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Abstract
In this paper, sharp bounds for cyclic sums of the ratio of the exradius to the sides of a
triangle are established depending on the circumradius and inradius of the triangle.
The best possible parameters for the expressions of bounds are derived. Moreover, an
alternative bound for the ratio of the exradius to the sides of triangle, expressed by
trigonometric functions, is also considered.

MSC: 51M16; 26D05; 26D15

Keywords: sharp bounds; triangle; inequality; exradius; ratio-type

1 Introduction
For a given triangle ABC, we assume that A, B, C denote its angles, a, b, c denote the
lengths of its corresponding sides, s, R, and r denote the semiperimeter, circumradius,
and inradius of a triangle, respectively. Let wa, wb, wc and ma, mb, mc denote respectively
the angle bisectors and the medians emanating from vertices A, B, C, and let ra, rb, rc

denote the exradii tangent to the corresponding sides. In addition, we will customarily
use the symbol of cyclic sums such as

∑
f (a) = f (a) + f (b) + f (c),

∑
f (a, b) = f (a, b) + f (b, c) + f (c, a).

The inequalities related to the angle bisectors, medians, exradii, and the sides of a tri-
angle have attracted the interest of many geometers and have motivated a large number
of research papers; see e.g. Shi and Wu [, ], Jiang [], Jiang and Bencze [], Srivastava et
al. [], Satnoianu [], Bencze et al. [–], Zhelev [], and Wu et al. [–]. An excellent
survey on these inequalities can be found in the well-known monographs [] and []. In
this paper, we investigate a type of inequality concerning the ratios of the exradii to the
sides of a triangle.

We begin by recalling some related results reported in the foregoing literature.
In , Yang [] and Ma and Dong [] established the following ratio-type inequality

involving the angle bisectors and the sides of a triangle:
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In , Chu and Yang [] presented the following inequality of ratio type associated
with the medians and the sides of a triangle:
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Motivated by the above results, the main purpose of this paper is to establish a ratio-type
inequality involving the exradii and the sides of a triangle. We present the best possible
parameters α, β and α, β such that the double inequalities
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hold. Moreover, in Section ., we present alternative bounds for the ratios of the exradii
to the sides of triangle, in which the bounds are expressed by trigonometric functions.

2 Lemmas
In order to prove our main results, we first introduce a lemma. The results stated in the
following lemma were established by way of geometric interpretation of the Blundon in-
equality (see Wu and Chu [] for details), which provides a useful method for proving
the inequalities concerning sides, circumradius, and inradius of a triangle.

Lemma . ([]) Let R, r, and s denote respectively the circumradius, inradius, and
semiperimeter of the triangle. Then:

(i) The inequality

s ≥ f (R, r) ()

holds for any triangle if and only if inequality () is valid for the isosceles triangles
with the vertex angle greater than or equal to π/.

(ii) The inequality

s ≤ f (R, r) ()

holds for any triangle if and only if inequality () is valid for the isosceles triangles
with the vertex angle less than or equal to π/.

Remark . ([]) If the inequality under consideration is homogeneous with respect to
R, r, and s, for convenience of computing, without loss of generality, we may assume that
the side lengths of the isosceles triangles are of the form

a = , b =
 + t

 – t , c =
 + t

 – t ( < t < ). ()
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In fact, under this assumption on the side lengths of the isosceles triangles, the expressions
of s, r, and R are all rational functions, i.e., we have

s =
a + b + c


=


 – t ,

r =

√
(b + c – a)(c + a – b)(a + b – c)

(a + b + c)
= t,

R =
abc√

(a + b + c)(b + c – a)(c + a – b)(a + b – c)
=

( + t)

t( – t)
.

This makes calculations much easier.

3 Main results
3.1 Sharp bounds for

∑ ra
a in terms of circumradius and inradius of a triangle

Theorem . In any triangle ABC, the following double inequalities hold:
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with the equalities if and only if the triangle is equilateral. Furthermore, 
 , 

 , 
 , and 

are the best coefficients in ().

Proof From the formulas of the exradii

ra =
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s – a
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sr
s – b

, rc =
sr
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and the identities (see [])
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∑
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Thus, inequality () is equivalent to
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By the Euler inequality R ≥ r and the Gerretsen’s inequality (see [])

√
Rr – r ≤ s ≤ √

R + Rr + r

it is easy to verify that the function

g(s) = s +
R + Rr + r

s

is strictly decreasing on the interval [
√

Rr – r,
√

R + Rr + r]. Hence, inequality
() can be equivalently transformed to the form

f(R, r) ≤ s ≤ f(R, r).

By Lemma ., in order to prove inequality () for any triangle, it suffices to prove in-
equality () for the isosceles triangle. Note that inequality () is homogeneous with respect
to R, r, and s, so that we may assume that the side lengths of the triangle are

a = , b =
 + t

 – t , c =
 + t

 – t

for some  < t < . Further, the semiperimeter s, inradius r, and the circumradius R of the
triangle can be expressed as follows:

s =


 – t , r = t, R =
( + t)

t( – t)
.

Substituting t for s, r, R gives
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and
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Hence, inequality () holds for the isosceles triangle. We thus deduce from Lemma .
that inequality () is valid for any triangle. Additionally, note that the equality holds in the
above inequalities if and only if t = √

 , that is, when the triangle is equilateral.
Next, we need to show that the coefficients 

 , 
 , 

 and , are the best possible in the
strong sense.

Consider inequality () in a general form as
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Putting

a = , b =
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in the left-hand side inequality of () yields
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Taking the limit in () as t → , we get α ≤ 
 . Then, substituting the coefficient of
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 into (), we have

(
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Letting t →  in () yields β ≤ 
 .
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Consequently, the coefficients α = 
 and β = 

 are the best possible in the left-hand
side inequality of (), that is, they cannot be replaced by larger constants.

Similarly, putting

a = , b =
 + t

 – t , c =
 + t

 – t ( < t < )

in the right-hand side inequality of (), it follows that
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Taking the limit in () as t → , we obtain β ≥ . Further, substituting the coefficient
of β =  into () yields

(
t – 

)(–α + tα – t + 
) ≤ . ()

Letting t →  in () gives α ≥ 
 .

Thus, the coefficients α = 
 and β =  are the best possible in the right-hand side

inequality of (), that is, they cannot be replaced by lesser constants.
The proof of Theorem . is completed. �

Corollary . In any triangle ABC, the following double inequalities hold:
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with the equalities if and only if the triangle is equilateral.

Proof According to Theorem ., we have
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On the other hand, from the Euler inequality R ≥ r we deduce that
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and
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which leads to the desired inequalities in Corollary .. �

Remark . In the left-hand side inequality of (), the constant 
 is the best possible. In
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In the same way as in the proof of Theorem ., we can determine the best constant for
the right-hand side inequality of (), i.e., the best constant λ for the inequality
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3.2 Bounds for
∑ ra

a expressed by trigonometric functions
Theorem . In any triangle ABC, the following double inequalities hold:
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where α = min{A, B, C} and β = max{A, B, C}. Furthermore, the equalities in () hold if
and only if the triangle is isosceles.

Proof By using the formulas of exradii (see [])

ra = R cos
B


cos
C


sin
A
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rb = R cos
C
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sin
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,
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,

we get
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Without loss of generality, we assume that A ≥ B and A ≥ C. To prove the right-hand
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and the equality holds if and only if B = C. Hence, the right-hand side inequality of () is
proved.

Similarly to the above, we assume that C ≤ A and C ≤ B. To prove the left-hand side
inequality of (), it suffices to prove that
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After a simple computation, we obtain
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Noting that C ≤ A, C ≤ B, and A, B, C ∈ (,π ), we have
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with equality if and only if A = B. The left-hand side inequality of () is proved. This
completes the proof of Theorem .. �

Remark . In Theorem ., the expressions of lower and upper bounds involve a com-
mon function
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This means that ψ(x) is increasing on the interval (,π ).
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By the monotonicity of the function ψ(x) we can easily deduce the following conse-
quence of Theorem ..

Corollary .
(i) In any triangle ABC, we have
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(ii) In an acute triangle ABC, we have
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Proof Note that the function
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is increasing on the interval (,π ). Using Theorem . together with the facts that
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This proves the desired inequalities in Corollary .. �

4 Conclusions
Let us now give a summary of the contents. First, we established sharp bounds for cyclic
sums of the ratio of the exradii to the sides of a triangle, depending on the circumradius
and inradius of the triangle, as follows:
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where the coefficients 
 , 

 , 
 , and  are the best possible in the strong sense.

Second, we presented alternative bounds for
∑ ra

a , in which the bounds are expressed
by the trigonometric functions associated with the maximum and minimum angles of a
triangle.

Finally, we deduced several consequences from the above-mentioned results.
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