(y)vp(y)
|y|β dy, lim|x|→∞ |x|λv(x) =

∫

Rn

up(y)vq(y)
|y|β dy. (.)

An analogous integral system of (.) is

⎧
⎨

⎩

u(x) = 
|x|α

∫

Rn
vq(y)

|x–y|λ|y|β dy,

v(x) = 
|x|β

∫

Rn
up(y)

|x–y|λ|y|α dy.
(.)

It is closely related to the best constant in the weighted Hardy-Littlewood-Sobolev in-
equality.

Assume that  < r, s < ∞,  < λ < n, α + β ≥ , /r + /s + (λ + α + β)/n = , and  – /r –
λ/n ≤ α/n <  – /r, the well-known weighted Hardy-Littlewood-Sobolev inequality states
that

∣
∣
∣
∣

∫

Rn

∫

Rn
|x|–αf (x)g(y)|x – y|–λ|y|–β dx dy

∣
∣
∣
∣ ≤ C(λ,α,β , n)‖f ‖Lr(Rn)‖g‖Ls(Rn)

for any f ∈ Lr(Rn) and g ∈ Ls(Rn).
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To find the best constant C(λ,α,β , n) in the above inequality, one can maximize the
functional

J(f , g) =
∫

Rn

∫

Rn
|x|–αf (x)g(y)|x – y|–λ|y|–β dx dy,

under the constraints

‖f ‖Lr (Rn) = ‖g‖Ls(Rn) = .

The corresponding Euler-Lagrange equations are the following integral system:

⎧
⎨

⎩

λrf r–(x) = 
|x|α

∫

Rn
g(y)

|x–y|λ|y|β dy,

λsgs–(x) = 
|x|β

∫

Rn
f (y)

|x–y|λ|y|α dy.
(.)

Here f , g ≥ , and λr = λs = J(f , g). After a nonlinear transformation, i.e. u = cf r–,
v = cgs–, the integral system (.) becomes (.). By the method of moving plane in inte-
gral form, Jin and Li in [] showed that all of the positive solutions of (.) are radially sym-
metric. Subsequently, they used the regularity lifting lemma and showed, when α,β > ,
that  < λ < n and p, q >  satisfy


p + 

+


q + 
=

λ̄

n
,


p + 

–
λ

n
<

α

n
<


p + 

.

Then

u ∈ Lr(
R

n), v ∈ Ls(
R

n),

provided that, for (q + )(λ + β) ≥ n,


r

∈
(

max{α,βq + λ̄ – n}
n

,
λ + α

n

)

,

s

∈
(

β

n
,
min{λ + β , p(λ + α) + λ̄ – n}

n

)

, (.)

and for (q + )(λ + β) < n


r

∈
(

α

n
,
min{λ + α, q(λ + β) + λ̄ – n}

n

)

,

s

∈
(

max{β , pλ + λ̄ – n}
n

,
β + λ

n

)

. (.)

Furthermore, with the help of the integrability and symmetry of positive solution for (.),
Li, Lim, Lei and Ma in [–] obtained the sharp asymptotic estimates as follows.

When α + β ≥ , the pair of solutions (u, v) of (.) have the following asymptotic be-
haviors at the origin:

u(x) � A

|x|α , if λ + (q + )β < n,
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and

v(x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A
|x|β , if λ + α(p + ) < n,
A| ln |x||

|x|β , if λ + α(p + ) = n,
A

|x|α(p+)+β+λ–n , if λ + α(p + ) > n.

At the same time, (u, v) at infinity admits the following asymptotic behaviors:

u(x) � B

|x|λ+α
, if λq + β(q + ) > n, (.)

and

v(x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B
|x|β+λ , if λp + α(p + ) > n,
B| ln |x||
|x|β+λ , if p + α(p + ) = n,

B
|x|(α+λ)(p+)+β–n , if p + α(p + ) < n.

(.)

Here, we use the notation w(x) � C/|x|t to denote that limx→ or ∞ |x|tw(x) = C for a func-
tion w(x), a real number t, and a non-zero real number C.

In this paper, we will study some important properties of (.), such as symmetry, mono-
tonicity, integrability, and asymptotic behaviors. At the same time, by comparison and
analysis, we observe that the related properties are important tools to characterize the
tightness of the system. Specifically, our main results can be formulated as follows.

Theorem . Let (u, v, w) be a pair of positive solutions of (.) and p + q + r = (n – λ –
β)/λ. Assume that (u(x), v(x), w(x)) ∈ Ls(Rn) × Ls(Rn) × Ls(Rn) for s = n(p + q + r – )/(n –
β – λ). Then:

R. (u, v, w) is radially symmetric and monotone decreasing about the origin.
R. (u, v, w) admits the same integral interval:

u(x), v(x), w(x) ∈ Lτ
(
R

n), ∀τ ∈
(

n
λ

,∞
]

. (.)

R. We have the optimal decay estimates

lim|x|→∞
[|x|λu(x)

]
=

∫

Rn

vp(y)uq(y)wr(y)
|y|β dy; (.)

lim|x|→∞
[|x|λv(x)

]
=

∫

Rn

vr(y)up(y)wq(y)
|y|β dy; (.)

lim|x|→∞
[|x|λw(x)

]
=

∫

Rn

vq(y)ur(y)wp(y)
|y|β dy. (.)

Remark . Comparing Theorem . with the results of (.) in [], the pair of solutions
has the same radial symmetry and is decreasing about the origin. But the integrable in-
tervals and asymptotic behaviors of solutions for the system (.) are different from those
of (.). The different structure leads to a Kelvin transform used in [–] to obtain the
decay estimate of (.), which is invalid for the system (.). Therefore, we have to look for



Wang et al. Journal of Inequalities and Applications  (2016) 2016:8 Page 5 of 17

a new way to obtain the asymptotic result. Precisely, the difference between systems (.)
and (.) leads to the thoroughly different asymptotic behavior at infinity. Indeed, by (.)
and (.), we have learned that the asymptotic behavior of u and v in (.) is completely
different, however, for the system (.), we know from (.), (.), and (.) that the so-
lution (u, v, w) has the same decay estimate at infinity. This implies that the triplet (u, v, w)
in (.) is tighter than those of system (.).

The other significant difference between (.) and (.) is the corresponding optimal in-
tegrable intervals of solutions. From (.), we know that the triplet (u, v, w) in (.) admits
the same optimal integrable intervals. However, for the pair of solutions (u, v) in system
(.), the optimal integrable interval of u is different from the one of v.

Remark . We remark that the integral system (.) considered in [] can be regarded as
the special cases of (.) with v = w and r = p. At the same time, the system (.) including
its reduced model (.) studied in [], have similar radial symmetry, monotonicity, and
asymptotic behavior to our system (.). However, the solution space Ls(Rn) × Ls(Rn) ×
Ls(Rn) with s = n(p + q + r – )/(n – λ) = n/λ in our theorems is different from Ls(Rn) ×
Ls(Rn) with s = n/(λ + β) in [] since the index p + q + r = (n – λ – β)/λ in our paper is
different from one p + q = (n – λ – β)/(λ + β) in []. Moreover, the method for the upper
bound estimate of integrable interval to system (.) in our paper is completely different
from the one in []. By contrast, our technique is more simple than the one used in [].

The rest of this paper is organized as follows. In Section , we will consider R and the
proofs of R will be given in Section . Finally, we will build up the sharp asymptotic esti-
mates of (.) in Section .

Throughout this paper, we always use the letter C to denote positive constants that may
vary at each occurrence but are independent of the essential variables.

2 Radial symmetry
To obtain our results, in this section, we will use the method of moving plane in the inte-
gral forms recently introduced by Chen et al. in [] and prove the radial symmetry and
monotonicity of positive solutions of system (.). First of all, we introduce some necessary
lemma.

For a given real number μ ∈R, define

�μ �
{

x = (x, . . . , xn) ∈ R
n : x ≥ μ

}
,

and let xμ � (μ – x, x, . . . , xn), uμ(x) � u(xμ), vμ(x) � v(xμ), and wμ(x) � w(xμ).

Lemma . Let (u(x), v(x), w(x)) be a solution of system (.), then

uμ(x) – u(x)

=
∫

�μ

{([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vp
μuq

μwr
μ(y) – vpuqwr)

+
(


|xμ – y|λ –


|x – y|λ

)(


|y|β –


|yμ|β
)

vpuqwr
}

dy

� A(x) + A(x); (.)
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vμ(x) – v(x)

=
∫

�μ

{([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vr
μup

μwq
μ(y) – vrupwq)

+
(


|xμ – y|λ –


|x – y|λ

)(


|y|β –


|yμ|β
)

vrupwq
}

dy

� B(x) + B(x); (.)

and

wμ(x) – w(x)

=
∫

�μ

{([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vq
μur

μwp
μ(y) – vqurwp)

+
(


|xμ – y|λ –


|x – y|λ

)(


|y|β –


|yμ|β
)

vqurwp(y)
}

dy

� C(x) + C(x). (.)

Proof By a direct calculation, it is easy to check that

u(x) =
∫

�μ

vpuqwr

|x – y|λ|y|β dy +
∫

�μ


|xμ – y|λ

vp
μuq

μwr
μ(y)

|yμ|β dy

and

uμ(x) =
∫

�μ

vpuqwr

|xμ – y|λ|y|β dy +
∫

�μ


|x – y|λ

vp
μuq

μwr
μ(y)

|yμ|β dy,

(.) is a direct result of the above equations. Similarly, we get (.) and (.). This com-
pletes the proof of Lemma .. �

Proof of R Now, we turn to the first part of Theorem .. The proof is made up of two
steps. In Step , we compare the values of u(x) with uμ(x), v(x) with vμ(x) and w(x) with
wμ(x) on �μ, respectively, and show that for sufficiently negative μ < , we have

u(x) ≥ uμ(x), v(x) ≥ vμ(x) and w(x) ≥ wμ(x) ∀x ∈ �μ – {}. (.)

In Step , we continuously move the plane x = μ along the x direction from near negative
infinity to the right as long as (.) holds. By moving this plane in this way, we finally show
that the plane will stop at the origin. Next we turn our attention to Step .

Step : Since A(x) <  and |yμ| > |y| for any y ∈ �μ, we have

uμ(x) – u(x)

≤
∫

�μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vp
μuq

μwr
μ(y) – vpuqwr)dy

≤
∫

�v
μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
([

vp
μ – vp]uq

μwr
μ(y)

)
dy

+
∫

�u
μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vp[uq

μ – uq]wr
μ(y)

)
dy
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+
∫

�w
μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vpuq[wr

μ(y) – wr])dy

� A,(x) + A,(x) + A,(x). (.)

Similarly, we conclude that

vμ(x) – v(x)

≤
∫

�μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vr
μup

μwq
μ(y) – vrupwq)dy

≤
∫

�v
μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
([

vr
μ – vr]up

μwq
μ(y)

)
dy

+
∫

�u
μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vr[up

μ – up]wq
μ(y)

)
dy

+
∫

�w
μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vrup[wq

μ(y) – wq])dy

� B,(x) + B,(x) + B,(x) (.)

and

wμ(x) – w(x)

≤
∫

�μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vq
μur

μwp
μ(y) – vqurwp)dy

≤
∫

�v
μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
([

vq
μ – vq]ur

μwp
μ(y)

)
dy

+
∫

�u
μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vq[ur

μ – ur]wp
μ(y)

)
dy

+
∫

�w
μ

([


|x – y|λ –


|xμ – y|λ
]


|yμ|β

)
(
vqur[wp

μ(y) – wp])dy

� C,(x) + C,(x) + C,(x), (.)

where �u
μ = {x ∈ �μ | u(x) < uμ(x)}, �v

μ = {x ∈ �μ | v(x) < vμ(x)} and �w
μ = {x ∈ �μ | w(x) <

wμ(x)}.
Since p + q + r = (n – λ – β)/λ and  < β + λ < n,

s � n(p + q + r – )
n – λ – β

=
n
λ

>
n
λ

.

By the weighted Hardy-Littlewood-Sobolev inequality and the Hölder inequality, we con-
clude that

∥
∥A,(x)

∥
∥

Ls(�u
μ) ≤ C(n,β ,λ)

∥
∥
[
vp
μ – vp]uq

μwr
μ

∥
∥

L
ns

n+(n–λ–β)s (�v
μ)

≤ C(n,β ,λ, p, q)
∥
∥uq

μvp–
μ wr

μ

∥
∥

L
n

n–λ–β (�μ)
‖vμ – v‖Ls(�v

μ)

≤ C(n,β ,λ, p, q)‖vμ‖p–
Ls(�v

μ)‖wμ‖r
Ls(�μ)‖uμ‖q

Ls(�μ)‖vμ – v‖Ls(�v
μ). (.)
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Similarly, we have

∥
∥A,(x)

∥
∥

Ls(�v
μ) ≤ C(n, p, q,β ,λ)‖v‖p

Ls(�μ)‖u‖q–
Ls(�u

μ)‖wμ‖r
Ls(�μ)‖uμ – u‖Ls(�u

μ) (.)

and

∥
∥A,(x)

∥
∥

Ls(�v
μ) ≤ C(n, p, q,β ,λ)‖v‖p

Ls(�μ)‖u‖q
Ls(�μ)‖wμ‖r–

Ls(�μ)‖wμ – w‖Ls(�w
μ ). (.)

This together with (.), implies that

‖uμ – u‖Ls(�u
μ) ≤ ∥

∥A,(x)
∥
∥

Ls(�u
μ) +

∥
∥A,(x)

∥
∥

Ls(�u
μ) +

∥
∥A,(x)

∥
∥

Ls(�u
μ)

≤ C
{‖vμ‖p–

Ls(�v
μ)‖wμ‖r

Ls(�μ)‖uμ‖q
Ls(�μ)‖vμ – v‖Ls(�v

μ)

+ ‖v‖p
Ls(�μ)‖u‖q–

Ls(�u
μ)‖wμ‖r

Ls(�μ)‖uμ – u‖Ls(�u
μ)

+ ‖v‖p
Ls(�μ)‖u‖q

Ls(�μ)‖wμ‖r–
Ls(�μ)‖wμ – w‖Ls(�w

μ )
}

. (.)

Since u, v, w ∈ Ls(Rn), we can choose N >  large enough, such that for any μ ≤ –N < ,

C(n,β ,λ, p, q)
{‖vμ‖p–

Ls(�v
μ)‖wμ‖r

Ls(�μ)‖uμ‖q
Ls(�μ) + ‖v‖p

Ls(�μ)‖u‖q–
Ls(�u

μ)‖wμ‖r
Ls(�μ)

+ ‖v‖p
Ls(�μ)‖u‖q

Ls(�μ)‖wμ‖r–
Ls(�μ)

} ≤ 


,

which, combined with (.), implies that

‖uμ – u‖Ls(�u
μ)

≤ 

‖uμ – u‖Ls(�u

μ) +


‖vμ – v‖Ls(�v

μ) +


‖wμ – w‖Ls(�w

μ ). (.)

With the same method, we have

‖vμ – v‖Ls(�v
μ)

≤ 

‖uμ – u‖Ls(�u

μ) +


‖vμ – v‖Ls(�v

μ) +


‖wμ – w‖Ls(�w

μ ) (.)

and

‖wμ – w‖Ls(�w
μ )

≤ 

‖uμ – u‖Ls(�u

μ) +


‖vμ – v‖Ls(�v

μ) +


‖wμ – w‖Ls(�w

μ ). (.)

This together with (.), (.), and (.) leads to

‖uμ – u‖Ls(�u
μ) + ‖vμ – v‖Ls(�v

μ) + ‖wμ – w‖Ls(�w
μ ) = .

Therefore �u
μ, �v

μ and �w
μ must be three zero-measure sets, which completes the assertion

of Step .
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Step : We will continuously move the plane x = μ to the right as long as (.) holds.
Indeed, suppose that at x = μ < , we have, for any x ∈ �μ

u(x) ≥ uμ (x), v(x) ≥ vμ (x), and w(x) ≥ wμ (x),

but

u(x) 	≡ uμ (x) or v(x) 	≡ vμ (x) or w(x) 	≡ wμ (x).

Next, we will show that the plane can be moved further to the right. Precisely, there exists
an ε depending on n, α, λ, β and the solution (u(x), v(x), w(x)) itself such that for ∀x ∈ �μ,
μ ∈ [μ,μ + ε),

u(x) ≥ uμ(x), v(x) ≥ vμ(x), and w(x) ≥ wμ(x). (.)

Under the assumption that v(x) 	≡ vμ (x) or w(x) 	≡ wμ (x) on �μ , by (.), (.), (.), and
the non-negativity of u, v, w, we have u(x) > uμ (x) in the interior of �μ .

Let

{
�̃u

μ =
{

x ∈ �μ | u(x) ≤ uμ (x)
}

, �̃v
μ =

{
x ∈ �μ |v(x) ≤ vμ (x)

}

and �̃w
μ =

{
x ∈ �μ |w(x) ≤ wμ (x)

}}
.

From the analysis mentioned above, it is easy to check that the �̃u
μ is a zero measure

set in R
n. Similarly, we also have m{�̃v

μ} =  and m{�̃w
μ} = . This together with the

integrability conditions (u, v, w) ∈ Ls(Rn) ensures that one can choose ε small enough such
that for all μ ∈ [μ,μ + ε)

C(n,β ,λ, p, q)
{[‖vμ‖p–

Ls(�v
μ)‖wμ‖r

Ls(�μ)‖uμ‖q
Ls(�μ) + ‖v‖p

Ls(�μ)‖u‖q–
Ls(�u

μ)‖wμ‖r
Ls(�μ)

+ ‖v‖p
Ls(�μ)‖u‖q

Ls(�μ)‖wμ‖r–
Ls(�w

μ )
]

+
[‖vμ‖r–

Ls(�v
μ)‖uμ‖p

Ls(�μ)‖wμ‖p
Ls(�μ)

+ ‖v‖r
Ls(�μ)‖uμ‖p–

Ls(�u
μ)‖wμ‖q

Ls(�μ) + ‖v‖r
Ls(�μ)‖u‖p

Ls(�μ)‖wμ‖q–
Ls(�μ)

]

+
[‖vμ‖q–

Ls(�v
μ)‖uμ‖r

Ls(�μ)‖wμ‖p
Ls(�μ) + ‖v‖q

Ls(�μ)‖uμ‖r–
Ls(�u

μ)‖wμ‖p
Ls(�μ)

+ ‖v‖q
Ls(�μ)‖u‖r

Ls(�μ)‖wμ‖p–
Ls(�w

μ )
]} ≤ 


.

So (.) and (.) hold. Thus we also have

∥
∥uμ(x) – u(x)

∥
∥

Ls(�u
μ) =

∥
∥vμ(x) – v(x)

∥
∥

Ls(�v
μ) =

∥
∥wμ(x) – w(x)

∥
∥

Ls(�v
μ) = , (.)

which implies that the measures of �̃u
μ, �̃v

μ, and �̃w
μ must be zero. This verifies (.).

Finally, we show that the plane cannot stop before hitting the origin. On the contrary, if
the plane stops at x = μ < , then u(x), v(x), and w(x) must be symmetric about the plane
x = μ, i.e.,

u(x) = uμ (x), v(x) = vμ (x), and w(x) = wμ (x), ∀x ∈ �μ . (.)
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On the other hand, noting that |xμ | > |x| for any x ∈ �μ , we have

u(x) – uμ (x)

=
∫

Rn

vp(y)uq(y)wr(y)
|x – y|λ


|y|β dy –

∫

Rn

vp(y)uq(y)wr(y)
|xμ – y|λ


|y|β dy

≥
∫

Rn

[


|x – y|λ –


|xμ – y|λ
]

vp(y)uq(y)wr(y)
|y|β dy

=
∫

�
μ

[


|x – y|λ –


|xμ – y|λ
](

vpuqwr(y)
|y|β –

vp
μ uq

μ wr
μ (y)

|yμ |β
)

dy

>
∫

�
μ

[


|x – y|λ –


|xμ – y|λ
]{vpuqwr(y) – vp

μ (y)uq
μ wr

μ(y)
|y|β

}

dy

= , (.)

which obviously contradicts with (.). Since the direction is arbitrary, we derive that u
and v are radially symmetric about the origin and decreasing. This completes the proof
of R. �

3 Integrability
In this section, we will apply the regularity lifting lemma to obtain the integrable inter-
vals of the solutions of system (.). On the other hand, a new skill is adapted to get the
uniformly bound of positive solutions. Here, for completeness, we first of all give the reg-
ularity lifting lemma as follows.

Lemma . (cf. []) Let X and Y be both Banach spaces with norm ‖ · ‖X and ‖ · ‖Y ,
respectively. The subspace of X and Y ,Z = X ∩Y is endowed with a new norm by

‖ · ‖Z = p
√

‖ · ‖p
X + ‖ · ‖p

Y , p ∈ [,∞].

Suppose that T is a contraction map from a Banach space X into itself and from a Banach
space Y into itself. If f ∈X and there exists a function g ∈Z = X ∩Y such that f = T f + g ,
then f also belongs to Z .

Theorem . For s = n(p + q + r – )/(n –λ), let (u(x), v(x), w(x)) ∈ Ls(Rn)×Ls(Rn)×Ls(Rn)
be a positive solutions of (.). Then

u(x), v(x), w(x) ∈ Lτ
(
R

n), ∀τ ∈
(

n
λ

,∞
]

. (.)

Proof For every fixed real number A > , set

fA(x) �

⎧
⎨

⎩

f (x), if f (x) ≥ A, or |x| ≥ A;

, otherwise,

and

f (x) � v(x) + u(x) + w(x).
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By (.), we have

f (x) = u(x) + v(x) + w(x)

=
∫

Rn

{
up(y)vq(y)wr(y) + uq(y)vr(y)wp(y) + ur(y)vp(y)wq(y)

} dy
|y|β |x – y|λ

≤ C(p, q, r)
∫

Rn

f p+q+r(y)
|x – y|λ


|y|β dy. (.)

On the other hand, denote B(x) as follows:

B(x) � f (x)
∫

Rn
f p+q+r(y)
|x–y|λ


|y|β dy

, ∀x ∈ R
n.

Therefore, this, together with (.), implies that B(x) is a bounded positive function in R
n

and

f (x) = B(x)
∫

Rn

f p+q+r(y)
|x – y|λ


|y|β dy, ∀x ∈R

n.

To obtain the integrability of f (x), define the following functional:

MA(g)(x) � B(x)
∫

Rn

f p+q+r–
A (y)g(y)

|x – y|λ


|y|β dy, ∀x ∈R
n,

and

R(x) � B(x)
∫

Rn

(f – fA)p+q+r(y)
|x – y|λ


|y|β dy, ∀x ∈ R

n.

Obviously, by (.), f (x) is a positive solution of the following equation:

f (x) = MA(f )(x) + R(x). (.)

To obtain the integrability of f (x), we first of all build up a prior estimate of MA(g)(x)
and R(x). Observe that f (x) ∈ L

(p+q+r–)n
n–λ–β (Rn), by the weighted Hardy-Littlewood-Sobolev

inequality, we conclude that for ∀r ∈ (n/λ, +∞)

∥
∥MA(g)(x)

∥
∥

r ≤ C(β ,λ, n)
∥
∥f p+q+r–

A g
∥
∥ nr

n+(n–λ–β)r

≤ C(β ,λ, n)‖fA‖p+q+r–
(p+q+r–)n

n–λ–β

‖g‖r . (.)

Hence, according to the definition of fA, we can choose a real number A large enough such
that

‖fA‖p+q+r–
(p+q+r–)n

n–λ–β

≤ 


,

which together with (.) implies that MA(g) is a contraction mapping from Lr(Rn) to itself.
Similarly, noting that f (x) – fA(x) is a bounded function with compacted set, therefore, for
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∀r ∈ (n/λ,∞), we have

∥
∥R(x)

∥
∥

r ≤ C
(∥
∥B(x)

∥
∥∞

)∥
∥(f – fA)p+q+r∥∥ nr

n+(n–λ–β)r
.

Now, we are in a position to apply Lemma . to obtain the sharp integrability of f . Taking
X = L

(p+q+r–)n
n–λ–β (Rn) and Y = Lr(Rn), r ∈ (n/λ,∞), in Lemma ., this together with [(p + q +

r – )n]/(n – λ – β) = n/λ > n/λ implies that

f ∈ Lτ
(
R

n), τ ∈
(

n
λ

, +∞
)

. (.)

Next, we consider the end-point case. By (.), it suffices to obtain the boundedness of
M(f )(x) and R(x). Indeed, as |x| > A and |y| < A, we have |x – y| > A and

R(x) = B(x)
∫

Rn

(f – fA)p+q+r(y)
|x – y|λ


|y|β dy

≤ B(x)Ap+q+r–λ

∫

|y|<A


|y|β dy ≤ C

(
n,

∥
∥B(x)

∥
∥∞

)
Ap+q+r+n–λ–β . (.)

At the same time, by Hölder’s inequality, we derive that for |x| ≤ A

R(x) ≤ B(x)Ap+q+r–λ

∫

|y|<A


|x – y|λ


|y|β dy

≤ ∥
∥B(x)

∥
∥∞Ap+q+r–λ

(∫

|y|<A

(


|y|β
) λ+β

β

dy
) β

β+λ
(∫

|y–x|<A

[


|y – x|λ
] λ+β

λ

dy
) λ

λ+β

= C
(‖B‖∞

)
Ap+q+r–β–λ+n. (.)

Next we discuss the boundedness of MA(f )(x). At first, we decompose MA(f )(x) as follows:

MA(f )(x) = B(x)
∫

Rn

f p+q+r
A (y)
|x – y|λ |y|–β dy

= B(x)
(∫

|y|<A
+

∫

|y|≥A

)∫

Rn

f p+q+r
A (y)
|x – y|λ


|y|β dy

� MA,(f )(x) + MA,(f )(x).

Note that

n(p + q + r – )
(n – β – λ)(p + q + r)

=
n

n – λ – β
and n –

nβ

λ + β
> .

Therefore when |x| > A and |y| < A, it is easy to verify that |x – y| > A and

MA,(f )(x) ≤
∫

|y|<A

f p+q+r
A (y)
|x – y|λ


|y|β dy

≤ 
Aλ

{∫

|y|<A
f

n(p+q+r–)
n–λ–β

A (y) dy
} (p+q+r)(n–λ–β)

n(p+q+r–)
(∫

|y|<A
|y|–β× n

λ+β dy
) λ+β

n

< ∞. (.)
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Similarly, for |x| < A, since β + λ < n, there exists a positive real number ε such that

 < ε <
n – β – λ

n
.

Let /s = β/n + ε, /s = λ/n + ε and /s = (n – λ – β)/n, then, together with Hölder’s
inequality, we have

MA,(f )(x) ≤ C(A, n)
(∫

|y|<A
|y|–βs dy

) 
s

×
(∫

|x–y|<A
|x – y|–λs dy

) 
s ·

{∫

|y|<A
f (p+q+r)s
A (y) dy

} 
s

. (.)

Next, we turn our attention to MA,(f )(x). After a basic calculation, we derive

MA,(f )(x) ≤ C
∫

|y|≥A

f p+q+r
A (y)
|x – y|λ


|y|β dy

≤
∫

(Rn\BA())∩(Rn\BA(x))

f p+q+r
A (y)
|x – y|λ


|y|β dy +


Aβ

∫

|x–y|≤A

f p+q+r
A (y)
|x – y|λ dy

� MA,,(f )(x) + MA,,(f )(x). (.)

Take the parameters r, s, τ as follows:


r

=
λ + β

n
,


s

=
β

n
,


τ

=
n – λ – β

n
.

By Hölder’s inequality, we conclude that

MA,,(f )(x) =


Aβ

∫

|x–y|≤A

f p+q+r
A (y)
|x – y|λ dy

≤ C(n, A)
(∫

|x–y|<A
f (p+q+r)s
A (y) dy

) 
s

×
(∫

|x–y|<A
|x – y|–λr dy

) 
r

A
n
τ . (.)

Noting that β < n, then there exists a positive number ε small enough satisfying

n – β – λ

n
+ ε <

n – β – λ

n
and ε <

β + λ

n
.

Set


s′ =

β + λ

n
– ε and


s

=
n – (β + λ)

n
+ ε.

Then


s(p + q + r)

=
[

n – (β + λ)
n

+ ε

]

× λ

n – β – λ
<

λ

n
,
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and with Hölder’s inequality

MA,,(f )(x) =
∫

(Rn\BA())∩(Rn\BA(x))

f p+q+r
A (y)
|x – y|λ


|y|β dy

≤
∫

Rn\BA(x)

f p+q+r
A (y)

|x – y|λ+β
dy +

∫

Rn\BA()

f p+q+r
A (y)
|y|β+λ

dy

≤
(∫

Rn\BA()
f (p+q+r)s
A (y)

) 
s
(∫

Rn\BA()


|y|(β+λ)s′ dy

) 
s′

+
(∫

Rn\BA(x)
f (p+q+r)s
A (y)

) 
s
(∫

Rn\BA(x)


|x – y|(β+λ)s′ dy

) 
s′

. (.)

Obviously, (.) directly follows from (.) and (.)-(.). This completes the proof of
Theorem .. �

Remark . The integrability of (u(x), v(x), w(x)) in (.) is optimal. Indeed, as |x| ≥  and
|y| ≤ , we have

u(x) ≥
∫

|y|≤

vp(y)uq(y)wr(y)
(|x| + |y|)λ


|y|β dy

≥ C(λ, p, q, r)|x|–λ

∫

|y|<
|y|–β dy (.)

and

∫

Rn

∥
∥u(x)

∥
∥

τ
≥ C(λ,β , p, q, r)

(∫

|y|≥
|y|–λτ dy

)/τ

= ∞, ∀τ ≤ n/λ.

Remark . Note that MA(g)(x) is not a contraction mapping from L∞(Rn) to L∞(Rn),
therefore the regularity lifting lemma is unavailable and we have to look for a new way to
obtain the bound estimate.

4 Asymptotic behavior
In this section, we show R, which implies the sharp decay rates of u and v at infinity. The
proof is made up of two propositions.

Proposition . The following improper integrals are convergent:

u∞ �
∫

Rn
vp(y)uq(y)wr(y)|y|–β dy, (.)

v∞ �
∫

Rn
vr(y)up(y)wq(y)|y|–β dy, (.)

w∞ �
∫

Rn
vq(y)ur(y)wp(y)|y|–β dy. (.)

Proof Note that

n(p + q + r – )
(n – β – λ)(p + q + r)

=
n

n – λ – β
and n –

nβ

λ + β
> .
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This, together with the integrability of f (x) and Hölder’s equality, implies that

S∞ �
∫

Rn

{
vp(y)uq(y)wr(y) + vr(y)up(y)wq(y) + vq(y)ur(y)wp(y)

}|y|–β dy

≤ C(p, q, r)
(∫

|y|<A
+

∫

|y|≥A

)

f p+r+q(y)|y|–β dy

≤ C(p, q, r,β ,λ)
{

An–β‖f ‖p+q+r
∞ + ‖f ‖p+q+r

n(p+q+r–)
n–λ–β

A
λ

}

,

where A >  is a real number large enough. This completes the proof of Proposition .. �

Proposition .

lim|x|→∞
[|x|λu(x)

]
=

∫

Rn
vp(y)uq(y)wr(y)|y|–β dy, (.)

lim|x|→∞
[|x|λv(x)

]
=

∫

Rn
vr(y)up(y)wq(y)|y|–β dy, (.)

lim|x|→∞
[|x|λw(x)

]
=

∫

Rn
vq(y)ur(y)wp(y)|y|–β dy. (.)

Proof Define first of all A(x), A(x), A(x), respectively, as follows:

A(x) �
∫

BR()

vp(y)uq(y)wr(y)
|y|β

|x|λ
|x – y|λ dy, (.)

A(x) �
∫

(Rn\BR())\B |x|


(x)

vp(y)uq(y)wr(y)
|y|β

|x|λ
|x – y|λ dy, (.)

A(x) �
∫

B |x|


(x)

vp(y)uq(y)wr(y)
|y|β

|x|λ
|x – y|λ dy. (.)

Observe that when y ∈ BR() and |x| ≥ R, by (.), we conclude that

vp(y)uq(y)wr(y)
|y|β

∣
∣
∣
∣

|x|λ
|x – y|λ – 

∣
∣
∣
∣ ≤ C(λ)

vp(y)uq(y)wr(y)
|y|β ∈ L(

R
n),

and with Lebesgue’s dominated convergence theorem,

lim|x|→∞

{∫

BR()

vp(y)uq(y)wr(y)
|y|β

( |x|λ
|x – y|λ – 

)

dy
}

= ,

which means that

lim
R→∞ lim|x|→∞A(x) =

∫

Rn

vp(y)uq(y)wr(y)
|y|β = u∞. (.)

To obtain (.), it suffices to prove lim|x|→∞ A(x) =  and lim|x|→∞ A(x) = . Noting that
y ∈ (Rn\BR())\B |x|


(x) and |x| > R, by (.), we have

∣
∣A(x)

∣
∣ ≤ C(λ)

∫

(Rn\BR())

vp(y)uq(y)wr(y)
|y|β dy → , as R → . (.)
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Now, we turn to A(x). By Theorem . and the result of R in Theorem ., we conclude
that, for any τ ∈ (n/λ,∞),

f τ
(|x|)

∫

|x|/<y<|x|
dy ≤

∫

|x|/<y<|x|
f τ (y) dy = ‖f ‖τ

τ ,

which implies that f (|x|)|x| n
τ ≤ C for |x| ≥ R and

∣
∣A(x)

∣
∣ ≤

∫

B |x|


(x)

f p+q+r(y)
|y|β

|x|λ
|x – y|λ dy

≤ C(λ)|x|λ–β f p+q+r
( |x|



)∫

B |x|


(x)
|x – y|–λ dy

= C(λ, n,β)|x|n–β– (p+q+r)n
τ .

On the other hand, noting that

n – β –
[
(p + q + r)n

]λ

n
= λ + β – n < ,

and taking /τ = λ/n – ε with ε being a small positive number, we derive that

n – β –
[
(p + q + r)n

] 
τ

< ,

and

lim|x|→∞
∣
∣A(x)

∣
∣ = .

Then, combining with (.) and (.), we obtain (.). Similarly, we can get (.) and
(.). Therefore, this completes the proof of Proposition .. �
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