
Sun and Wu Journal of Inequalities and Applications  (2015) 2015:404 
DOI 10.1186/s13660-015-0920-0

R E S E A R C H Open Access

Two-log-convexity of the
Catalan-Larcombe-French sequence
Brian Y Sun* and Baoyindureng Wu

*Correspondence:
brianys1984@126.com
College of Mathematics and System
Science, Xinjiang University, Urimqi,
830046, P.R. China

Abstract
The Catalan-Larcombe-French sequence {Pn}n≥0 arises in a series expansion of the
complete elliptic integral of the first kind. It has been proved that the sequence is
log-balanced. In the paper, by exploring a criterion due to Chen and Xia for testing
2-log-convexity of a sequence satisfying three-term recurrence relation, we prove
that the new sequence {P2n – Pn–1Pn+1}n≥1 are strictly log-convex and hence the
Catalan-Larcombe-French sequence is strictly 2-log-convex.
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1 Introduction
This paper is concerned with the log-behavior of the Catalan-Larcombe-French sequence.
To begin with, let us recall that a sequence {zn}n≥ is said to be log-concave if

z
n ≥ zn+zn–, for n ≥ , (.)

and it is log-convex if

z
n ≤ zn+zn–, for n ≥ . (.)

Meanwhile, the sequence {zn}n≥ is called strictly log-concave (resp. log-convex) if the
inequality in (.) (resp. (.)) is strict for all n ≥ . We call {zn}n≥ log-balanced if the
sequence itself is log-convex while { zn

n! }n≥ is log-concave.
Given a sequence A = {zn}n≥, define the operator L by

L(A) = {sn}n≥,

where sn = zn–zn+ – z
n for n ≥ . We say that {zn}n≥ is k-log-convex (resp. k-log-concave)

if Lj(A) is log-convex (resp. log-concave) for all j = , , . . . , k – , and that A = {zn}n≥ is ∞-
log-convex (resp. ∞-log-concave) if Lk(A) is log-convex (resp. log-concave) for any k ≥ .
Similarly, we can define strict k-log-concavity or strict k-log-convexity of a sequence.
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It is worthy to mention that besides that they are fertile sources of inequalities, log-
convexity and log-concavity have many applications in some different mathematical dis-
ciplines, such as geometry, probability theory, combinatorics, and so on. See the sur-
veys due to Brenti [] and Stanley [] for more details. Additionally, it is clear that the
log-balancedness implies the log-convexity and a sequence {zn}n≥ is log-convex (resp.
log-concave) if and only if its quotient sequence { zn

zn–
}n≥ is nondecreasing (resp. nonin-

creasing). It is also known that the quotient sequence of a log-balanced sequence does
not grow too fast. Therefore, log-behavior are important properties of combinatorial se-
quences and they are instrumental in obtaining the growth rate of a sequence. Hence the
log-behaviors of a sequence deserves to be investigated.

In this paper, we investigate the -log-behavior of the Catalan-Larcombe-French se-
quence, denoted by {Pn}n≥, which arises in connection with series expansions of the com-
plete elliptic integrals of the first kind [, ]. To be precise, for  < |c| < ,

∫ π/



√
 – c sin θ

dθ =
π



∞∑
n=

(
 –

√
 – c



)n

Pn.

Furthermore, the numbers Pn can be written as the following sum:

Pn = n
n∑

k=

(–)i
(

n – k
k

)(
n – k

n – k

)

,

see [], A. Besides, the number Pn satisfies three-term recurrence relations [] as
follows:

(n + )Pn+ = 
(
n + n + 

)
Pn – nPn–, for n ≥ , (.)

with the initial values P =  and P = .
Recently, Zhao [] studied the log-behavior of the Catalan-Larcombe-French sequence

and proved that the sequence {Pn}n≥ is log-balanced. What is more, the Catalan-
Larcombe-French sequence has many interesting properties and the reader can refer [,
, ]. In the sequel, we study the -log-behavior of the sequences and obtain the following
result.

Theorem . The Catalan-Larcombe-French sequence {Pn}n≥ is strictly -log-convex,
that is,

P
n < Pn–Pn+, (.)

where Pn = P
n – Pn–Pn+.

We will give our proof of Theorem . in the third section by utilizing a testing criterion,
which is proposed by Chen and Xia [].

To make this paper self-contained, let us recall their criterion.
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Theorem . (Chen and Xia []) Suppose {zn}n≥ is a positive log-convex sequence that
satisfies the following three-term recurrence relation:

zn = a(n)zn– + b(n)zn–, for n ≥ . (.)

Let

c(n) = –b(n + )
[
a(n + ) + b(n + ) – a(n + )a(n + ) – b(n + )

]
;

c(n) = b(n + )
[
a(n + )b(n + ) + a(n + )a(n + )a(n + )

+ a(n + )b(n + ) + a(n + )b(n + ) – a(n + )a(n + )

– a(n + )b(n + ) – a(n + )b(n + )
]
;

c(n) = a(n + )a(n + )b(n + ) + b(n + )b(n + ) + a(n + )a(n + )a(n + )

+ a(n + )a(n + )b(n + ) + a(n + )b(n + ) – a(n + )b(n + )

– a(n + )a(n + )b(n + ) – a(n + )a(n + ) – b(n + )b(n + )

– a(n + )a(n + )b(n + ) – b(n + );

c(n) = a(n + )a(n + ) + a(n + )b(n + ) – a(n + )b(n + ) – a(n + )

– a(n + )a(n + )a(n + ) – a(n + )b(n + );

and

�(n) = c
(n) – c(n)c(n).

Assume that c(n) <  and �(n) ≥  for all n ≥ N , where N is a positive integer. If there
exist fn and gn such that, for all n ≥ N ,

(I) fn ≤ zn
zn–

≤ gn;
(II) fn ≥ –c(n)–

√
�(n)

c(n) ;
(III) c(n)g

n + c(n)g
n + c(n)gn + c(n) ≥ ,

then we see that {zn}n≥N is -log-convex, that is, for n ≥ N ,

(
zn–zn+ – z

n
)(

zn+zn+ – z
n+

)
>

(
znzn+ – z

n+
).

With respect to the theory in this field, it should be mentioned that the log-behavior of
a sequence which satisfies a three-term recurrence has been extensively studied; see Liu
and Wang [], Chen et al. [, ], Liggett [], Došlić [], etc.

2 Bounds for Pn
Pn–1

Before proving Theorem ., we need the following two lemmas.

Lemma . Let

fn =
n

(n + )
,
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and Pn be the sequence defined by the recurrence relation (.). Then we have, for all n ≥ ,

Pn

Pn–
> fn. (.)

Proof We proceed the proof by induction. First note that, for n =  and n = , we have
P
P

=  > 
 and P

P
=  > 

 . Assume that the inequality (.) is valid for n ≤ k. We will
show that

Pk+

Pk
> fk+.

By the recurrence (.), we have

Pk+

Pk
=

(k + k + )
(k + ) –

k

(k + )
Pk–

Pk
>

(k + k + )
(k + ) –

k

(k + )

fk

=
(k + k + )

(k + )

> fk+,

in which the last inequality follows by

(k + k + )
(k + ) – fk+ =

(k + k – k + )
(k + )(k + )

> ,

for all k ≥ . This completes the proof. �

Lemma . Let

gn =  –

n

–

n ,

and Pn be the sequence defined by the recurrence relation (.). Then we have, for all n ≥ ,

Pn

Pn–
≤ gn. (.)

Proof First note that, for n = , we have P
P

= ,
 < g = 

 . Assume that, for k ≥ , the
inequality (.) is valid for n ≤ k. We will show that

Pk+

Pk
< gk+.

By the recurrence (.), we have

Pk+

Pk
=

(k + k + )
(k + ) –

k

(k + )
Pk–

Pk
<

(k + k + )
(k + ) –

k

(k + )

gk

=
(k – k – k – k – )

(k + )(k – k – )
. (.)
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Consider

(k – k – k – k – )
(k + )(k – k – )

– gk+ = –
(k + k + )

(k + )(k – k – )
< , (.)

for all k ≥ . So we see that, for all n ≥ , the inequality (.) holds by induction. �

With the above lemmas in hand, we are now in a position to prove our main result in
the next section.

3 Proof of Theorem 1.1
In this section, by using the criterion of Theorem ., we can show that the Catalan-
Larcombe-French sequence is strictly -log-convex.

To begin with, the following lemma, which is obtained by Zhao [], is indispensable for
us.

Lemma . (Zhao []) The Catalan-Larcombe-French sequence is log-balanced.

By the definition of log-balanced sequence, we know that {Pn}n≥ is log-convex.

Proof of Theorem . By Lemma ., it suffices for us to show that

(
Pn–Pn+ – P

n
)(

Pn+Pn+ – P
n+

)
–

(
PnPn+ – P

n+
) > .

According to the recurrence relation (.), we see that

a(n) =
(n – n + )

n ;

b(n) = –
(n – )

n .

By taking a(n), b(n) in c, . . . , c, we can obtain

c(n) = –


(n + )(n + )(n + )

× (
n + n – n – n + n + n + n + n + 

)

< ,

for all n ≥ . Besides, we have to verify that, for some positive integer N , the conditions
(II) and (III) in Theorem . hold for all n ≥ N . That is,

fn ≥ –c(n) –
√

�(n)
c(n)

; (.)

c(n)g
n + c(n)g

n + c(n)gn + c(n) ≥ . (.)

Let

δ(n) = –c(n)fn – c(n)
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and

f (gn) = c(n)g
n + c(n)g

n + c(n)gn + c(n).

To show (.), it is equivalent to show that, for some positive integers N , δ(n) ≥  and
δ(n) ≥ �(n). By calculating, we easily find that, for all n ≥ ,

δ(n) =
,

(n + )(n + )(n + )

(
n + n + n + ,n + ,n

+ ,n + ,n + ,n – ,n – n – 
)

≥ ,

and for all n ≥ ,

δ(n) – �(n) =
,,n

(n + )(n + )(n + )

(
n + ,n + ,n

+ ,n + ,n – ,,n – ,,n

+ ,,n + ,,n + ,,n – ,,n

– ,,n – ,,n – ,,n – ,,n

– ,,n – ,,n – ,n – ,
)

≥ .

Thus, take N =  and, for all n ≥ N , we have δ(n) ≥ , δ(n) ≥ �(n), which follows from
the inequality (.). We show the inequality (.) for some positive integer M. Note that,
by Lemma . and some calculations, we have

f (gn) = c(n)g
n + c(n)g

n + c(n)gn + c(n)

=
,,

n(n + )(n + )(n + )

(
n + n + n + n – ,n

– ,n – ,n – ,n – ,n + ,n + ,n + ,n

+ ,n + ,n + n + 
)
.

Take M = , it is not difficult to verify that, for all n ≥ M,

f (gn) > .

Let N = max{N , M} = , then for all n ≥ , all of the above inequalities hold. By Lemma .
and Theorem ., the Catalan-Larcombe-French sequence {Pn}n≥ is strictly -log-convex
for all n ≥ . What is more, one can easily test that these numbers {Pn}≤n≤ also satisfy the
property of -log-convexity by simple calculations. Therefore, the whole sequence {Pn}n≥

is strictly -log-convex. This completes the proof. �

It deserves to be mentioned that by considerable calculations and plenty of verifications,
the following conjectures should be true.
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Conjecture . The Catalan-Larcombe-French sequence is ∞-log-convex.

Conjecture . The quotient sequence { Pn
Pn–

}n≥ of the Catalan-Larcombe-French se-
quence is log-concave, equivalently, for all n ≥ ,

Pn–P
n ≥ Pn+P

n–.
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