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Abstract
We establish higher-order Fefferman-Poincaré type inequalities with a potential
belonging to an appropriate higher-order Stummel-Kato type class introduced in this
paper. As an application, we obtain a priori Lp estimates for solutions of higher-order
elliptic equations with discontinuous coefficients of small BMO type and a potential
belonging to the higher-order Stummel-Kato type class.
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1 Introduction and main results
Fefferman proved in [] that if a potential V belonging to the classical Morrey space
Lr,n–r(Rn) with  < r ≤ n/, then there exists a positive constant c, independent of u, such
that

∫
Rn

∣∣V (x)
∣∣∣∣u(x)

∣∣ dx ≤ c
∫
Rn

∣∣∇u(x)
∣∣ dx, u ∈ C∞


(
R

n).

The result has been extended to many more general settings and applied to study Har-
nack’s inequality, unique continuation for nonnegative solutions and regularity of solu-
tions of elliptic equations (cf. [–] etc.). Especially, Schechter [] deduced a similar in-
equality for V ∈ S(Rn), here the space S(Rn) is the classical Stummel-Kato class. Let us
recall that one says V ∈ S(Rn) (n ≥ ) if V ∈ L

loc(Rn), and for any r > ,

ϕV (r) := sup
x∈Rn

∫
B(x,r)

∣∣V (y)
∣∣|x – y|–n dy

is finite and

lim
r→+

ϕV (r) = ,

where B(x, r) is a ball of radius r and center x inR
n. Recently, Zamboni [] introduced a new

function space including S(Rn) in terms of nonlinear Riesz potentials, and also provided
a Fefferman-Poincaré inequality extending the result in [].
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Inspired by Zamboni [], Definition ., we introduce the following higher-order
Stummel-Kato type class Sm

p (Rn).

Definition . Let V ∈ L
loc(Rn) (n ≥ ), and let p >  and m be a positive integer with

 ≤ m < n. For r > , denote

ηV (r) := sup
x∈Rn

(∫
Br(x)


|x – y|n–m

(∫
Br (x)

|V (z)|
|y – z|n–m dz

) 
p–

dy
)p–

.

We say that V belongs to the higher-order Stummel-Kato type class Sm
p (Rn), if

ηV (r) < +∞, r >  and lim
r→+

ηV (r) = .

Here | · | denotes the Euclidean norm and Br(x) = B(x, r) = {y ∈R
n : |x – y| < r}. Sometimes

we call that ηV (r) is the higher-order Stummel-Kato type modulus of V .

Remark . If m = , the definition above is identical with Definition . in []; if m = ,
the definition above is the same as Definition  in [] corresponding to the Euclidean case.

We also need the following definitions.

Definition . ([]) Let � be an open set in R
n. For p ≥  and k a nonnegative integer, the

Sobolev space W k,p(�) consists of all distributions u on � such that Dαu ∈ Lp(�) for all
multi-index α with |α| ≤ k. Furthermore, W k,p(�) is a Banach space with the norm

‖u‖W k,p(�) =
(∫

�

∑
|α|≤k

∣∣Dαu
∣∣p dx

)/p

.

Here, α = (α, . . . ,αn) is a multi-index of order |α| := α + · · · + αn. The Banach space
W k,p

 (�) is the closure of C∞
 (�) in W k,p(�).

We denote Dku := {Dαu : |α| = k}, and its norm is defined by

∣∣Dku
∣∣ =

(∑
|α|=k

∣∣Dαu
∣∣

)/

.

For convenience, we denote by MB(x, r) (M > ) the ball concentric with B(x, r) of radius
M times that of B(x, r).

Definition . ([]) A domain � in R
n is said to be a weak Boman chain domain, or a

member of F (, M), if there exist a constant M ≥  and a family F of balls B ⊂ � such
that

(i) � =
⋃

B∈FB;
(ii)

∑
B∈F χB(x) ≤ Mχ�(x), x ∈R

n;
(iii) there is a ‘central ball’ B ∈F such that for every ball B ∈F , there exist a positive

integer k = k(B) and a chain {Bj}k
j= of balls for which and each Bj ∩ Bj+ contains a

ball Dj (this ball does not need to be a member of F ) with Bj ∪ Bj+ ⊂ MDj;
(iv) B ⊂ MBj for all j = , , . . . , k(B).
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Let us note that if the hypothesis (ii) is replaced by

∑
B∈F

χτB(x) ≤ Mχ�(x), x ∈R
n, τ >  is a constant,

then � is said to be a Boman chain domain, cf. [, ]. The classes F (, M) contain
many important types of domains in R

n, for instance, balls, cubes, and John domains (cf.
[, , ]).

Based on the class Sm
p , we establish the following higher-order Fefferman-Poincaré type

inequality with the aid of the method in [, ] proving the Fefferman-Poincaré type in-
equality for the case m = . It is interesting that the mth order derivatives arise in this
setting.

Theorem . Let � be a weak Boman domain, p > , and m be a positive integer with
 ≤ m < n. Assume V ∈ Sm

p (Rn), then for any u ∈ W m,p(�), there exists a polynomial PB (x)
of order less than m such that

∫
�

∣∣u(x) – PB (x)
∣∣p∣∣V (x)

∣∣dx ≤ cηV (MrB )
∫

�

∣∣Dmu(x)
∣∣p dx, (.)

where the positive constant c is independent of u, B is the central ball of radius rB in �,
and the constant M is in Definition ..

When u is a distribution with compact support in �, we have the following.

Theorem . Under the assumptions of Theorem ., for any u ∈ W m,p
 (�), there exists a

positive constant c independent of u such that

∫
�

∣∣u(x)
∣∣p∣∣V (x)

∣∣dx ≤ cηV (MrB )
∫

�

∣∣Dmu(x)
∣∣p dx. (.)

Remark .
(i) In the special case when m = , similar results were obtained in [, ]; when m = 

and � = B(x, r), (.) and (.) have been obtained in [].
(ii) The higher-order Fefferman-Poincaré type inequalities on stratified groups can also

be proved, because of the higher-order representation formulas proved by Lu and
Wheeden [, ].

In the rest of this paper, we will show some applications of the above results to regularity
of solutions to the higher-order elliptic equations with a potential. Let us consider the
equation

∑
|α|≤k

aα(x)Dαu(x) + V (x)u(x) – λu(x) = f (x), x ∈R
n, (.)

where k is a positive integer with  ≤ k < n/, V ∈ Sk
p (Rn) for p > , and the coefficients

aα(x) satisfy

(–)k–
∑

|α|=k

aα(x)ξα ≥ 
, ξ ∈ S
n– ⊂R

n (.)
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and

∑
|α|≤k

∣∣aα(x)
∣∣ ≤ 
 (.)

for all x ∈R
n and positive constants 
, 
. In addition, we assume that the leading coef-

ficients aα(x) (|α| = k) are in BMO space and their semi-norms are small enough. More
precisely, we recall the following definition.

Definition . (Small BMO condition, cf. []) We say that the coefficients aα(x) satisfy
(δ, R)-vanishing condition if for given δ > , there exists R >  such that

sup
<r≤R

sup
x∈Rn

∣∣Br(x)
∣∣–

∫
Br(x)

∣∣aα(y) – (aα)Br (x)
∣∣dy ≤ δ,

where

(aα)Br(x) =
∣∣Br(x)

∣∣–
∫

Br(x)
aα(y) dy.

When k =  and V in general is not bounded, or k >  and V ∈ L∞(Rn), regularity for the
elliptic equation (.) has been studied by many authors, cf. [–] and so forth. Here we
are concerned with (.) for the case  < k < n/ and a singular potential V in Sm

p (Rn).
Our result from (.) is the following.

Theorem . Let p ∈ (,∞), k be a positive integer with  < k < n/. There exist a positive
λ = λ(n,
,
, p) and a small δ = δ(n,
,
, p) >  such that for the coefficients aα(x)
satisfying (.)-(.) and (δ, R)-vanishing condition with |α| = k, for V p ∈ Sk

p (Rn) and f ∈
Lp(Rn), if u ∈ W k,p(Rn) solves equation (.), then

∑
|α|≤k

∥∥Dαu
∥∥

Lp(Rn) + ‖Vu‖Lp(Rn) ≤ c‖f ‖Lp(Rn), (.)

provided λ ≥ λ, where the positive constant c is independent of u and f .

This paper is organized as follows. In Section  we first give an example showing the
class Sm

p (Rn) contains some nontrivial singular functions, and then prove Theorems .
and . using the higher-order representation formulas by Lu and Wheeden in [, ].
The proof of Theorem . is given in Section  based on results in previous section and
Lp estimates for the higher-order elliptic equations without potentials in [, ].

Dependence of constants Throughout this paper, the letter c denotes a positive constant
which may vary from line to line.

2 Proofs of Theorems 1.5 and 1.6
Before giving the proofs of Theorems . and ., we first show that the higher-order
Stummel-Kato type class Sm

p (Rn) (p > ,  ≤ m < n) is nonempty. Clearly, L∞(Rn) ⊂ Sm
p (Rn)

and, in general, the class Sm
p (Rn) involves some singular potentials. For example, the func-

tion

V (x) =


|x|m|log |x||m χB(,e–)(x) for p >  and  ≤ m < n,
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where χB(,e–) is the characteristic function of B(, e–), belongs to Sm
p (Rn). To illustrate it,

we need to show that

ηV (r) = sup
x∈Rn

(∫
Br(x)


|x – y|n–m

(∫
Br(x)

|z|–m|log |z||–m

|y – z|n–m χBe– ()(z) dz
) 

p–

dy
)p–

satisfies

(i) ηV (r) < ∞, r > ;

(ii) lim
r→+

ηV (r) = .

In fact, for x ∈R
n and r > , one has

�(x, r) : =
∫

B(x,r)


|x – y|n–m

(∫
B(x,r)

|z|–m|log |z||–m

|y – z|n–m χB(,e–)(z) dz
) 

p–
dy

≡
∫

B(x,r)
|x – y|m–nJ


p– dy,

and one has

J ≤
∫

B(y,r)

|z|–m|log |z||–m

|y – z|n–m χB(,e–)(z) dz

≤
∫

{z:|z|<|y–z|<r}
|z|–m|log |z||–m

|y – z|n–m χB(,e–)(z) dz

+
∫

{z:|z|≥|y–z|}∩B(y,r)

|z|–m|log |z||–m

|y – z|n–m χB(,e–)(z) dz

≡ J + J.

Using the polar coordinate transformation leads to

J ≤
∫

{z:|z|<r}
|z|–n∣∣log |z|∣∣–m

χB(,e–)(z) dz

≤
∫

B(,r)∩B(,e–)
|z|–n∣∣log |z|∣∣–m dz

= c(n)
∫ σ



sn–

sn(– log s)m ds

= c(n, m)(– logσ )–m,

where σ = min{r, e–}. Since the function t–m(– log t)–m is decreasing in (, e–), one in-
fers

J =
∫

{z:|y–z|≤|z|<e–}∩B(y,r)
|z|–m∣∣log |z|∣∣–m|y – z|m–n dz

≤
∫

B(y,e–)∩B(y,r)
|y – z|–n∣∣log |y – z|∣∣–m dz
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=
∫

B(,σ )
|z|–n∣∣log |z|∣∣–m dz

= c(n, m)(– logσ )–m.

Combining J and J, we have

�(x, r) ≤ c(n, m)


(– logσ )(m–)/(p–)

∫
B(x,r)


|x – y|n–m dy

≤ c(n, m)


(– logσ )(m–)/(p–)

∫ r



sn–

sn–m ds

≤ c(n, m)


(– logσ )(m–)/(p–) rm.

Therefore,

ηV (r) = sup
x∈Rn

�(x, r)p–

≤ c(n, m, p)(– logσ )–mrm(p–)

=

{
c(n, m, p)–mrm(p–), r ≥ e–/,
c(n, m, p)(–log(r))–mrm(p–), r < e–/,

and it proves (i) and (ii).
Now we devote ourselves to proving Theorems . and .. Lu and Wheeden [, ]

derived various higher-order integral representation formulas on Carnot groups and ap-
plied them to prove some Sobolev type embedding theorems. Since the Euclidean space
R

n is a special case of Carnot groups, the results in [, ] are also true in R
n. Here, we

state these formulas in [, ] corresponding to R
n and apply to prove (.) and (.).

Lemma . ([, ]) Let � be a weak Boman chain domain in R
n with a central ball B,

and m be a positive integer with  ≤ m < n. If u ∈ W m,(�), then there exists a polynomial
PB (x) of order less than m such that for a.e. x ∈ �,

∣∣u(x) – PB (x)
∣∣ ≤ c

∫
�

|x – y|m–n∣∣Dmu(y)
∣∣dy, (.)

where the positive constant c is independent of u, x, and �. Moreover, if u ∈ W m,
 (�), then

∣∣u(x)
∣∣ ≤ c

∫
�

|x – y|m–n∣∣Dmu(y)
∣∣dy. (.)

Proof of Theorem . Applying (.), Fubini’s theorem, and Hölder’s inequality, we obtain

∫
�

∣∣u(x) – PB (x)
∣∣p∣∣V (x)

∣∣dx

≤ c
∫

�

∣∣V (x)
∣∣∣∣u(x) – PB (x)

∣∣p–
(∫

�

∣∣Dmu(y)
∣∣|x – y|m–n dy

)
dx

= c
∫

�

∣∣Dmu(y)
∣∣
(∫

�

∣∣V (x)
∣∣∣∣u(x) – PB (x)

∣∣p–|x – y|m–n dx
)

dy
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≤ c
(∫

�

∣∣Dmu(y)
∣∣p dy

) 
p

×
(∫

�

(∫
�

|V (x)||u(x) – PB (x)|p–

|x – y|n–m dx
) p

p–

dy
) p–

p

≡ c
(∫

�

∣∣Dmu(y)
∣∣p dy

) 
p

· I.

Observing

∫
�

∣∣V (x)
∣∣∣∣u(x) – PB (x)

∣∣p–|x – y|m–n dx

≤
(∫

�

|V (z)|
|z – y|n–m dz

) 
p
(∫

�

∣∣u(x) – PB (x)
∣∣p |V (x)|

|x – y|n–m dx
) p–

p
,

and noting � ⊂ MB from (iv) of Definition ., we deduce

Ip/(p–) ≤
∫

�

(∫
�

|V (z)|
|z – y|n–m dz

) 
p–

(∫
�

∣∣u(x) – PB (x)
∣∣p |V (x)|

|x – y|n–m dx
)

dy

=
∫

�

∣∣u(x) – PB (x)
∣∣p∣∣V (x)

∣∣

×
(∫

�


|x – y|n–m

(∫
�

|V (z)|
|z – y|n–m dz

) 
p–

dy
)

dx

≤
∫

�

∣∣u(x) – PB (x)
∣∣p∣∣V (x)

∣∣

×
(∫

MB


|x – y|n–m

(∫
MB

|V (z)|
|z – y|n–m dz

) 
p–

dy
)

dx

≤
∫

�

∣∣u(x) – PB (x)
∣∣p∣∣V (x)

∣∣

×
(∫

B(x,MrB )


|x – y|n–m

(∫
B(x,MrB )

|V (z)|
|z – y|n–m dz

) 
p–

dy
)

dx

≤ (
ηV (MrB )

) 
p–

∫
�

∣∣u(x) – PB (x)
∣∣p∣∣V (x)

∣∣dx.

Thus,

∫
�

∣∣u(x) – PB (x)
∣∣p∣∣V (x)

∣∣dx

≤ c
(
ηV (MrB )

) 
p

(∫
�

∣∣u(x) – PB (x)
∣∣p∣∣V (x)

∣∣dx
) p–

p
(∫

�

∣∣Dmu(y)
∣∣p dy

) 
p

.

It implies (.). �

Proof of Theorem . By using (.) and repeating the argument for (.), it immediately
get (.). �
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3 Proof of Theorem 1.9
The following Lp estimates for the higher-order elliptic equations without potentials are
well known, cf. [, ].

Lemma . Consider the equation

∑
|α|≤k

aα(x)Dαu – λu = f in R
n. (.)

Let p > . There exist a positive λ = λ(n,
,
, p) and a small δ = δ(n,
,
, p) >  so
that for the coefficients aα(x) satisfying (.)-(.) and (δ, R)-vanishing condition for |α| =
k, and for f ∈ Lp(Rn), if u ∈ W k,p(Rn) solves equation (.), then

∑
|α|≤k

∥∥Dαu
∥∥

Lp(Rn) ≤ c‖f ‖Lp(Rn), (.)

provided λ ≥ λ, where the positive constant c is independent of u and f .

Proof of Theorem . Let r be a positive constant which will be chosen later. By the theo-
rem of the partition of unity (e.g., cf. [] or [], p.), there is a sequence of nonnegative
functions {ϕi}∞i= in R

n such that

 ≤ ϕi(x) ≤ ; ϕi ∈ C∞


(
B(zi, r)

)
;

∞∑
i=

ϕi(x) = , x ∈R
n

and the family of balls B(zi, r) has the finite overlapping property. One may obviously
note ϕiu ∈ W k,p(Rn) and supp(ϕiu) ⊂ B(zi, r) and the fact that the ball is a special
weak Boman domain. Hence (.) also holds for ϕiu ∈ W k,p

 (B(zi, r)). Since f ∈ Lp(Rn)
and

∑
|α|≤k aα(x)Dαu ∈ Lp(Rn) from the boundedness of aα(x), it follows from (.) that

Vu ∈ Lp(Rn). Thus,

∫
Rn

|Vu|p dx =
∫
Rn

∣∣∣∣
∑

i

(Vϕiu)
∣∣∣∣
p

dx

≤ c
∑

i

∫
B(zi ,r)

∣∣V (ϕiu)
∣∣p dx

≤ cηV p (r)
∑

i

∫
B(zi ,r)

∣∣Dk(ϕiu)
∣∣p dx

≤ cηV p (r)
∑

i

∫
B(zi ,r)

( ∑
|α|=k

∣∣Dα(ϕiu)
∣∣
)p

dx

≤ cηV p (r)
∑

i

∫
B(zi ,r)

∑
|α|≤k

∣∣Dαu
∣∣p dx

≤ cηV p (r)
∫
Rn

∑
|α|≤k

∣∣Dαu
∣∣p dx. (.)
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By Lemma . and (.), we have

∑
|α|≤k

∥∥Dαu
∥∥

Lp(Rn) + ‖Vu‖Lp(Rn)

≤ c
(‖f – Vu‖Lp(Rn) + ‖Vu‖Lp(Rn)

)

≤ c
(‖f ‖Lp(Rn) + ‖Vu‖Lp(Rn)

)

≤ c‖f ‖Lp(Rn) + cηV p (r)

p

∑
|α|≤k

∥∥Dαu
∥∥

Lp(Rn).

Choosing r >  such that cηV p (r)/p ≤ /, (.) is obtained. �
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