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Abstract
We introduce a new geometric coefficient which is related García-Falset coefficient
and weak star fixed point property. The García-Falset coefficient that was introduced
by Benavides in (Houst. J. Math. 22:835-849, 1996) is calculated in this paper for
Musielak-Orlicz sequence spaces equipped with the Luxemburg norm. Specifically, in
reflexive Banach spaces, the new geometric coefficient and the García-Falset
coefficient are the same.

MSC: 46B20; 46E30; 47H09

Keywords: generality García-Falset coefficient; weak fixed point property;
Musielak-Orlicz sequence spaces

1 Introduction and preliminaries
Throughout this paper X is a Banach space which is assumed not to have the Schur prop-
erty, i.e., X has a weakly convergent sequence that is not norm convergent. S(X) and B(X)
denote the unit sphere and the unit ball of X, respectively and l denotes the set of all real
sequences.

A Banach space X is said to have the fixed point property (FPP, for short) if every non-
expansive mapping T : C → C, i.e., the mapping satisfying

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C,

and acting on a nonempty bounded closed and convex subset C of X has a fixed point
in C. A natural generalization of FPP is the weak fixed point property (WFPP, for short).
A Banach space X is said to have the WFPP whenever it satisfies the above condition from
the definition of FPP with ‘weakly compact’ in place of ‘bounded closed’. In  Kirk []
proved that any reflexive Banach space with normal structure has the FPP. In  Prus
[] introduced a property of a Banach space X, called nearly uniformly smoothness. In
 Prus [] also proved that a weakly nearly uniformly smooth Banach space X with
the weak Opial property has the FPP. To obtain the weak fixed point property in Banach
spaces, García-Falset introduced in [] the following coefficient:

R(X) = sup
{

lim inf
n→∞ ‖xn – x‖ : {xn} ⊂ B(X), xn

w→ , x ∈ B(X)
}

.
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He has proved that a Banach space X with R(X) <  has the weak fixed point property, i.e.,
every nonexpansive mapping T from a weakly compact nonempty and convex set A ⊂ X
into itself has a fixed point in A (see [] and []).

A Banach space X is said to be NUS provided that for every ε >  there is η >  such that
if t ∈ (,η) and {xn} is a basic sequence in B(X), then there exists k >  so that ‖x + txk‖ ≤
 + tε (see []).

A natural generalization of this notion is said to be WNUS. A Banach space X is WNUS
whenever it satisfies the above condition with ‘for some ε ∈ (, )’ in place of ‘for every
ε > ’ (see []).

It is well known that a Banach space X is WNUS if and only if X is reflexive and R(X) < 
(see []).

The coefficient R(X, a) of a Banach space X was defined in  by Benavides [], as a
generalization of the coefficient R(X), which also plays an important role in the fixed point
theory for nonexpansive mappings. Benavides defined the coefficient R(X, a) for a Banach
space X as follows.

Definition . For a given a ≥ ,

R(X, a) = sup
{

lim inf
n→∞ ‖xn – x‖ : xn ∈ B(X), xn

w→ , D
[
(xn)

] ≤ ,‖x‖ ≤ a
}

,

where D[(xn)] = lim infn→∞{‖xi – xj‖ : i 
= j, i, j ≥ n}.

He also defined the following coefficient:

M(X) = sup

{
 + a

R(X, a)
: a ≥ 

}
.

Moreover, the coefficient R(X, a) remains unaltered if in the definition we replace lim inf

by lim sup. He obtained the following: for a given a ≥ , if R(X, a) <  + a, then the Banach
space X has the fixed point property; the result means that the condition M(X) >  implies
that X has the weak fixed point property for nonexpansive mappings [].

In this paper, we introduce a new geometric coefficient that is a related García-Falset
coefficient and a weak∗ fixed point property, written R∗(X∗, a). For a given a ≥ , let

R∗(X∗, a
)

= sup
{

lim
n→∞ inf‖xn – x‖ : xn ∈ B

(
X∗), xn

w∗→ , D
[
(xn)

] ≤ ,‖x‖ ≤ a, x ∈ X
}

,

where D[(xn)] = limn→∞ inf{‖xi – xj‖ : i 
= j, i, j ≥ n}.
Similarly to [], we can prove that if R∗(X∗, a) <  + a for some a ∈ (, ] then T : C → C

has a fixed points a ∈ C, if C is a weak∗-compact and weak∗ sequentially complete subset
of X∗ and T is a nonexpansive mapping. It is clear that R(X, a) = R∗(X∗, a) if the Banach
space X is reflexive.

A Banach space X is called a Köthe sequence space if it is a subspace of l and for every
x ∈ l and y ∈ X satisfying |x(i)| ≤ |y(i)| for all i ∈ N , we have x ∈ X and ‖x‖ ≤ ‖y‖ and if
there is a x = (x(i)) ∈ X with x(i) >  for all i ∈N (see [, ] and []).

Let

Xa =
{

x ∈ X : lim
n→∞

∥∥(
, , . . . , , x(n + ), x(n + ), . . .

)∥∥ = 
}

.
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A Köthe sequence space X is said to have an absolutely continuous norm if Xa = X.
A Köthe sequence space X is said to have the semi-Fatou property if for every sequence
{xn} ⊂ X and x ∈ X satisfying |xn(i)| ↑ |x(i)| for all i ∈ N we have ‖xn‖ → ‖x‖.

A mapping � : R→R+ is said to be an Orlicz function if � vanishes only at , � is even
and convex on the whole line R. For every Orlicz function � we define its complementary
function � : R→ [,∞) by the formula

�(v) = sup
u>

{
u|v| – �(u)

}

for every v ∈R.
Denote by � = {�i}∞i= a sequence Orlicz function. Such a sequence is called a Musielak-

Orlicz function on N × R.
We say that � satisfies the δ-condition (� ∈ δ for short) if there exist k > , u > ,and

ci ≥ , with
∑

i≥ ci < ∞ such that we have the inequality

�i(u) ≤ k�i(u) + ci
(
i ≥ ,�i(u) ≤ u

)
.

We now introduce a new definition, namely δ(k). We say that � satisfies the δ(k)-
condition (� ∈ δ(k) for short) if there exist ε ∈ (, ) and iε ∈N such that

I�
(

x


)
≤  – ε


I�(x)

whenever I�(x) = k and N(x) ≥ iε , where N(x) = {i ∈ N : x(i) 
= } and N(x) ≥ iε , which
means that min{i : i ∈ N(x)} ≥ iε .

Proposition . The following are equivalent (see []):
() � ∈ δ;
() for any ε > , there exist kε > , uε > , and ci ≥  (i ≥ ),

∑
i≥ci < ∞ such that

�i

(
u
ε

)
≤ kε�i(u) + ci

(
i ≥ ,�i(u) ≤ uε

)
;

() there exist ε ∈ (, ), iε ∈ M, ci ≥  (i ≥ ),
∑

i≥ ci < ∞ and vε >  such that

�i

(
v


)
≤  – ε


�i(v) + ci

(
i ≥ ,�i(v) ≤ vε

)
.

The Musielak-Orlicz sequence space l� is defined to be the set {x ∈ l : I�(λx) =∑∞
i= �i(λx(i)) < ∞ for some λ > } and its subspace h� is defined to be the set {x ∈ l :

I�(λx) =
∑∞

i= �i(λx(i)) < ∞ for any λ > } both equipped with the Luxemburg norm

‖x‖ = inf

{
k >  : I�

(
x
k

)
≤ 

}
.

To simplify notations, we put l� = (l�,‖‖�) and h� = (h�,‖‖�).
We say that a Musielak-Orlicz function � satisfies the δ-condition if its complementary

function � satisfies the δ-condition.
The basic information on Musielak-Orlicz spaces can be found in [–], and [].
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2 Results
The idea of Theorem . is similar to Corollary . in []. In order to keep the consistency
of this paper, we accept it in the following.

Theorem . Let X be a Köthe sequence space with the Fatou property. If X has no absolute
continuous norm, then R(X, a) =  + a.

Proof Suppose that X does not have an absolutely continuous norm. Then there exists
ε >  and x ∈ S(X) such that

lim
n→∞

∥∥∥∥∥
∞∑

i=n+

x(i)ei

∥∥∥∥∥ = ε,

where ei = (, , . . . ,
ith
 , , . . .).

Take a sequence of positive numbers {εn} such that εn ↓ . By limn→∞ ‖∑∞
i=n+ x(i)ei‖ =

ε, there exists n ∈ N such that
∥∥∥∥∥

∞∑
i=n

x(i)ei

∥∥∥∥∥ ≤ ( + ε)ε.

Notice that

lim
m→∞

∥∥∥∥∥
m∑

i=n+

x(i)ei

∥∥∥∥∥ = ε,

so there exists n > n such that

( – ε)ε ≤
∥∥∥∥∥

n∑
i=n+

x(i)ei

∥∥∥∥∥ ≤ ( + ε)ε.

In this way, we get by induction a sequence {ni} of natural numbers such that

( – εi)ε ≤
∥∥∥∥∥

ni+∑
j=ni+

x(i)ei

∥∥∥∥∥ ≤ ( + εi)ε, i = , , . . . .

Put xi =
∑ni+

j=ni+ x(i)ei and vk =
∑∞

j=nk + x(i)ei. Then:
(a) ‖xi‖ → ε as i → ∞.
(b) xi

w→  as i → ∞. It is well known that for any Köthe space X we have

X∗ = X ′ ⊕ S,

where S is the space of all singular functionals over X, i.e., functionals which vanish on the
subspace Xa = {x ∈ X : x has absolutely continuous norm} and X ′ = {y ∈ l :

∑∞
i= x(i)y(i) <

∞ for all x ∈ X} (see []). This means that every f ∈ X∗ is uniquely represented in the
form

f = Ty + ϕ,
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where ϕ ∈ S and for y ∈ X ′ the function Ty is defined by

Ty(x) =
∞∑
i=

x(i)y(i)

for all x ∈ X.
Taking any y ∈ X, we have

lim
i→∞

∞∑
j=

xn(j)y(j) = lim
i→∞

ni+∑
j=ni+

xi(j)y(j) = .

(c) Put zi = xi
‖xi‖ and wk = vk

‖vk‖ for all i, k ∈N . It is easy to check D(zk) ≤ . Then

lim inf
i→∞ ‖zi + awk‖

= lim inf
i→∞

∥∥∥∥
xi

‖xi‖ + a
vk

‖vk‖
∥∥∥∥

= lim inf
i→∞


‖xi‖‖vk‖

∥∥‖vk‖xi + a‖xi‖vk
∥∥

≥ 
ε( + εk)ε

lim inf
i→∞

∥∥‖vk‖xi + a‖xi‖vk
∥∥

=


ε( + εkj)ε
lim inf

i→∞
∥∥(‖vk‖ + a‖xi‖

)
xi + a‖xi‖(vk – xi)

∥∥

≥ 
ε( + εk)ε

(
lim inf

i→∞
(
ε + a( – εi)ε

)‖xi‖ – lim sup
i→∞

(‖vk‖ – ‖xi‖
)‖xi‖

)

≥ 
ε( + εk)ε

(
lim inf

i→∞
(
ε + a( – εi)ε

)
( – εi)ε – lim sup

i→∞

(‖vk‖ – ‖xi‖
)
( + εi)ε

)

≥ 
ε( + εk)ε

(
lim inf

i→∞
(
ε + a( – εi)ε

)
( – εi)ε

– lim sup
i→∞

(
( + εk)ε – ( – εi)ε

)
ε

)

=


ε( + εk)ε

(
(ε + aε)ε –

(
( + εk)ε – ε

)
ε

)

=


ε( + εk)
(
(ε + aε) – εkε

)

=


( + εk)
(
( + a) – εk

)
.

By the arbitrariness of k and limk→∞ εk = , we get R(X, a) ≥  + a. It is clear that R(X, a) ≤
 + a. Therefore R(X, a) =  + a. �

Corollary . If � /∈ δ then R(l�, a) = R∗(l�, a) =  + a for any  < a ≤ .

Proof Since � /∈ δ, we see that l� has no absolutely continuous norm. So we have
R(l�, a) =  + a. Since h� is separable and (h� )∗ = l�, we have R∗(l�, a) =  + a. �
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For any x ∈ 	� with ‖x‖ = a and N(x) = {i ∈ N : x(i) 
= } being finite, we define cx by the
formula

cx = lim
n→∞ sup

{
cx,y >  : I�

(
x

cx,y

)
+ I�

(
y

cx,y

)
=  : y ∈ 	�, I�(y) ≤ 


, n ≤ N(y) < ∞

}
.

Theorem . Suppose that � ∈ δ. Then for the Musielak-Orlicz sequence space 	� we
have

R∗(	�, a) = sup
{

cx : x ∈ 	� with ‖x‖ = a and N(x) being finite
}

.

Proof Let

d� = sup
{

cx : x ∈ 	� with ‖x‖ = a and N(x) being finite
}

.

Then for any ε ∈ (, d�), there exists ‖x‖ = a with finite N(x) such that

cx > d� – ε.

By the definition of cx there exists n ∈N such that

sup

{
cx,y >  : I�

(
x

cx,y

)
+ I�

(
y

cx,y

)
=  for I�(y) ≤ 


and N(y) ≥ n

}
> d� – ε,

whenever n ≥ n. By the definition of the supremum, there exists y ∈ S(	�) with N(y) > n

such that cx,y > d� – ε, i.e., I�( x
d�–ε

) + I�( y
d�–ε

) > . Hence there exists n > n such that
I�( x

d�–ε
) +

∑n
i=n+ �i( y(i)

d�–ε
) > . Since n > n, we also have

sup

{
cx,y >  : I�

(
x

cx,y

)
+ I�

(
y

cx,y

)
=  for I�(y) ≤ 


and N(y) ≥ n

}
> d� – ε.

There exists y ∈ 	� with I�(y) ≤ 
 and N(y) > n such that cx,y > d� – ε, i.e., I�( x

d�–ε
) +

I�( y
d�–ε

) > . Hence there exists n > n such that I�( x
d�–ε

) +
∑n

i=n+ �i( y(i)
d�–ε

) > . Fur-
thermore, there exists n > n such that I�( x

d�–ε
) +

∑n
i=n+ �i( y(i)

d�–ε
) > . In such a way,

we can prove by induction that there exist a sequence {yk}∞k= ⊂ 	� with I�(yk) ≤ 
 for

any natural k and a sequence of natural numbers n < n < n < · · · such that I�( x
d�–ε

) +∑nk+
i=nk + �i( yk (i)

d�–ε
) >  for all k ∈ N . It is clear that yk is weakly star convergent to . Since

the supports of yk are pairwise disjoint, we have I�(yi – yi) = I�(yi) + I�(yi) ≤ 
 + 

 =  for
i, j ∈ N with i 
= j. Therefore, D[(yk)] ≤ .

For any k > i, we have

I�
(

yk – x
d� – ε

)
=

nk+∑
i=nk +

�i

(
yk(i)

d� – ε

)
+ I�

(
x(i)

d� – ε

)
> ,

i.e., ‖yk – x‖ > d� – ε. Therefore, R∗(	�, a) ≥ d� – ε and by the arbitrariness of ε > , we
have R∗(	�, a) ≥ d�.
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Now, we will prove that R∗(	�, a) ≤ d�. By the definition of d�, we always have

lim
n→∞ sup

{
cx,y >  : I�

(
x

cx,y

)
+ I�

(
y

cx,y

)
=  for y ∈ S(	�) and N(y) ≥ n

}
≤ d�

for any ‖x‖ = a with finite N(x).
First of all, we want to prove that for any weak star null sequence {xn} ⊂ l� and ε > 

there exists a subsequence {xni} ⊂ {xn} such that I�(xni ) ≤ 
 + ε for each i ∈ N . Otherwise

there exists ε > . Without loss of generality, we may assume that I�(xn) > 
 + ε for all

n ∈ Ṅ . By � ∈ δ there exists a δ >  such that ‖x‖ >  + δ whenever I�(x) >  + ε
 .

Using � ∈ δagain, there exists a δ >  such that I�(x) < δ whenever ‖x‖ < ε
 . Set δ =

min{δ, δ}.
Put n = . Then there exists a i >  such that ‖∑∞

i=i+ xn (i)ei‖ < δ ≤ δ. Since the
sequence {xn} is a weakly null sequence, there exists n > n such that

∥∥∥∥∥
i∑

i=

xn(i)ei

∥∥∥∥∥ < δ ≤ δ whenever n ≥ n.

Using � ∈ δ again, we see that there exists a i > i such that ‖∑∞
i=i+ xn (i)ei‖ < δ ≤ δ.

Hence

I�

( i∑
i=

xn (i)ei

)
<

ε


and I�

( ∞∑
i=i+

xn (i)ei

)
<

ε


.

Therefore I�(
∑i

i=i+ xn (i)ei) > 
 + ε

 .
In such a way, we get a subsequence {xnj} ⊂ {xn} such that

I�

( ij–∑
i=

xnj (i)ei

)
<

ε


, I�

( ∞∑
i=ij+

xn (i)ei

)
<

ε



and

I�

( ij∑
i=ij–+

xn (i)ei

)
>




+
ε



for all j ∈ N .
So

‖xnk – xnj‖ =

∥∥∥∥∥
ik–∑
i=

xnk (i)ei +
ik∑

i=ik–+

xnk (i)ei +
∞∑

i=ik +

xnk (i)ei

–
ij–∑
i=

xnj (i)ei –
ij∑

i=ij–+

xnj (i)ei –
∞∑

i=ij+

xnj (i)ei

∥∥∥∥∥

≥
∥∥∥∥∥

ik∑
i=ik–+

xnk (i)ei –
ij∑

i=ij–+

xnj (i)ei

∥∥∥∥∥ – δ.
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By

I�

( ik∑
i=ik–+

xnk (i)ei –
ij∑

i=ij–+

xnj (i)ei

)

= I�

( ik∑
i=ik–+

xnk (i)ei

)
+ I�

( ij∑
i=ij–+

xnj (i)ei

)

≥ 


+
ε


+




+
ε


=  +

ε


,

we have

∥∥∥∥∥

( ik∑
i=ik–+

xnk (i)ei –
ij∑

i=ij–+

xnj (i)ei

)∥∥∥∥∥ ≥  + δ ≥  + δ.

Hence

‖xnk – xnj‖ ≥
∥∥∥∥∥

ik∑
i=ik–+

xnk (i)ei –
ij∑

i=ij–+

xnj (i)ei

∥∥∥∥∥ – δ ≥  + δ.

This contradicts with the inequality D[(xn)] ≤ .
For convenience, we may assume that I�(xn) ≤ 

 + ε for all n ∈ N . Hence

I�
(

 – ε

 + ε
xn

)
≤  – ε

 + ε
I�(xn) ≤  – ε

 + ε

(



+ ε

)
=




for all n ∈ N .
Let us take an element x ∈ l� with ‖x‖ = a. By � ∈ δ, for any ε >  there exists i > 

such that ‖∑∞
i=i+ x(i)ei‖ < ε. Put x = a

∑∞
i=i+ x(i)ei

‖∑∞
i=i+ x(i)ei‖ . Since xn

w∗→ , there is a n ∈ N such

that ‖∑i
i= xn(i)ei‖ < ε when n ≥ n.

Hence

‖xn – x‖ ≤
∥∥∥∥∥

i∑
i=

(
xn(i) – x(i)

)
ei +

∞∑
i=i+

(
xn(i) – x(i)

)
ei

∥∥∥∥∥

≤
∥∥∥∥∥

i∑
i=

x(i)ei +
∞∑

i=i+

xn(i)ei

∥∥∥∥∥ + ε.

We next estimate the ‖∑i
i= x(i)ei +

∑∞
i=i+ xn(i)ei‖. Put zn = –ε

+ε

∑∞
i=i+ xn(i)ei for n ≥ n.

We have

I�
(a

∑i
i= x(i)ei

‖∑i
i= x(i)ei‖

– –ε
+ε

∑∞
i=i+ xn(i)ei

d� + ε

)

= I�
(

x

d� + ε

)
+ I�

(
zn

d� + ε

)
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≤ I�
(

x

cx,zn

)
+ I�

(
zn

cx,zn

)

= ,

whence
∥∥∥∥∥a

∑i
i= x(i)ei

‖∑i
i= x(i)ei‖

–
 – ε

 + ε

∞∑
i=i+

xn(i)ei

∥∥∥∥∥ ≤ d� + ε

for n ≥ n. Therefore, we obtain the inequalities

∥∥∥∥∥
i∑
i=

x(i)ei –
∞∑

i=i+

xn(i)ei

∥∥∥∥∥

≤
∥∥∥∥∥x

‖∑i
i= x(i)ei‖

a
–

 – ε

 + ε

∞∑
i=i+

xn(i)ei –
ε

 + ε

∞∑
i=i+

xn(i)ei

∥∥∥∥∥

≤ a
(‖∑i

i= x(i)ei‖
a

– 
)

+
∥∥∥∥a

∑i
i= x(i)ei

‖∑i
i= x(i)ei‖

– zn

∥∥∥∥ +
ε

 + ε

∥∥∥∥∥
∞∑

i=i+

xn(i)ei

∥∥∥∥∥

≤ a
(

a + ε

a
– 

)
+

∥∥∥∥a
∑i

i= x(i)ei

‖∑i
i= x(i)ei‖

– zn

∥∥∥∥ +
ε

 + ε

≤ aε + d� + ε +
ε

 + ε
= d� +

(
 + ( + a)( + ε)

 + ε

)
ε.

Therefore, we have ‖xn – x‖ ≤ d� + ( +(+a)(+ε)
+ε

)ε + ε. By the arbitrariness of ε > , we get
the inequality R(	�) ≤ d�.

Summing up, we see that the equality R(	�) = d� holds. �

For any x ∈ 	� with ‖x‖ =  and N(x) = {i ∈ N : x(i) 
= } being finite we define cx as
follows:

c̃x = lim
n→∞ sup

{
cx,y >  : I�

(
x

cx,y

)
+ I�

(
y

cx,y

)
=  for y ∈ 	� with I�(y) ≤ ,

n ≤ N(y) < ∞
}

.

Corollary . If � ∈ δ then R(l�) = sup{c̃x : x ∈ 	� with ‖x‖ =  and N(x) being finite}.

Proof The proof is similar to the proof of Theorem .. �

Corollary . If � ∈ δ and � ∈ δ then R(l�, a) = R∗(l�, a) for any  < a ≤ .

Theorem . R∗(	�, ) <  if and only if 	� ∈ δ and � ∈ δ().

Proof Necessity. We only need to prove the necessity of � ∈ δ(). Suppose that � /∈ δ().
Then for any natural number k there exists xk ∈ S(	�) with N(xk) ≥ k such that

I�
(

xk



)
>

 – 
k


I�(xk).
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For any fixed k ∈ N and for any ε > , there exists ik ∈ N such that
∑ik

i=k �i(xk(i)) >  – ε.

Put xk =
∑ik

i=k xk (i)ei

‖∑ik
i=k xk (i)ei‖

. Then

I�
(

xk



)
+ I�

(
xik


)
= I�

( ∑ik
i=k xk(i)ei

‖∑ik
i=k xk(i)ei‖

)
+ I�

(
xik


)

≥ I�
(∑ik

i=k xk(i)ei



)
+ I�

(
xik


)
+ I�

(∑∞
i=ik + xk(i)ei



)
– ε

= I�
(

xk



)
+ I�

(
xik


)
– ε ≥  – 

k


+
 – 

ik


– ε

=  –

k

– ε,

which shows that ‖xk + xik ‖ ≥ ( – 
k – ε). Hence cxk ,xik

≥ ( – 
k – ε). By the arbitrariness

of ε >  and k ∈ N , we see that R(	�) = .
Sufficiency. Since � ∈ δ(), there exist ε ∈ (, ) and iε ∈N such that

I�
(

x


)
≤  – ε


I�(x),

whenever I�(x) =  and N(x) ≥ iε . For any x ∈ S(	�) with finite N(x) and y ∈ S(	�) with
N(y) ≥ n, we may assume without loss of generality that max{i : i ∈ N(x)} < n and n ≥ iε .
Hence

I�
(

x


)
+ I�

(
y


)
≤ 


+

 – ε


=

 – ε


.

Since � ∈ δ, there exists  < α <  such that

‖z‖ ≤ α whenever I�(z) ≤  – ε


.

Therefore ‖ x+y
 ‖ ≤ α, i.e., ‖x + y‖ ≤ α. Note that cx,y = ‖x + y‖. Hence R(	�) ≤ α < . �

Theorem . R∗(	�, a) <  + a for  < a <  if and only if � ∈ δ.

Proof We only need to prove the sufficiency. For any  < ε < 
 , by � ∈ δ, there exists a

d >  such that ‖x‖ ≤  – d whenever I�(x) ≤ 
 + ε. Hence ‖xn‖ ≤  – d if n large enough

for any weakly star null sequence {xn} ⊂ B(l�) with D[(xn)] ≤ . Hence

lim inf
n→∞ ‖xn – x‖ ≤  – d + a <  + a,

that is, R∗(l�, a) <  + a. �

Example . Let �n(u) =
{ u if u ≤ 

n ,
anu + bn if 

n ≤ u ≤ ∞, where an = 
n , bn = – 

n . Then �n is an Orlicz
function for each n ∈ N .

If u ≤ 
n and u > 

n , then 
n < u ≤ 

n . Hence

�n(u) =

n

u –


n ≤ 
n –


n =


n ≤ 


n ≤ u = �n(u).
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If  < u ≤ 
n then �n(u) = �n(u). If 

n < u ≤  then �n(u) ≤ �n(u). If we put K = 
and u = , then

�n(u) ≤ K�n(u) for all n ∈ N ,

that is, � ∈ δ.
If  < a <  then R∗(l�, a) <  + a.

Let us take xn = (, , . . . , ,

nth︷ ︸︸ ︷
n
 + 

n , , . . .) for any n ∈ N . Then I�(xn) =  and

I�
(

xn



)
=


n

(
n


+


n

)
–


n =




–


n ,

whence limn→∞I�( xn
 ) = 

 . Therefore � /∈ δ(), which implies that R∗(l�, ) = .

Let {pk}∞k= be a sequence of real increasing numbers with  < p and limn→∞pn = p < ∞.
Then we have the following.

Theorem . Let l(pi) be a Nakano sequence space equipped with the Luxemburg norm.
Then R(l(pi)) = 


p and R(l�, a) = ( 

 + ap)

p ,  < a ≤ .

Proof Since  < inf{pi} ≤ sup{pi} = p < ∞, the Nakano space equipped with the Luxemburg
norm is reflexive. For any x, y ∈ S(l(pi)) with N(x), N(y) being finite. We now consider the
following equation:

I�
(

x
c

)
+ I�

(
y
c

)
= ,

that is,

∞∑
i=

∣∣∣∣
x(i)

c

∣∣∣∣
pi

+
∞∑
i=

∣∣∣∣
y(i)

c

∣∣∣∣
pi

= .

Then


cp

∞∑
i=

∣∣x(i)
∣∣pi +


cp

∞∑
i=

∣∣xn(i)
∣∣pi =


cp ≤ ,

i.e., c ≤ 

p . This shows the inequality R(l(pi), ) ≤ 


p . Take the classical basic sequence

{en} ⊂ S(l(pi)). If cn,m is a solution of the equation

I�
(

en

c

)
+ I�

(
em

c

)
= ,

and assuming without loss of generality that we may take n > m, we have the inequality


cpn

≥ .
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Hence R(l(pi)) ≥ 

p . Together with the opposite inequality proved already, we have

R(l(pi)) = 

p .

If  < a < , for x ∈ B(l(pi)) with finite N(x) and I�(x) = 
 and y ∈ B(l(pi)) with finite N(y)

and ‖x‖ = a, we consider the following equation:

I�
(

x
cx,y

)
+ I�

(
y

cx,y

)
= ,

that is, the equation

∞∑
i=

∣∣∣∣
x(i)
cx,y

∣∣∣∣
pi

+
∞∑
i=

∣∣∣∣
y(i)
cx,y

∣∣∣∣
pi

= .

Hence


cp

x,y

∞∑
i=

∣∣x(i)
∣∣pi +

apmax{i:i∈N(y)}

cp
x,y

∞∑
i=

∣∣∣∣
y(i)
a

∣∣∣∣
pi

=


cp
x,y

+
apmax{i:i∈N(y)}

cp
x,y

≥ ,

where cp
x,y ≤ 

 + apmax{i:i∈N(y)} . Therefore R(l�, a) ≤ ( 
 + ap)


p .

Taking xn = (, . . . , , ( 
 )


pn , , . . .) and xm = (, . . . , ,

mth
a , , . . .), we get I�(xn) = 

 and
I�( xm

a ) = , which implies the equality ‖xm‖ = a.
For any n 
= m, if c >  is such that

I�
(

xn + xm

c

)
= ,

then

(



+ apm

) 
max{pn ,pm} ≤ c.

Letting n, m → ∞, we get R(l�, a) ≤ ( 
 + ap)


p , that is, R(l�, a) = ( 

 + ap)

p . �
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