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1 Introduction
If p > , 

p + 
q = , an, bn ≥ ,  <

∑∞
n= ap

n < ∞ and  <
∑∞

n= bq
n < ∞, then we have the

Hardy-Hilbert inequality as follows (cf. []):

∞∑

n=

∞∑

m=

ambn

m + n
<

π

sin(π/p)

( ∞∑

n=

ap
n

)/p( ∞∑

n=

bq
n

)/q

, ()

where the constant factor π
sin(π/p) is the best possible. We also have the following Hardy-

Hilbert-type inequality (cf. []):

∞∑

n=

∞∑

m=

ln(m/n)ambn

m – n
<

[
π

sin(π/p)

]
( ∞∑

n=

ap
n

)/p( ∞∑

n=

bq
n

)/q

, ()

where the constant factor [ π
sin(π/p) ] is still the best possible. In , by introducing some

parameters, Yang gave an extension of inequality () (cf. []): If  < λ,λ ≤ , λ + λ = λ,
an, bn ≥ ,  <

∑∞
n= np(–λ)–ap

n < ∞, and  <
∑∞

n= nq(–λ)–bq
n < ∞, then the following

inequality holds:

∞∑

n=

∞∑

m=

ln(m/n)ambn

mλ – nλ

<
[

π

λ sin(πλ/λ)

]
( ∞∑

n=

np(–λ)–ap
n

)/p( ∞∑

n=

nq(–λ)–bq
n

)/q

, ()
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where the constant factor [ π
λ sin(πλ/λ) ] is the best possible. There are lots of improvements,

generalizations, and applications of inequality () ([–]). For more details, Yang gives a
summary of introducing independent parameters ([, ]).

In this article, by introducing independent parameters, and applying weight coefficients
and the technique of real analysis, we give a new extension of () with a best possible con-
stant factor. Furthermore, the equivalent forms, the operator expressions, and the reverses
are considered.

2 Some lemmas
We agree on the following assumptions in this paper: p �= , 

p + 
q = , λ > ,  < λi ≤ 

(i = , ), λ + λ = λ, kλ(λ) = kλ(λ) = [ π
λ sin(πλ/λ) ], {μm}∞m= and {νn}∞n= are positive se-

quences, Um =
∑m

i= μi, Vn =
∑n

i= νi, and an, bn ≥  (m, n ∈ N = {, , . . .}),

 <
∞∑

m=

Up(–λ)–
m

μ
p–
m

ap
m < ∞,  <

∞∑

n=

V q(–λ)–
n

ν
q–
n

bq
n < ∞.

Lemma  Define the weight coefficients as follows:

ω(λ, m) :=
∞∑

n=

ln(Um/Vn)
Uλ

m – V λ
n

Uλ
m

V –λ
n

νn, m ∈ N, ()

� (λ, n) :=
∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

V λ
n

U–λ
m

μm, n ∈ N. ()

We have the following inequalities:

ω(λ, m) < kλ(λ) (m ∈ N;  < λ ≤ ,λ > ), ()

� (λ, n) < kλ(λ) (n ∈ N;  < λ ≤ ,λ > ). ()

Proof Putting μ(t) := μm, t ∈ (m – , m] (m = , , . . .), ν(t) := νn, t ∈ (n – , n] (n = , , . . .),

U(x) :=
∫ x


μ(t) dt (x ≥ ), V (y) :=

∫ y


ν(t) dt (y ≥ ).

Then we have U(m) = Um, V (n) = Vn (m, n ∈ N). U ′(x) = μ(x) = μm when x ∈ (m – , m];
V ′(y) = ν(y) = νn when y ∈ (n – , n]. Since the function V (y) (y > ) is strictly increasing
and f (x) = ln(m/x)

mλ–xλ (x > ) is strictly decreasing (cf. [], Example ..), in view of  – λ ≥ ,
we have

ω(λ, m) =
∞∑

n=

∫ n

n–

ln(Um/Vn)
Uλ

m – V λ
n

Uλ
m

V –λ
n

V ′(t) dt

<
∞∑

n=

∫ n

n–

ln(Um/V (t))
Uλ

m – V λ(t)
Uλ

m

V –λ (t)
V ′(t) dt.

Putting u = Vλ(t)
Uλ

m
in the above integral, and in view of the fact that (cf. [])

∫ ∞



ln u
u – 

ua– du =
[

π

sin(aπ )

]

( < a < ),
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it follows that

ω(λ, m) <

λ

∞∑

n=

∫ Vλ(n)
Uλm

Vλ(n–)
Uλm

ln u
u – 

u
λ
λ

– du

=

λ

∫ Vλ(∞)
Uλm



ln u
u – 

u
λ
λ

– du ≤ 
λ

∫ ∞



ln u
u – 

u
λ
λ

– du

=
[

π

λ sin(πλ/λ)

]

=
[

π

λ sin(πλ/λ)

]

= kλ(λ).

Hence we prove that () is valid. In the same way, we can prove that () is valid too. �

Lemma  Suppose that {μm}∞m= and {νn}∞n= are decreasing sequences, and U(∞) =
V (∞) = ∞, then we have the following inequalities:

kλ(λ)
(
 – θ(λ, m)

)
< ω(λ, m) (m ∈ N;  < λ ≤ ,λ > ), ()

kλ(λ)
(
 – θ(λ, n)

)
< � (λ, n) (n ∈ N;  < λ ≤ ,λ > ), ()

where θ(λ, m) = O( 
Uλ/

m
) ∈ (, ) and θ(λ, n) = O( 

Vλ/
n

) ∈ (, ). Moreover, we get

∞∑

m=

μm

U+ε
m

=

ε

(
 + o()

) (
ε → +)

, ()

∞∑

n=

νn

V +ε
n

=

ε

(
 + o()

) (
ε → +)

. ()

Proof By the decreasing property of {νn}∞n=, and in view of  – λ ≥ , V (∞) = ∞, we find

ω(λ, m) ≥
∞∑

n=

ln(Um/Vn)
Uλ

m – V λ
n

Uλ
m

V –λ
n

νn+

=
∞∑

n=

∫ n+

n

ln(Um/Vn)
Uλ

m – V λ
n

Uλ
m

V –λ
n

V ′(t) dt

>
∞∑

n=

∫ n+

n

ln(Um/V (t))
Uλ

m – V λ(t)
Uλ

m

V –λ (t)
V ′(t) dt

=

λ

∞∑

n=

∫ Vλ(n+)
Uλm

Vλ(n)
Uλm

ln u
u – 

u
λ
λ

– du =

λ

∫ ∞

Vλ()
Uλm

ln u
u – 

u
λ
λ

– du

= kλ(λ) –

λ

∫ νλ


Uλm



ln u
u – 

u
λ
λ

– du = kλ(λ)
(
 – θ(λ, m)

)
,

where

θ(λ, m) :=


λkλ(λ)

∫ νλ


Uλm



ln u
u – 

u
λ
λ

– du ∈ (, ).
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In virtue of

lim
x→∞

∫ νλ
 /xλ


ln u
u– u

λ
λ

– du
x–λ/

= lim
x→∞

λν
λ


λ

(
νλ


xλ

– 
)–( 

xλ/ ln
ν

x

)

= ,

it is obvious that θ(λ, m) = O( 
Uλ/

m
). Hence () is valid. In the same way, we can prove

that () is valid too. Moreover, we have

∞∑

m=

μm

U+ε
m

=

με


+

∞∑

m=

∫ m

m–

U ′(t)
U+ε

m
dt

≤ 
με


+

∞∑

m=

∫ m

m–

U ′(t)
U+ε(t)

dt

=

με


+

∞∑

m=

∫ U(m)

U(m–)


u+ε

du =

με


+

∫ ∞

μ


u+ε

du

=

ε

[

 +
(


με


+

ε

με


– 
)]

,

∞∑

m=

μm

U+ε
m

≥
∞∑

m=

∫ m+

m

μm+

U+ε
m

dt

=
∞∑

m=

∫ m+

m

U ′(t)
U+ε

m
dt >

∞∑

m=

∫ m+

m

U ′(t)
U+ε(t)

dt

=
∞∑

m=

∫ U(m+)

U(m)


u+ε

du =
∫ ∞

μ


u+ε

du

=

ε

[

 +
(


με


– 

)]

.

Then we have (). In the same way, we have (). �

Remark  Taking ε = a > , we write by () and () that

∞∑

m=

μm

U+a
m

= O(),
∞∑

n=

νn

V +a
n

= O().

3 Equivalent forms and operator expressions
Theorem  Suppose that p > , then we have the following equivalent inequalities:

I :=
∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

ambn

<
[

π

λ sin(πλ/λ)

]
[ ∞∑

m=

Up(–λ)–
m

μ
p–
m

ap
m

]/p[ ∞∑

n=

V q(–λ)–
n

ν
q–
n

bq
n

]/q

, ()
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J :=

{ ∞∑

n=

νn

V –pλ
n

( ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

am

)p} 
p

<
[

π

λ sin(πλ/λ)

]
( ∞∑

m=

Up(–λ)–
m

μ
p–
m

ap
m

)/p

. ()

Proof By Hölder’s inequality with weight (cf. []), we find

( ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

am

)p

=

{ ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

[
U (–λ)/q

m ν
/p
n

V (–λ)/p
n μ

/q
m

am

][
V (–λ)/p

n μ
/q
m

U (–λ)/q
m ν

/p
n

]}p

≤
∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

U (–λ)p/q
m νn

V –λ
n μ

p/q
m

ap
m

[ ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

V (–λ)(q–)
n μm

U–λ
m ν

q–
n

]p–

=
(
� (λ, n)

)p– V –pλ
n

νn

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

U (–λ)p/q
m νn

V –λ
n μ

p/q
m

ap
m. ()

By (), it follows that

J <
(
kλ(λ)

) 
q

[ ∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

U (–λ)p/q
m νn

V –λ
n μ

p/q
m

ap
m

] 
p

=
(
kλ(λ)

) 
q

[ ∞∑

m=

∞∑

n=

ln(Um/Vn)
Uλ

m – V λ
n

U (–λ)(p–)
m νn

V –λ
n μ

p–
m

ap
m

] 
p

=
(
kλ(λ)

) 
q

[ ∞∑

m=

ω(λ, m)
Up(–λ)–

m

μ
p–
m

ap
m

] 
p

. ()

Combining () and (), we have ().
Using Hölder’s inequality again, we have

I =
∞∑

n=

[
ν

/p
n

V

p –λ

n

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

am

][
V


p –λ

n

ν
/p
n

bn

]

≤ J

[ ∞∑

n=

V q(–λ)–
n

ν
q–
n

bq
n

] 
q

, ()

and then we have () by using (). On the other hand, assuming that () is valid, setting

bn =
νn

V –pλ
n

[ ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

am

]p–

, n ∈ N,
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then we find J = [
∑∞

n=
V q(–λ)–

n
ν

q–
n

bq
n]/p. By (), it follows that J < ∞. If J = , then () is

trivially valid. If  < J < ∞, then we have

 <
∞∑

n=

V q(–λ)–
n

ν
q–
n

bq
n = Jp = I

< kλ(λ)

[ ∞∑

m=

Up(–λ)–
m

μ
p–
m

ap
m

] 
p
[ ∞∑

n=

V q(–λ)–
n

ν
q–
n

bq
n

] 
q

< ∞,

J =

[ ∞∑

n=

V q(–λ)–
n

ν
q–
n

bq
n

]/p

< kλ(λ)

[ ∞∑

m=

Up(–λ)–
m

μ
p–
m

ap
m

] 
p

.

Hence () is valid, which is equivalent to (). �

Theorem  Suppose that p > , {μm}∞m= and {νn}∞n= are decreasing positive sequences, and
U(∞) = V (∞) = ∞, then the constant factor kλ(λ) = [ π

λ sin(λπ/λ) ] is the best possible in ()
and ().

Proof For  < ε < pλ, we set λ̃ = λ – ε
p (∈ (, )), λ̃ = λ + ε

p (> ), ãm = U λ̃–
m μm, b̃n =

V λ̃–ε–
n νn. By (), (), and (), in view of Remark , we find

∞∑

m=

Up(–λ)–
m

μ
p–
m

ãp
m =

∞∑

m=

μm

U+ε
m

=

ε

(
 + o()

)
,

∞∑

n=

V q(–λ)–
n

ν
q–
n

b̃q
n =

∞∑

n=

νn

V +ε
n

=

ε

(
 + o()

)
,

Ĩ :=
∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

ãmb̃n

=
∞∑

n=

[ ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

V λ̃
n μm

U–̃λ
m

]
νn

V ε+
n

=
∞∑

n=

� (̃λ, n)
νn

V ε+
n

≥ kλ (̃λ)
∞∑

n=

(
 – θ(̃λ, n)

) νn

V ε+
n

= kλ (̃λ)

[ ∞∑

n=

νn

V ε+
n

–
∞∑

n=

O
(

νn

V

 ( ε

q +ε+λ)+
n

)]

=

ε

[
π

λ sin(πλ̃/λ)

][
 + o() – εO()

]
.

If there exists a positive number K ≤ kλ(λ), such that () is still valid when replacing
kλ(λ) by K , then, in particular, we have

ε̃I = ε

∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

ãmb̃n

< εK

[ ∞∑

m=

Up(–λ)–
m

μ
p–
m

ãp
m

] 
p
[ ∞∑

n=

V q(–λ)–
n

ν
q–
n

b̃q
n

] 
q

.
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We obtain from the above results

[
π

λ sin(πλ̃/λ)

][
 + o() – εO()

]
< K

(
 + o()

) 
p
(
 + o()

) 
q ,

and then it follows that kλ(λ) ≤ K (for ε → +). Hence K = kλ(λ) is the best value of ().
We conform that the constant factor kλ(λ) in () is the best possible. Otherwise we

can get a contradiction by (): that the constant factor in () is not the best value. �

For p > , setting

ϕ(m) :=
Up(–λ)–

m

μ
p–
m

, ψ(n) :=
V q(–λ)–

n

ν
q–
n

(n, m ∈ N),

then it follows that [ψ(n)]–p = νn
V –pλ

n
, and we define the real weighted normed function

spaces as follows:

lp,ϕ :=

{

a = {am}∞m=;‖a‖p,ϕ =

{ ∞∑

m=

Up(–λ)–
m

μ
p–
m

|am|p
} 

p

< ∞
}

,

lq,ψ :=

{

b = {bn}∞n=;‖b‖q,ψ =

{ ∞∑

n=

V q(–λ)–
n

ν
q–
n

|bn|q
} 

q

< ∞
}

,

lp,ψ–p :=

{

c = {cn}∞n=;‖c‖p,ψ–p =

{ ∞∑

n=

νn

V –pλ
n

|cn|p
} 

p

< ∞
}

.

For a = {am}∞m= ∈ lp,ϕ , putting hn :=
∑∞

m=
ln(Um/Vn)

Uλ
m–Vλ

n
am, h = {hn}∞n=, then it follows by ()

that ‖h‖p,ψ–p < kλ(λ)‖a‖p,ϕ , and h ∈ lp,ψ–p .

Definition  Define a Hardy-Hilbert-type operator T : lp,ϕ → lp,ψ–p as follows: For
am ≥ , a = {am}∞m= ∈ lp,ϕ , there exists a unique representation Ta = h ∈ lp,ψ–p . We de-
fine the following formal inner product of Ta and b = {bn}∞n= ∈ lq,ψ (bn ≥ ) as follows:

(Ta, b) :=
∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

ambn. ()

Hence () and () may be rewritten in terms of the following operator expressions:

(Ta, b) < kλ(λ)‖a‖p,ϕ‖b‖q,ψ , ()

‖Ta‖p,ψ–p < kλ(λ)‖a‖p,ϕ . ()

It follows that the operator T is bounded with

‖T‖ := sup
a( �=θ )∈lp,ϕ

‖Ta‖p,ψ–p

‖a‖p,ϕ
≤ kλ(λ).
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Since the constant factor kλ(λ) in () is the best possible, we have

‖T‖ = kλ(λ) =
[

π

λ sin(λπ/λ)

]

. ()

4 Some reverses
We set ϕ̃(m) := ( – θ(λ, m)) Up(–λ)–

m
μ

p–
m

, ψ̃(n) := ( – θ(λ, m)) V q(–λ)–
n

ν
q–
n

(n, m ∈ N). For  <
p <  or p < , we still use the formal symbol of the norm in this part for convenience.

Theorem  Suppose that  < p < , {μm}∞m= and {νn}∞n= are decreasing positive sequences,
and U(∞) = V (∞) = ∞, then we have the following equivalent inequalities:

I =
∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

ambn >
[

π

λ sin(πλ/λ)

]

‖a‖p,ϕ̃‖b‖q,ψ , ()

J =

{ ∞∑

n=

νn

V –pλ
n

( ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

am

)p} 
p

>
[

π

λ sin(πλ/λ)

]

‖a‖p,ϕ̃ ()

where the constant factor [ π
λ sin(πλ/λ) ] is the best possible.

Proof By the reverse Hölder inequality with weight (cf. []) and (), we obtain the reverse
forms of () and (). It follows that () is valid by (). Using the reverse Hölder inequality
(cf. []), we find

I =
∞∑

n=

[
ν

/p
n

V

p –λ

n

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

am

][
V


p –λ

n

ν
/p
n

bn

]

≥ J‖b‖q,ψ . ()

Hence () is valid by using (). Setting

bn =
νn

V –pλ
n

[ ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

am

]p–

, n ∈ N,

then we have J = [
∑∞

n=
V q(–λ)–

n
ν

q–
n

bq
n]/p. Assume that () is valid. By the reverse of (), it

follows that J > . If J = ∞, then () is trivially valid. If  < J < ∞, then we find

∞∑

n=

V q(–λ)–
n

ν
q–
n

bq
n = Jp = I > kλ(λ)‖a‖p,ϕ̃

[ ∞∑

n=

V q(–λ)–
n

ν
q–
n

bq
n

] 
q

,

J =

[ ∞∑

n=

V q(–λ)–
n

ν
q–
n

bq
n

]/p

> kλ(λ)‖a‖p,ϕ̃ .

Hence () is valid, which is equivalent to ().
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For  < ε < pλ, we set λ̃ = λ – ε
p (∈ (, )), λ̃ = λ + ε

p (> ), ãm = U λ̃–
m μm, b̃n =

V λ̃–ε–
n νn. By (), (), and (), in view of Remark , we find

∞∑

m=

(
 – θ(λ, m)

)Up(–λ)–
m

μ
p–
m

ãp
m

=
∞∑

m=

(

 – O
(


Uλ/

m

))
μm

U+ε
m

=
∞∑

m=

μm

U+ε
m

–
∞∑

m=

O
(

μm

U+ε+(λ/)
m

)

=

ε

(
 + o() – εO()

)
,

∞∑

n=

V q(–λ)–
n

ν
q–
n

b̃q
n =

∞∑

n=

νn

V +ε
n

=

ε

(
 + o()

)
,

Ĩ =
∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

ãmb̃n =
∞∑

n=

[ ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

V λ̃
n μm

U–̃λ
m

]
νn

V ε+
n

=
∞∑

n=

� (̃λ, n)
νn

V ε+
n

< kλ (̃λ)
∞∑

n=

νn

V ε+
n

=

ε

[
π

λ sin(πλ̃/λ)

](
 + o()

)
.

If there exists a positive number K ≥ kλ(λ), such that () is still valid when replacing
kλ(λ) by K , then in particular, we have

ε̃I = ε

∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

ãmb̃n

> εK

[ ∞∑

m=

(
 – θ(λ, m)

)Up(–λ)–
m

μ
p–
m

ãp
m

] 
p
[ ∞∑

n=

V q(–λ)–
n

ν
q–
n

b̃q
n

] 
q

.

We obtain from the above results that

[
π

λ sin(πλ̃/λ)

](
 + o()

)
> K

(
 + o() – εO()

) 
p
(
 + o()

) 
q ,

and then kλ(λ) ≥ K (for ε → +). Hence K = kλ(λ) is the best value of ().
We conform that the constant factor kλ(λ) in () is the best possible. Otherwise we

can get a contradiction by (): that the constant factor in () is not the best value. �

Theorem  Suppose that p < , {μm}∞m= and {νn}∞n= are decreasing positive sequences,
and U(∞) = V (∞) = ∞, then we have the following equivalent inequalities:

I =
∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

ambn >
[

π

λ sin(πλ/λ)

]

‖a‖p,ϕ‖b‖q,ψ̃ , ()
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J =

{ ∞∑

n=

( – θ(λ, n))–pνn

V –pλ
n

( ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

am

)p} 
p

>
[

π

λ sin(πλ/λ)

]

‖a‖p,ϕ , ()

where the constant factor [ π
λ sin(πλ/λ) ] is the best possible.

Proof Using the same way of obtaining () and (), by the reverse Hölder inequality with
weight and (), we have

J >
(
kλ(λ)

) 
q

[ ∞∑

m=

ω(λ, m)
Up(–λ)–

m

μ
p–
m

ap
m

] 
p

, ()

then we obtain () by (). Using the reverse Hölder inequality, we have

I =
∞∑

n=

[
( – θ(λ, n))– 

q ν
/p
n

V

p –λ

n

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

am

]

×
[
(
 – θ(λ, n)

) 
q V


p –λ

n

ν
/p
n

bn

]

≥ J‖b‖q,ψ̃ . ()

Hence () is valid by (). Assuming that () is valid, setting

bn =
( – θ(λ, n))–pνn

V –pλ
n

[ ∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

am

]p–

, n ∈ N,

we find

J =

[ ∞∑

n=

(
 – θ(λ, n)

)V q(–λ)–
n

ν
q–
n

bq
n

]/p

.

It follows that J >  by (). If J = ∞, then () is trivially valid. If  < J < ∞, then we find

∞∑

n=

(
 – θ(λ, n)

)V q(–λ)–
n

ν
q–
n

bq
n = Jp

 = I

> kλ(λ)‖a‖p,ϕ

[ ∞∑

n=

(
 – θ(λ, n)

)V q(–λ)–
n

ν
q–
n

bq
n

] 
q

,

J =

[ ∞∑

n=

(
 – θ(λ, n)

)V q(–λ)–
n

ν
q–
n

bq
n

]/p

> kλ(λ)‖a‖p,ϕ .

Hence () is valid, which is equivalent to ().
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For  < ε < qλ, we set λ̃ = λ + ε
q (> ), λ̃ = λ – ε

q (∈ (, )), ãm = U λ̃–ε–
m μm, b̃n =

V λ̃–
n νn. By (), (), and (), in view of Remark , we have

∞∑

m=

Up(–λ)–
m

μ
p–
m

ãp
m =

∞∑

m=

μm

U+ε
m

=

ε

(
 + o()

)
,

∞∑

n=

(
 – θ(λ, n)

)V q(–λ)–
n

ν
q–
n

b̃q
n

=
∞∑

n=

(

 – O
(


V λ/

n

))
νn

V +ε
n

=

ε

(
 + o() – εO()

)
,

Ĩ =
∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

ãmb̃n

=
∞∑

m=

[ ∞∑

n=

ln(Um/Vn)
Uλ

m – V λ
n

U λ̃
m νn

V –̃λ
n

]
μm

U+ε
m

=
∞∑

m=

� (̃λ, m)
μm

U+ε
m

< kλ (̃λ)
∞∑

n=

μm

U+ε
m

=

ε

[
π

λ sin(πλ̃/λ)

](
 + o()

)
.

If there exists a positive number K ≥ kλ(λ), such that () is still valid as we replace
kλ(λ) by K , then, in particular, we have

ε̃I = ε

∞∑

n=

∞∑

m=

ln(Um/Vn)
Uλ

m – V λ
n

ãmb̃n

> εK

[ ∞∑

m=

Up(–λ)–
m

μ
p–
m

ãp
m

] 
p
[ ∞∑

n=

(
 – θ(λ, n)

)V q(–λ)–
n

ν
q–
n

b̃q
n

] 
q

.

From the above results, we have

[
π

λ sin(πλ̃/λ)

](
 + o()

)
> K

(
 + o()

) 
p
(
 + o() – εO()

) 
q .

It follows that kλ(λ) ≥ K (for ε → +). Hence K = kλ(λ) is the best value of (). We
conform that the constant factor kλ(λ) in () is the best possible. Otherwise we can get
a contradiction by (): that the constant factor in () is not the best value. �

Remark  For μi = νi =  (i = , , . . .), () reduces to (); for λ = , λ = 
q , λ = 

p , it follows
by () that

∞∑

n=

∞∑

m=

ln(Um/Vn)
Um – Vn

ambn <
[

π

sin(π/p)

]
[ ∞∑

m=


μ

p–
m

ap
m

]/p[ ∞∑

n=


ν

q–
n

bq
n

]/q

; ()
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for λ = , λ = 
p , λ = 

q , () reduces to the dual form of () as follows:

∞∑

n=

∞∑

m=

ln(Um/Vn)
Um – Vn

ambn <
[

π

sin(π/p)

]
[ ∞∑

m=

Up–
m

μ
p–
m

ap
m

]/p[ ∞∑

n=

V q–
n

ν
q–
n

bq
n

]/q

. ()
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