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Abstract
In this paper, a new iterative scheme for a finite family of Ii-generalized asymptotically
nonexpansive nonself-mappings {Ti}ri=1 is constructed in a uniformly convex
hyperbolic space. We establish strong convergence theorems of this iterative scheme
to a common fixed point of {Ti}ri=1 and {Ii}ri=1 under certain conditions. Our results of
this paper extend some results in the literature.
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1 Introduction
Let T : K → K , I : K → K be two mappings of nonempty subset K of a real normed linear
space X. T is said to be I-asymptotically nonexpansive [, ] if there exists a sequence
{v′

n} ⊂ [,∞) with limn→∞ v′
n =  such that

∥
∥Tnx – Tny

∥
∥ ≤ (

 + v′
n
)∥
∥Inx – Iny

∥
∥ (.)

for all x, y ∈ K and n ≥ .
A subset K of X is said to be a retract of X if there exists a continuous map P : X → K

such that Px = x, ∀x ∈ K . A mapping P : X → K is said to be a retraction if P = P. It follows
that if a map P is a retraction, then Py = y for all y in the range of P.

For nonself-nonexpansive mappings, some authors (see [, ] and the references therein)
have studied the strong and weak convergence theorems in Hilbert spaces or uniformly
convex Banach spaces. However, iterative algorithms for approximating fixed points
of nonself-asymptotically nonexpansive mappings have not been paid too much atten-
tion. The concept of nonself-asymptotically nonexpansive mappings was introduced by
Chidume et al. [] in  as a generalization of asymptotically nonexpansive self-
mappings.
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The concept of asymptotically nonexpansive nonself-mappings in the intermediate
sense was introduced by Chidume et al. [] as an important generalization of asymptoti-
cally nonexpansive self-mappings in the intermediate sense.

Definition . ([]) Let K be a nonempty subset of a Banach space X. Let P : X → K be a
nonexpansive retraction of X onto K . A nonself-mapping T : K → X is called asymptoti-
cally nonexpansive in the intermediate sense if T is continuous and the following inequal-
ity holds:

lim sup
n→∞

sup
x,y∈K

(∥
∥T(PT)n–x – T(PT)n–y

∥
∥ – ‖x – y‖) ≤ .

By studying the following iterative sequence:

xn+ = P
(

( – αn)xn + αnT(PT)n–xn
)

, ∀x ∈ K , n ≥ , (.)

Chidume et al. [] established demi-closed principle, strong and weak convergence the-
orems for nonself asymptotically nonexpansive mapping in a uniformly convex Banach
space. Recently concerning the convergence problem of an explicit iterative process to
a common fixed point for some nonself-asymptotically nonexpansive mappings in uni-
formly convex Banach spaces have been considered by several authors (see, for example,
Wang [], Yang [], Thainwan [], and the references therein).

Inspired and motivated by those facts, we will construct a new type of iterative sequence
involving I-generalized asymptotically nonexpansive nonself-mapping in a nonempty
closed convex subset of complete uniformly convex hyperbolic spaces and study the strong
convergence for such mappings. Our theorems improve and generalize important related
results of the previously known ones announced by Chidume et al. [], Wang [].

2 Preliminaries
Definition . Let (X, d) be a metric space and T : K → X, I : K → X be two mappings
of nonempty subset K of X. A nonself-mapping T : K → X is said to be I-generalized
asymptotically nonexpansive mapping if there exist sequences {vn} ⊂ [,∞) and {sn} ⊂
[,∞) with limn→∞ vn =  = limn→∞ sn such that

d
(

T(PT)n–x, T(PT)n–y
) ≤ ( + vn)d

(

I(PI)n–x, I(PI)n–y
)

+ sn (.)

for all x, y ∈ K , where P is a nonexpansive retraction of X onto K .
If I is the identity mapping, then (.) reduces to

d
(

T(PT)n–x, T(PT)n–y
) ≤ ( + vn)d(x, y) + sn,

then T is said to be generalized asymptotically nonexpansive nonself-mapping.
T : K → X is said to be uniformly L-Lipschitzian if there exists a constant L >  such

that

d
(

T(PT)n–x, T(PT)n–y
) ≤ Ld(x, y), ∀n ≥ , x, y ∈ K .

Remark . If sn =  for all n ≥ , then (.) reduces to the nonself-asymptotically non-
expansive mapping. If vn =  for all n ≥  and I the identity mapping, then I-generalized
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asymptotically nonexpansive nonself-mappings coincide with asymptotically nonexpan-
sive nonself-mappings in the intermediate sense.

A hyperbolic space [] is a metric space (X, d) together with a map W : X × [, ] → X
satisfying:

(i) d(u, W (x, y,λ)) ≤ λd(u, x) + ( – λ)d(u, y),
(ii) d(W (x, y,λ), W (x, y,μ)) = |λ – μ|d(x, y),

(iii) W (x, y,λ) = W (y, x, ( – λ)),
(iv) d(W (x, z,λ), W (y, w,λ)) ≤ ( – λ)d(x, y) + λd(z, w),

for all x, y, z, w ∈ X and λ,μ ∈ [, ]. We denote the above defined hyperbolic space by
(X, d, W ); if it satisfies only (i), then it is said to be the convex metric space introduced by
Takahashi []. A nonempty subset K of a hyperbolic space X is convex if W (x, y,λ) ∈ K
for all x, y ∈ X and λ ∈ [, ].

Kohlenbach [] pointed out that all normed spaces and their subsets are hyperbolic
spaces as well as convex metric spaces. The class of hyperbolic spaces is properly contained
in the class of convex metric spaces.

A hyperbolic space (X, d, W ) is said to be uniformly convex [] if for any x, y, u ∈ X,
r >  and ε ∈ (, ], there exists a δ ∈ (, ] such that

d(x, u) ≤ r
d(y, u) ≤ r
d(x, y) ≥ εr

⎫

⎪⎬

⎪⎭

�⇒ d
(

W
(

x, y,



)

, u
)

≤ ( – δ)r.

A map η : (,∞) × (, ] → (, ] which provides such a δ = η(r, ε), for given r >  and
ε ∈ (, ], is called modulus of uniform convexity of X. We call η monotone if it decreases
with r (for a fixed ε). We call η monotone if it decreases with r (for a fixed ε).

The concept of �-convergence in a metric space was introduced by Lim [] and its
analog in CAT() spaces has been investigated by Dhompongsa and Panyanak []. In this
article, we continue the investigation of �-convergence in the general setup of hyperbolic
spaces.

Let {xn} be any bounded sequence in a metric space X. For x ∈ X, define a continuous
function r̃(·, {xn}) : X → [,∞) by

r̃
(

x, {xn}
)

= lim sup
n→∞

d(x, xn).

The asymptotic radius ρ = r̃(xn) of {xn} with respect to a subset K ⊂ X is given by

ρ = inf
{

r̃
(

x, {xn}
)

: x ∈ K
}

.

The asymptotic center of a bounded sequence {xn} with respect to a subset K ⊂ X is
defined as follows:

AK (xn) =
{

x ∈ X : r̃
(

x, {xn}
) ≤ r̃

(

y, {xn}
)

for any y ∈ K
}

.

If the asymptotic center is taken with respect to X, then it is simply denoted by A(xn). In
general, A(xn) may be empty or may even contain infinitely many points. It is well known
that a complete uniformly convex hyperbolic space with monotone modulus of uniform
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convexity enjoys the property that bounded sequences have unique asymptotic center with
respect to closed convex subsets [].

A sequence {xn} is said to �-convergence x ∈ X if x is the unique asymptotic center
for every subsequence {xni} of {xn}. In this case, we call x as �-limit of {xn} and write
� – limn xn = x.

Lemma . (see []) Let (X, d, W ) be a uniformly convex hyperbolic space with monotone
modulus of uniform convexity and K a nonempty closed convex subset of X. Then every
bounded sequences {xn} in X has a unique asymptotic center with respect to K .

Lemma . (see []) Let (X, d, W ) be a uniformly convex hyperbolic space with monotone
modulus of uniform convexity η and x ∈ X. Let {λn} ∈ [b, c] for some b, c ∈ (, ). If {un}
and {vn} are sequences in X such that lim supn→∞ d(un, x) ≤ r, lim supn→∞ d(vn, x) ≤ r and
limn→∞ d(W (un, vn,λn), x) = r for some r ≥ , then limn→∞ d(un, vn) = .

Lemma . (see []) Let K a nonempty closed convex subset of a uniformly convex hyper-
bolic space (X, d, W ) and {un} be a bounded sequence in K such that A({un}) = {u}. If {vm}
is any other sequence in K such that limm→∞ r(vm, {un}) = r(u, {un}), then limm→∞ vm = u.

Lemma . (see [], Lemma ) Let {an}, {bn}, {δn} be sequences of nonnegative real num-
bers satisfying the inequality

an+ ≤ ( + δn)an + bn, n ≥ .

If
∑∞

n= bn < ∞ and
∑∞

n= δn < ∞, then
(i) limn→∞ an exists;

(ii) in particular, if {an} has a subsequence {ank } converging to , then limn→∞ an = .

In the following, we denote I = {, , . . . , r}.
A family {Ti : i ∈ I} be Ii-generalized asymptotically nonexpansive nonself-mappings

and {Ii : i ∈ I} be generalized asymptotically nonexpansive nonself-mappings with F =
⋂r

i= F(Ti) ∩ F(Ii) �= ∅, are said to satisfy condition (B) with respect to the sequence {un}
if there is a nondecreasing function f : [,∞) → [,∞) with f () = , f (s) >  for all s > 
such that

max
i∈I

{

d(un, Tiun)
} ∨ max

i∈I

{

d(un, Iiun)
} ≥ f

(

d(un,F )
)

.

3 Main results
Lemma . Let (X, d, W ) be a convex metric space and K be a nonempty closed con-
vex subset of X. Let Ti : K → X (i ∈ I) be Ii-generalized asymptotically nonexpansive
nonself-mappings with sequences {vin}, {sin} ⊂ [,∞) and Ii : K → X (i ∈ I) be gener-
alized asymptotically nonexpansive nonself-mappings with {uin}, {s′

in} ⊂ [,∞), and F =
⋂r

i= F(Ti) ∩ F(Ii) �= ∅. Suppose that for any given x ∈ K , the sequence {xn} is generated by

⎧

⎪⎪⎨

⎪⎪⎩

zn = PW (Ii(PIi)n–xn, xn, an),

yn = PW (Ti(PTi)n–zn, PW (Ti(PTi)n–xn, xn, cn
–bn

), bn),

xn+ = PW (Tn–
i yn, PW (Tn–

i zn, xn, βn
–αn

),αn),

(.)
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satisfying the conditions:
()

∑∞
n= hn < ∞ and

∑∞
n= sn < ∞, where hn = max{uin : i ∈ I} ∨ max{vin : i ∈ I} and

sn = max{sin : i ∈ I} ∨ max{s′
in : i ∈ I}.

()  ≤ an, bn, cn,αn,βn, bn + cn,αn + βn ≤ , ∀n ≥ .
Then the sequence {xn} defined by (.) has limit existence property for the mappings Ti

and Ii (i ∈ I).

Proof For any given q ∈F . It follows from (.) that

d(zn, q) = d
(

PW
(

Ii(PIi)n–xn, xn, an
)

, q
)

≤ d
(

W
(

Ii(PIi)n–xn, xn, an
)

, q
)

≤ and
(

Ii(PIi)n–xn, q
)

+ ( – an)d(xn, q)

≤ an
[

( + hn)d(xn, q) + sn
]

+ ( – an)d(xn, q)

≤ ( + hn)d(xn, q) + sn. (.)

It follows from (.), (.) that

d(yn, q) = d
(

PW
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, bn

)

, q
)

≤ d
(

W
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, bn

)

, q
)

≤ bnd
(

Ti(PTi)n–zn, q
)

+ ( – bn)d
(

PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, q
)

≤ bn
(

( + hn)d
(

Ii(PIi)n–zn, q
)

+ sn
)

+ ( – bn)
(

cn

 – bn
d
(

Ti(PTi)n–xn, q
)

+
(

 –
cn

 – bn

)

d(xn, q)
)

≤ bn
(

( + hn)
(

( + hn)d(zn, q) + sn
)

+ sn
)

+ cn
(

( + hn)d
(

Ii(PIi)n–xn, q
)

+ sn
)

+ ( – bn – cn)d(xn, q)

≤ bn( + hn)d(xn, q) + bn( + hn)sn + bn( + hn)sn + bnsn

+ cn( + hn)d(xn, q) + cn( + hn)sn + cnsn + ( – bn – cn)d(xn, q)

≤ ( + hn)d(xn, q) + ( + hn)sn + ( + hn)sn + sn. (.)

It follows from (.), (.), and (.) that

d(xn+, q) = d
(

PW
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

,αn

)

, q
)

≤ d
(

W
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

,αn

)

, q
)

≤ αnd
(

Ti(PTi)n–yn, q
)

+ ( – αn)d
(

PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

, q
)

≤ αn
(

( + hn)d
(

Ii(PIi)n–yn, q
)

+ sn
)
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+ βnd
(

Ti(PTi)n–zn, q
)

+ ( – αn – βn)d(xn, q)

≤ αn( + hn)
(

( + hn)d(yn, q) + sn
)

+ αnsn

+ βn
(

( + hn)d
(

Ii(PIi)n–zn, q
)

+ sn
)

+ ( – αn – βn)d(xn, q)

≤ αn( + hn)d(yn, q) + αn( + hn)sn + αnsn

+ βn( + hn)
(

( + hn)d(zn, q) + sn
)

+ βnsn + ( – αn – βn)d(xn, q)

≤ (

αn( + hn) + βn( + hn) + ( – αn – βn)
)

d(xn, q)

+
(

( + hn) + ( + hn) + ( + hn) + ( + hn) + 
)

sn

≤ ( + hn)d(xn, q) + σn

= ( + ρn)d(xn, q) + σn. (.)

Since
∑∞

n= hn < ∞ and
∑∞

n= sn < ∞, we have
∑∞

n= ρn =
∑∞

n= hn( + hn + h
n + h

n +
h

n) < ∞ and
∑∞

n= σn =
∑∞

n=(( + hn) + ( + hn) + ( + hn) + ( + hn) + )sn < ∞. Applying
Lemma . to (.), we observe that limn→∞ d(xn, q) exists for each q ∈F . �

Lemma . Under the assumptions of Lemma ., we have the following:
(i) If  < lim infn→∞ αn ≤ lim supn→∞(αn + βn) < , then

limn→∞ d(Ti(PTi)n–yn, PW (Ti(PTi)n–zn, xn, βn
–αn

)) = .
(ii) If  < lim infn→∞ bn ≤ lim supn→∞(bn + cn) < , then

limn→∞ d(Ti(PTi)n–zn, PW (Ti(PTi)n–xn, xn, cn
–bn

), bn) = .
(iii) If  < lim infn→∞ bn ≤ lim supn→∞(bn + cn) < ,

 < lim infn→∞ an ≤ lim supn→∞ an < , then
limn→∞ d(Ii(PIi)n–xn, xn) = limn→∞ d(Ti(PTi)n–xn, xn) = .

Proof By Lemma ., limn→∞ d(xn, q) exists for each q ∈F .
Let limn→∞ d(xn, q) = c for some c ≥ . The case c =  is trivial. Next, we discuss the case

c > .
(i) Assume that  < lim infn→∞ αn ≤ lim supn→∞(αn + βn) < , then there exist η,η ∈

(, ) such that  < η ≤ αn ≤ αn + βn ≤ η <  for all n ≥ .
Since Ti is Ii-generalized asymptotically nonexpansive mapping, it follows from (.)

that we have

d
(

Ti(PTi)n–yn, q
) ≤ ( + hn)d

(

Ii(PIi)n–yn, q
)

+ sn

≤ ( + hn)
(

( + hn)d(yn, q) + sn
)

+ sn

≤ ( + hn)d(xn, q) +
(

( + hn) + ( + hn)

+ ( + hn) + 
)

sn.

Therefore

lim sup
n→∞

d
(

Ti(PTi)n–yn, q
) ≤ c. (.)
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Further, it follows from (.) that we have the inequality

d
(

PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

, q
)

≤ d
(

W
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

, q
)

≤ βn

 – αn
d
(

Ti(PTi)n–zn, q
)

+
(

 –
βn

 – αn

)

d(xn, q)

≤ βn

 – αn
( + hn)d

(

Ii(PIi)n–zn, q
)

+ sn

+
(

 –
βn

 – αn

)

d(xn, q)

≤ βn

 – αn
( + hn)d(xn, q) + ( + hn)sn + sn

+
(

 –
βn

 – αn

)

d(xn, q)

≤ ( + hn)d(xn, q) + ( + hn)sn + sn.

Therefore

lim sup
n→∞

d
(

PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

, q
)

≤ c. (.)

As limn→∞ d(xn+, q) = c, we have

lim
n→∞ d

(

W
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

,αn

)

, q
)

= c. (.)

It follows from Lemma . and the sequences (.)-(.) that

lim
n→∞ d

(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

))

= . (.)

(ii) Assume  < lim infn→∞ bn ≤ lim supn→∞(bn + cn) < , then there exist τ, τ ∈ (, )
such that  < τ ≤ bn ≤ bn + cn ≤ τ <  for all n ≥ . Next we calculate:

d(xn+, q) = d
(

PW
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

,αn

)

, q
)

≤ d
(

W
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

,αn

)

, q
)

≤ αnd
(

Ti(PTi)n–yn, q
)

+ ( – αn)d
(

PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

, q
)

≤ αnd
(

Ti(PTi)n–yn, q
)

+ ( – αn)d
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

))

+ ( – αn)d
(

Ti(PTi)n–yn, q
)
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≤ ( + hn)d
(

Ii(PIi)n–yn, q
)

+ sn

+ d
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

))

≤ ( + hn)d(yn, q) + ( + hn)sn

+ d
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

))

.

That is,

d(xn+, q) ≤ ( + hn)d(yn, q) + ( + hn)sn

+ d
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

))

.

Applying liminf in the above inequality and then using (.), we have

c ≤ lim inf
n→∞ d(yn, q) ≤ lim sup

n→∞
d(yn, q) ≤ c.

That is,

lim
n→∞ d

(

PW
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, bn

)

, q
)

= c. (.)

It follows from (.) and (.) that

lim
n→∞ d

(

W
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, bn

)

, q
)

= c. (.)

Similar to (.), we have

lim sup
n→∞

d
(

Ti(PTi)n–zn, q
) ≤ c. (.)

Similar to (.), we have

lim sup
n→∞

d
(

PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, q
)

≤ c. (.)

The sequences in (.), (.), and (.) satisfy the hypotheses of Lemma ., therefore
it follows that

lim
n→∞ d

(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

))

= . (.)

(iii) As  < lim infn→∞ bn ≤ lim supn→∞(bn + cn) < , so as in part (ii), there exist τ, τ ∈
(, ) such that  < τ ≤ bn ≤ bn + cn ≤ τ <  for all n ≥ . Also  < lim infn→∞ an ≤
lim supn→∞ an <  shows that there exist δ, δ ∈ (, ) such that  < δ ≤ bn ≤ bn + cn ≤
δ <  for all n ≥ .
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Taking liminf in the inequality

d(yn, q) = d
(

PW
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, bn

)

, q
)

≤ d
(

W
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, bn

)

, q
)

≤ bnd
(

Ti(PTi)n–zn, q
)

+ ( – bn)d
(

PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, q
)

≤ bnd
(

Ti(PTi)n–zn, q
)

+ ( – bn)d
(

Ti(PTi)n–zn, q
)

+ ( – bn)d
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

))

≤ ( + hn)d(zn, q) + ( + hn)sn

+ d
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

))

and using (.), we have

c ≤ lim inf
n→∞ d(zn, q) ≤ lim sup

n→∞
d(zn, q) ≤ c.

Since

d(zn, q) = d
(

PW
(

Ii(PIi)n–xn, xn, an
)

, q
) ≤ d

(

W
(

Ii(PIi)n–xn, xn, an
)

, q
)

,

we have

lim
n→∞ d

(

W
(

Ii(PIi)n–xn, xn, an
)

, q
)

= c.

Appealing to Lemma ., we have

lim
n→∞ d

(

Ii(PIi)n–xn, xn
)

= . (.)

Therefore

d(zn, xn) = d
(

PW
(

Ii(PIi)n–xn, xn, an
)

, xn
)

≤ d
(

W
(

Ii(PIi)n–xn, xn, an
)

, xn
)

≤ and
(

Ii(PIi)n–xn, xn
)

≤ d
(

Ii(PIi)n–xn, xn
) → . (.)

Since

d
(

Ti(PTi)n–xn, xn
) ≤ d

(

Ti(PTi)n–xn, Ti(PTi)n–zn
)

+ d
(

Ti(PTi)n–zn, xn
)

, (.)

d
(

Ti(PTi)n–zn, xn
) ≤ d

(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

))
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+ d
(

PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, xn

)

≤ d
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

))

+
cn

 – bn
d
(

Ti(PTi)n–xn, xn
)

. (.)

It follows from (.) and (.) that

(

 –
cn

 – bn

)

d
(

Ti(PTi)n–xn, xn
)

≤ d
(

Ti(PTi)n–xn, Ti(PTi)n–zn
)

+ d
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

))

. (.)

Therefore, we have

(

 –
τ

 – τ

)

d
(

Ti(PTi)n–xn, xn
)

≤ d
(

Ti(PTi)n–xn, Ti(PTi)n–zn
)

+ d
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

))

≤ ( + hn)d(xn, zn) + ( + hn)sn

+ d
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

))

. (.)

It follows from (.), (.), and (.) that

lim
n→∞ d

(

Ti(PTi)n–xn, xn
)

= . (.)

This completes the proof. �

Theorem . Under the assumptions of Lemma ., let Ti, Ii : K → X (i ∈ I) be uniformly
L-Lipschitzian, the sequence {xn} is generated by (.) satisfying the conditions:

(i)  < lim infn→∞ αn ≤ lim supn→∞(αn + βn) < ,
(ii)  < lim infn→∞ bn ≤ lim supn→∞(bn + cn) < ,

(iii)  < lim infn→∞ an ≤ lim supn→∞ an < .
Then {xn} in (.) has approximate common fixed point property for Ii, Ti (i ∈ I).

Proof Since Ti is uniformly L-Lipschitzian, it follows from (.) and (.) that

d
(

Ti(PTi)n–zn, xn
) ≤ d

(

Ti(PTi)n–zn, Ti(PTi)n–xn
)

+ d
(

Ti(PTi)n–xn, xn
)

≤ Ld(zn, xn) + d
(

Ti(PTi)n–xn, xn
) → . (.)
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It follows from (.) and (.) that

d(yn, xn) = d
(

PW
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, bn

)

, xn

)

≤ d
(

W
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, bn

)

, xn

)

≤ bnd
(

Ti(PTi)n–zn, xn
)

+ ( – bn)d
(

PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

)

, xn

)

≤ d
(

Ti(PTi)n–zn, xn
)

+ d
(

Ti(PTi)n–zn, PW
(

Ti(PTi)n–xn, xn,
cn

 – bn

))

→ . (.)

Since Ti is uniformly L-Lipschitzian, it follows from (.) and (.) that

d
(

Ti(PTi)n–yn, xn
) ≤ d

(

Ti(PTi)n–yn, Ti(PTi)n–xn
)

+ d
(

Ti(PTi)n–xn, xn
)

≤ Ld(yn, xn) + d
(

Ti(PTi)n–xn, xn
) → . (.)

It follows from (.) and (.) that

d(xn+, xn) = d
(

PW
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

,αn

)

, xn

)

≤ d
(

W
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

,αn

)

, xn

)

≤ αnd
(

Ti(PTi)n–yn, xn
)

+ ( – αn)d
(

PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

)

, xn

)

≤ d
(

Ti(PTi)n–yn, xn
)

+ d
(

Ti(PTi)n–yn, PW
(

Ti(PTi)n–zn, xn,
βn

 – αn

))

→  as n → ∞. (.)

Note that the inequality

d(xn, Tixn) ≤ d(xn, xn+) + d
(

xn+, Ti(PTi)nxn+
)

+ d
(

Ti(PTi)nxn+, Ti(PTi)nxn
)

+ d
(

Ti(PTi)nxn, Tixn
)

= d(xn, xn+) + d
(

Ti(PTi)nxn+, Ti(PTi)nxn
)

+ d
(

xn+, Ti(PTi)nxn+
)

+ d
(

Ti(PTi)nxn, Tixn
)

≤ ( + L)d(xn, xn+) + d
(

xn+, Ti(PTi)nxn+
)

+ Ld
(

Ti(PTi)n–xn, xn
)
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together with (.) and (.) gives

lim
n→∞ d(xn, Tixn) =  for all i ∈ I. (.)

Similarly, we can prove that

lim
n→∞ d(xn, Iixn) =  for all i ∈ I. (.)

Equations (.) and (.) prove that {xn} has approximate common fixed point property
for Ii, Ti (i ∈ I). This completes the proof. �

Theorem . Under the assumptions of Theorem ., if {Ti : i ∈ I} and {Ii : i ∈ I} satisfy
condition (B) with respect to the sequence {xn}, then {xn} in (.) converges strongly to a
common fixed point of {Ti : i ∈ I} and {Ii : i ∈ I}.

Proof It follows from Theorem . that

lim
n→∞ d(xn, Tixn) = lim

n→∞ d(xn, Iixn) = , ∀i ∈ I.

Since {Ti : i ∈ I} and {Ii : i ∈ I} satisfy condition (B) with respect to the sequence {xn}, we
have

lim
n→∞ d(xn,F ) = .

Next, we show that {xn} is a Cauchy sequence. For any q ∈ F . It follows from (.) that
there exists a positive constant M such that

d(xn+, q) ≤ d(xn, q) + γn, (.)

where γn = Mρn, and
∑∞

n= γn < ∞. For an arbitrary ε > , since limn→∞ d(xn,F ) =  and
∑∞

n= γn < ∞, there exists a positive integer N such that d(xn,F ) ≤ ε/,
∑∞

j=n γj ≤ ε/ for
all n ≥ N . So, we have d(xN ,F ) ≤ ε/,

∑∞
j=N γj ≤ ε/. This means that there exists a q ∈F

such that d(xN , q) ≤ ε/. It follows from (.) that when n ≥ N ,

d(xn+m, xn) ≤ d(xn+m, q) + d(xn, q)

≤ d(xN , q) +
n+m–
∑

j=N

γj + d(xN , q) +
n–
∑

j=N

γj

≤ 

(

d(xN , q) +
∞

∑

j=N

γj

)

≤ 
(

ε


+

ε



)

= ε.

This implies that {xn} is a Cauchy sequence. K is complete for it is a closed subset in
a complete hyperbolic space. Without loss of generality, we can assume that {xn} con-
verges strongly to some point q∗ ∈ K . It is easy to prove that F is closed. It follows from
limn→∞ d(xn,F ) =  that q∗ ∈F . This completes the proof. �
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Theorem . Under the assumptions of Theorem ., then the sequence {xn} defined by
(.) �-converges to a point in F .

Proof It follows from Lemma . that {xn} is bounded. Therefore by Lemma ., {xn} has
a unique asymptotic center, that is, A({xn}) = {x}. Let {un} be any subsequence of {xn} such
that A({un}) = {u}. By (.) and (.), we have limn→∞ d(un, Tiun) = limn→∞ d(un, Iiun) =
 for i ∈ I. We claim that u is the common fixed point of {Ti : i ∈ I} and {Ii : i ∈ I}.

To do this, we define a sequence {zn} in K by zn = Ti(PTi)n–u. Observe that

d(zn, un) ≤ d
(

Ti(PTi)n–u, Ti(PTi)n–un
)

+ d
(

Ti(PTi)n–un, un
)

≤ ( + hn)d
(

Ii(PIi)n–u, Ii(PIi)n–un
)

+ sn + d
(

Ti(PTi)n–un, un
)

≤ ( + hn)d(u, un) + ( + hn)sn + d
(

Ti(PTi)n–un, un
)

.

Therefore, we have

r̃
(

zn, {un}
)

= lim sup
n→∞

d(zn, un) ≤ lim sup
n→∞

d(u, un) = r̃
(

u, {un}
)

.

This implies that |̃r(zn, {un}) – r̃(u, {un})| → o as n → ∞. It follows from Lemma .
that limn→∞ Ti(PTi)n–u = u. Since K is closed, limn→∞ Ti(PTi)n–u = u ∈ K and
limn→∞ Ti(PTi)nu = Tiu, that is, Tiu = u. Similarly, we can show that u is the common fixed
point of {Ii : i ∈ I}. Therefore u is the common fixed point of {Ti : i ∈ I} and {Ii : i ∈ I}. It
follows from Lemma . that limn→∞ d(xn, u) exists. Suppose x �= u. Then by the unique-
ness of asymptotic centers, we have

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x) ≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u) = lim sup
n→∞

d(un, u),

which gives a contradiction. Hence x = u.
Therefore A({un}) = {u} for all subsequences {un} of {xn}. This proves that {xn} �-

converges to a point in F . �

Example . Let us consider that R, the set of real number with the usual norm | · |. Let
K = [– 

 , 
 ] ⊂R. The mapping T, T : K → K are defined by

Tx =

⎧

⎨

⎩

sin x
 , x ∈ [– 

 , ],

– sin x
 , x ∈ (, 

 ],

and

Tx =

⎧

⎨

⎩

x, x ∈ [– 
 , ],

x, x ∈ (, 
 ].
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Then T and T are generalized asymptotically nonexpansive mappings. Note that F(T) =
{} and F(T) = {– 

 ≤ x ≤ } and F = F(T) ∩ F(T) = {}. Let

an =
n

n + 
, bn =

n
n + 

, cn =
n

n + 
, αn =

n
n + 

, βn =
n

n + 

for all n ≥ . Therefore, the conditions of Theorem . are fulfilled.

Theorem . Under the assumptions of Theorem ., {xn} in (.) converges strongly to a
common fixed point of {Ti : i ∈ I} and {Ii : i ∈ I} if and only if lim infn→∞ d(xn,F ) = .

Proof The necessity is obvious. Indeed, if xn → q ∈F as n → ∞, then

d(xn,F ) = inf
q∈F

d(xn, q) ≤ d(xn, q) →  (as n → ∞).

Now, we show sufficiency. Equation (.) means that

inf
q∈F

d(xn+, q) ≤ inf
q∈F

d(xn, q) + γn,

that is,

d(xn+,F ) ≤ d(xn,F ) + γn. (.)

It follows from (.), Lemma ., and lim infn→∞ d(xn,F ) =  that limn→∞ d(xn,F ) = .
Thus, the rest of the proof follows as in the proof of Theorem .. This completes the
proof. �

Theorem . Under the assumptions of Theorem ., if at least one mapping of the map-
pings {Ti : i ∈ I} and {Ii : i ∈ I} is semi-compact, then {xn} in (.) converges strongly to a
common fixed point of {Ti : i ∈ I} and {Ii : i ∈ I}.

Proof Without loss of generality, we may assume that T is semi-compact. By (.) and
the assumption that T is semi-compact, there exists a subsequence {xnj} ⊂ {xn} such that
{xnj} converges strongly to some point q ∈ K . Then by the continuity of Ti (i ∈ I), we get

d(q, Tiq) = lim
j→∞ d(xnj , Tixnj ) = , i ∈ I.

Similarly, we can prove d(q, Iiq) =  for i ∈ I. Therefore q ∈F . It follows from Lemma .
that limn→∞ d(xn, q) exists and thus limn→∞ d(xn, q) = . This completes the proof. �
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