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Abstract
The sequence spaces l∞(B̃,p), c(B̃,p), and c0(B̃,p) of non-absolute type derived by the
double sequential band matrix B(r̃, s̃) have recently been defined. In this work, we
establish identities or estimates for the operator norms and the Hausdorff measure of
noncompactness of certain matrix operators on these spaces that are paranormed
spaces. Further, we find the necessary and sufficient condition for compactness of LA
in the class (X , l∞(q)) (where X is any of the spaces l∞(B̃,p), c(B̃,p) or c0(B̃,p)) and
characterize some classes of compact operators on these spaces by using the
Hausdorff measure of the noncompactness technique.

Keywords: Hausdorff measure of noncompactness; double sequential matrix;
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1 Preliminaries and background
The first measure of noncompactness, the function α, was defined and studied by
Kuratowsky [] in . Darbo [], using this measure, generalized both the classical
Schauder fixed point principle and (a special variant of ) Banach’s contraction mapping
principle for so called condensing operators. The Hausdorff measure of noncompactness
χ was introduced by Goldenstein et al. [] in .

Recently, the Hausdorff measure of noncompactness turned out to be very useful in
the classification of compact operators between Banach spaces. Many authors character-
ized the classes of compact operators given by infinite matrices on some sequence spaces
by using the Hausdorff measure of noncompactness. For example, in [, ] Malkowsky
and Djolovic, in [, ] Malkowsky and Rakocevic, in [] Alotaibi et al., in [] Basar and
Malkowsky, and in [, ] Mursaleen and Noman have applied the Hausdorff measure of
noncompactness to characterize some classes of compact operators given by matrices on
the spaces in the literature.

Further, as we know paranormed spaces are another version of the linear metric space
but have more general properties than normed spaces []. Hence, some authors have ap-
plied these spaces in their research. For example, in [] Basarir and Kara have character-
ized some classes of compact operators given by matrices on a normed sequence space,
which is a special case of the paranormed Riesz Bm-difference sequence space rq(p, Bm)
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and for this purpose they have applied the Hausdorff measure of noncompactness. In
[, ] Basarir and Kara and in [] Ozger and Basar have studied these spaces.

In [] Kirisci and Basar have studied the domain of generalized difference matrix B(r, s)
in the classical spaces l∞, c, and c.

Afterward, Ozger and Basar in [] introduced the paranormed sequence spaces
l∞(B̃, p), c(B̃, p), and c(B̃, p) that are more general and comprehensive than the corre-
sponding consequences of the matrix domain of B(r, s).

In this work, we establish identities or estimates for the operator norms and the
Hausdorff measure of noncompactness of certain matrix operators on these spaces that
were defined by Ozger and Basar in [].

Let w be the space of all real or complex valued sequences. Any vector subspace of w is
called a sequence space. We write l∞, c and c for the spaces of all bounded, convergent,
and null sequences, respectively. Also, by bs, cs, l, and lp ( < p < ∞), we denote the spaces
of all bounded, convergent, absolutely, and p-absolutely convergent series, respectively.
A sequence space λ with a linear topology is called a K-space if each of the maps Pi :
λ → C defined by Pi(x) = xi is continuous for all i ∈ N, where C is the set of all complex
numbers. A K-space λ is called an FK-space provided λ is a complete linear metric space
and a BK-space if it is a normed FK-space. Let φ be the set of all sequences which have
finite number of non-zero terms. An FK-space λ which contains φ is said to have the AK
property if every sequence x = (xk)∞k= ∈ λ has a unique representation x =

∑∞
k= xke(k) [].

A linear topological space X over the real field R is said to be a paranormed space if
there is a subadditive function h : X →R such that h(θ ) = , h(–x) = h(x), and scalar mul-
tiplication is continuous, that is, |αn – α| →  and h(xn – x) →  imply h(αnxn – αx) → 
for every α ∈R and x ∈ X, where θ is the zero vector in the linear space X [].

Throughout this paper, we assume (pk) is a bounded sequence of strictly positive real
numbers with sup pk = H and M = max{, H}. So, the sequence spaces l∞(p), c(p), c(p),
and l(p) (which generalize the classical spaces l∞, c, c, and l, respectively) are defined as
follows:

l∞(p) =
{

x = (xk) ∈ w : sup
k∈N

|xk|pk < ∞
}

,

c(p) =
{

x = (xk) ∈ w : ∃l ∈C � lim
k→∞

|xk – l|pk = 
}

,

c(p) =
{

x = (xk) ∈ w : lim
k→∞

|xk|pk = 
}

,

l(p) =
{

x = (xk) ∈ w :
∑

k

|xk|pk < ∞
}

( < pk < ∞).

Let the functions h and h be defined on the spaces l∞(p), c(p) or c(p), and l(p) by

h(x) = sup
k∈N

|xk|
pk
M and h(x) =

(∑

k

|xk|pk

) 
M

.

The sequence spaces c(p) and c(p) are complete paranormed spaces paranormed by h

if p ∈ l∞ ([], Theorem ). l∞(p) is also complete paranormed space by h if and only if
pk > , and also l(p) is complete paranormed space paranormed by h and {e(k)}k∈N is a
basis in the space l(p).
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The domain of an infinite matrix A in a sequence space λ is denoted by λA where

λA =
{

x = (xk) ∈ w : Ax ∈ λ
}

. ()

It is obvious that λA is a sequence space.
Let (X,‖ · ‖) be a normed space and X ⊃ φ be a BK-space and a = (ak) ∈ w, then the α-,

β-, and γ -dual of a subset X of w are, respectively, defined by

Xα =
{

a = (ak) ∈ w : ax = (akxk) ∈ l for all x = (xk) ∈ X
}

,

Xβ =
{

a = (ak) ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X
}

,

Xγ =
{

a = (ak) ∈ w : ax = (akxk) ∈ bs for all x = (xk) ∈ X
}

.

If A is an infinite matrix with complex entries ank (n, k ∈ N), then we write A = (ank). We
define the A-transform of x as the sequence Ax = (An(x))∞n=, where

An(x) =
∞∑

k=

ankxk (n ∈N),

if x = (xk) ∈ w and provided the series on the right-hand side converges for each n ∈ N.
If X and Y are subsets of w and A = (ank) is an infinite matrix, then A defines a matrix

mapping from X into Y , and we denote it by A : X → Y , if Ax exists and is in Y for all x ∈ X.
We denote the class of all infinite matrices that map X into Y by (X, Y ). So, A ∈ (X, Y ) if
and only if An ∈ Xβ for all x ∈ X (we write An for the sequence in the nth row of A, i.e.,
An = (ank)∞k= for every n ∈N [].

The following results are fundamental for our work.

Remark .
(a) ([]) Let † denote any of the symbols α, β or γ . Then we have c†

 = c† = l†∞ = l,
l†
 = l∞, and l†

p = lq where  < p < ∞ and q = p/(p – ).
(b) ([]) Let X be any of the spaces c, c, l∞ or lp ( ≤ p < ∞). Then ‖ · ‖Xβ denotes the

natural norm on the dual space Xβ .
(c) ([]) Let X ⊃ φ and Y be a BK-space. Then we have the following:

(c′) (X, Y ) ⊂ B(X, Y ), that is, every matrix A ∈ (X, Y ) defines an operator LA ∈ B(X,
Y ) by LA(x) = Ax for all x ∈ X .

(c′′) If X has AK , then B(X, Y ) ⊂ (X, Y ), that is, for every operator LA ∈ B(X, Y ) there
exists a matrix A ∈ (X, Y ) such that LA(x) = Ax for all x ∈ X .

Remark . ([]) Let X ⊃ φ be a BK-space. Then:
(a) If Y is any of the spaces c, c or l∞, and A ∈ (X, Y ), then

‖LA‖ = ‖A‖(X,l∞) = sup
n

‖An‖∗
X < ∞.

(b) If A ∈ (X, l), then

‖A‖(X,l) ≤ ‖LA‖ ≤  · ‖A‖(X,l),
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where

‖A‖(X,l) = sup
N∈F

∥
∥
∥
∥

∑

n∈N
An

∥
∥
∥
∥

∗

X
< ∞,

where F denotes the collection of all finite subsets of N, and Fr (r ∈ N) is the
subcollection of F consisting of all nonempty subsets of N with elements grater than
r, that is,

Fr = {N ∈ F : n > r for all n ∈N} (r ∈N).

2 The sequence spaces l∞(B̃, p), c(B̃, p), and c0(B̃, p)
In this section we define the sequence spaces of non-absolute type that derived by the dou-
ble sequential band matrix B(r̃, s̃). These sequence spaces are the complete paranormed
linear spaces.

Let k, n ∈ N and r̃ = (rk), and s̃ = (sk) be the convergent sequences whose entries are ei-
ther constant or distinct non-zero numbers. Then we define the double sequential matrix
B(r̃, s̃) = {bnk(rk , sk)}∞n,k= by

bnk =

⎧
⎪⎨

⎪⎩

rk , k = n,
sk , k = n – ,
, otherwise.

Recently, Ozger and Basar [] introduced the sequence spaces l∞(B̃, p), c(B̃, p), and
c(B̃, p) as follows:

l∞(B̃, p) =
{

x = (xk) ∈ w : sup
k∈N

|rkxk + sk–xk–|pk < ∞
}

,

c(B̃, p) =
{

x = (xk) ∈ w : ∃l ∈ C � lim
k→∞

|rkxk + sk–xk– – l|pk = 
}

,

c(B̃, p) =
{

x = (xk) ∈ w : lim
k→∞

|rkxk + sk–xk–|pk = 
}

,

and the B(r̃, s̃)-transforms of these spaces are in the spaces l∞(p), c(p) and c(p), respec-
tively.

Because of the notation () we have

l∞(B̃, p) =
[
l∞(p)

]
B̃, c(B̃, p) =

[
c(p)

]
B̃ and c(B̃, p) =

[
c(p)

]
B̃.

Throughout, we define the sequence y = (yk) by the B(r̃, s̃)-transform of a sequence x = (xk),
that is,

yk =
{

B(r̃, s̃)x
}

k = rkxk + sk–xk–, ∀k ∈ N. ()

Since the spaces λ(B̃,p) and λ are norm isomorphic for any sequence space λ, we observe
that x = (xk) ∈ λ(B̃,p) if and only if y = (yk) ∈ λ, where the sequences x = (xk) and y = (yk) are
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connected by (). Let (X,‖ · ‖) be a normed space. If X ⊃ φ is a BK-space and a = (ak) ∈ w
then we write

‖a‖∗
X = sup

x∈SX

∣
∣
∣
∣
∣

∞∑

k=

akxk

∣
∣
∣
∣
∣
, ()

provided the expression on the right-hand side exists and is finite.
Now, we have the following result.

Lemma . The sequence spaces l∞(B̃, p), c(B̃, p), and c(B̃, p) are BK-spaces with the same
paranorm given by

‖x‖l∞(B̃,p) =
∥
∥B(r̃, s̃)(x)

∥
∥

l∞(p) = sup
k∈N

∣
∣Bk(r̃, s̃)(x)

∣
∣

pk
M , ()

and they are linearly isomorphic to the spaces l∞(p), c(p), and c(p).

Proof See Theorem . in []. �

Now, we have the following lemma by the previous result.

Lemma . Let X denote any of the spaces l∞(B̃, p), c(B̃, p) or c(B̃, p). If a = (ak) ∈ Xβ , then
ã = (ãk) ∈ l(p) and the equality

∑∞
k=

akxk =
∞∑

k=

ãkyk ()

holds for every x = (xk) ∈ X, where y = B(r̃, s̃)(x) is the associated sequence defined by ()
and

ãk =
k∑

m=

(–)k–m

rk

k–∏

j=m

sj

rj
an. ()

Proof The equality () derived by using equation () from the mth partial sum of the series
∑

k ankxk , so

m∑

k=

ankxk =
m–∑

k=

ãnkyk +

( ∞∑

k=m

(–)m–k

rm

m–∏

j=k

sj

rj
anj

)

ym, ()

that the summation running from  to m –  is equal to zero when m = . Now, when
m → ∞ we obtain

∑

k

akxk =
∑

k

ãkyk , ∀n ∈N. �

Lemma . If X denotes any of the spaces l∞(B̃, p), c(B̃, p) or c(B̃, p), then

‖a‖∗
X = ‖ã‖Xβ = ‖ã‖l(p) =

( ∞∑

k=

|ãk|pk

) 
M

< ∞, ()

where a = (ak) ∈ Xβ and ã = (ãk) is a sequence defined by ().
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Proof Let a = (ak) ∈ Xβ . Then, by using Lemma . we have ã = (ãk) ∈ l(p) and y = yk ∈ Y
(we assume that Y are, respectively, the spaces l∞(p), c(p), and c(p)), which are connected
by equation (). Further, it follows by () that x ∈ SX if and only if y ∈ SY . Therefore, we
derive from () and () that

‖a‖∗
X = sup

x∈SX

∣
∣
∣
∣
∣

∞∑

k=

akxk

∣
∣
∣
∣
∣

= sup
y∈SY

∣
∣
∣
∣
∣

∞∑

k=

ãkyk

∣
∣
∣
∣
∣

= ‖ã‖∗
Y , ()

and since ã ∈ l(p), we obtain from Remark . (parts (a) and (b))

‖a‖∗
X = ‖ã‖∗

Y = ‖ã‖l(p) < ∞. ()

This completes the proof. �

Lemma . Let X be any of the spaces l∞(B̃, p), c(B̃, p) or c(B̃, p), and Y be, respectively, the
spaces l∞(p), c(p) or c(p) and V be a sequence space and A = (ank) be an infinite matrix. If
A ∈ (X, V ), then Ã ∈ (Y , V ) such that Ax = Ãy for all sequences x ∈ X and y ∈ Y which are
connected by equation (), where Ã = (ãnk) is the associated matrix defined by

ãnk =
∞∑

i=k

(–)i

ri

i–∏

j=k

sj

rj
ani (∀n ∈N). ()

Proof Let x ∈ X and y ∈ Y be connected by equation () and suppose that A ∈ (X, V ).
Then, by using Lemma ., we obtain Ãn ∈ l(p) = Xβ for all n ∈ N and the equality Ax = Ãy
holds, hence Ãy ∈ V . Since every y ∈ Y is the associated sequence of some x ∈ X, we
deduce that Ã ∈ (Y , V ). This completes the proof. �

Theorem . Let A = (ank) be an infinite matrix and Ã = (ãnk) be the associated matrix
defined by () and let X be any of the spaces l∞(B̃, p), c(B̃, p) or c(B̃, p). If A is in any of the
classes (X, c(p)), (X, c(p)) or (X, l∞(p)), then

‖LA‖ = ‖A‖(X,l∞(p)) = sup
n∈N

( ∞∑

n=

|ãnk|pk

) 
M

< ∞. ()

Proof By combining Remark .(a) and Lemma ., we obtain the equality in (). �

3 The Hausdorff measure of noncompactness
Recently, many authors characterized the classes of compact operators given by infinite
matrices on some sequence spaces by using the Hausdorff measure of noncompactness.
For example, Mursaleen and Noman in [] introduced the notion of generalized means
and studied some topological properties of the spaces of generalized means. In [] they
have characterized some matrix operators on these spaces by applying the Hausdorff mea-
sure of noncompactness. Further, Mursaleen and Noman in [, , ], Basarir and Kara
in [, ], Mursaleen et al. in [], Kara and Basarir in [], Maji and Srivastava in [],
Kara et al. in [] and Alotaibi et al. in [] characterized some classes of compact opera-
tors on the spaces in the literature by using the Hausdorff measure of the noncompactness
method.
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Let (X,‖ · ‖) be a normed space. Then the unit sphere and the closed unit ball in X are
denoted by SX = {x ∈ X : ‖x‖ = }, BX = {x ∈ X : ‖x‖ ≤ }. For the Banach spaces X and Y
we denote the set of all bounded linear operators L : X → Y by B(X, Y ) with the operator
norm given by ‖L‖ = supx∈SX ‖L(x)‖. A linear operator L : X → Y is said to be compact if
the domain of L is all of X and, for every bounded sequence (xn) in X, the sequence L(xn)
has a subsequence which converges in Y . We denote the class of all compact operators
in B(X, Y ) by C(X, Y ). An operator L ∈ B(X, Y ) is said to be of finite rank if dim R(L) < ∞,
where R(L) denotes the range of L. An operator of finite rank is clearly compact [].

Let S and M be subsets of a metric space (X, d) and ε > . Then S is called an ε-net of M
in X if for every x ∈ M there exists s ∈ S such that d(x, s) < ε. If the set S is finite, then the
ε-net S of M is called a finite ε-net of M, and we say that M has a finite ε-net in X. A subset
of a metric space is said to be totally bounded if it has a finite ε-net for every ε >  [].

We denote the collection of all bounded subsets of a metric space (X, d) by MX . If Q ∈
MX , then the Hausdorff measure of noncompactness of the set Q, denoted by χ (Q), is
defined by

χ (Q) = inf{ε >  : Q has a finite ε-net in X}. ()

The function χ : MX → [,∞) is called the Hausdorff measure of noncompactness.
The basic properties of the Hausdorff measure of noncompactness can be found in [,

, ]. For example, if Q, Q, and Q are bounded subsets of a metric space (X, d), then:
() χ (Q) =  if and only if Q is totally bounded,
() Q ⊂ Q implies χ (Q) ≤ χ (Q).
Further, if X is a normed space, then the function χ has some additional properties

connected with the linear structure, that is,
() χ (Q + Q) ≤ χ (Q) + χ (Q),
() χ (αQ) = |α|χ (Q), ∀α ∈C.
Let X and Y be Banach spaces and L ∈ B(X, Y ). Then the Hausdorff measure of non-

compactness of L, denoted by ‖L‖χ , is defined by

‖L‖χ = χ
(
L(SX)

)
()

and

‖L‖χ =  if and only if L ∈ C(X, Y ) []. ()

The following theorem gives an estimate for the Hausdorff measure of noncompactness
in Banach spaces with Schauder bases and in this theorem I denotes the identity operator
on X.

Theorem . ([]) Let X be a Banach space with a Schauder basis (bk)∞k=, Q ∈ MX ,
and Pn : X → X (n ∈ N) be the projector onto the linear span of {b, b, . . . , bn}. Then we
have


a

· lim sup
n→∞

(
sup
x∈Q

∥
∥(I – Pn)(x)

∥
∥
)

≤ χ (Q) ≤ lim sup
n→∞

(
sup
x∈Q

∥
∥(I – Pn)(x)

∥
∥
)

,

where a = lim supn→∞ ‖I – Pn‖.
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Further, the following result shows how to compute the Hausdorff measure of noncom-
pactness in the spaces c and lp ( ≤ p < ∞) which are BK-spaces with AK .

Theorem . ([]) Let X be the normed space that lp for  ≤ p < ∞ or c and Q be
a bounded subset of X. If Pn : X → X (n ∈ N) is the operator defined by Pn(x) = x[n] =
(x, x, . . . , xn, , , . . .) for all x = (xk)∞k= ∈ X, then we have

χ (Q) = lim sup
n→∞

(
sup
x∈Q

∥
∥(I – Pn)(x)

∥
∥
)

.

An infinite matrix T = (tnk) is called a triangle if tnn �=  and tnk =  for all k > n (n ∈N).

Lemma . ([]) Let T be a triangle. Then we have:
(a) For arbitrary subsets X and Y of w, A ∈ (X, YT ) if and only if B = TA ∈ (X, Y ).
(b) Further, if X and Y are BK -spaces and A ∈ (X, YT ), then ‖LA‖ = ‖LB‖.

4 Compact operators on the spaces l∞(B̃, p), c(B̃, p), and c0(B̃, p)
In this section, we establish some identities or estimates for the Hausdorff measure
of noncompactness of certain operators on the spaces l∞(B̃, p), c(B̃, p), and c(B̃, p).
Also, we apply our results to characterize some classes of compact operators on those
spaces.

We mentioned the following lemmas, which will be used in proving our results.

Lemma . ([]) Let X ⊃ φ be a BK-space with AK or X = l∞. If A ∈ (X, C), then the
following hold:

αk = lim
n→∞ ank exists for every k ∈N, ()

α = (αk) ∈ Xβ , ()

sup
n

‖An – α‖∗
X < ∞,

lim
n→∞ An(x) =

∞∑

k=

αkxk for all x = (xk) ∈ X. ()

Lemma . ([]) Let X ⊃ φ be a BK-space. Then we have:
(a) If A ∈ (X, c), then

‖LA‖χ = lim
r→∞

(
sup
n>r

‖An‖∗
X

)
. ()

(b) If X has AK or X = l∞ and A ∈ (X, c), then




· lim
r→∞

(
sup
n≥r

‖An – α‖∗
X

)
≤ ‖LA‖χ ≤ lim

r→∞

(
sup
n≥r

‖An – α‖∗
X

)
, ()

where α = (αk) with αk = limn→∞ ank for all k ∈N.
(c) If A ∈ (X, l∞), then

 ≤ ‖LA‖χ ≤ lim
r→∞

(
sup
n>r

‖An‖∗
X

)
. ()
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Theorem . Let X denote any of the spaces l∞(B̃, p), c(B̃, p) or c(B̃, p), and q = (qk) be a
bounded sequence of strictly positive real numbers. Then we have:

(a) If A ∈ (X, c(q)), then

‖LA‖χ = lim sup
n→∞

( ∞∑

k=

|ãnk|pk

) 
M

()

and

LA is compact if and only if lim
n→∞

( ∞∑

k=

|ãnk|pk

) 
M

= . ()

(b) If A ∈ (X, c(q)), then we have




· lim sup
n→∞

( ∞∑

k=

|ãnk – α̃k|pk

) 
M

≤ ‖LA‖χ ≤ lim sup
n→∞

( ∞∑

k=

|ãnk – α̃k|pk

) 
M

()

and

LA is compact if and only if lim
n→∞

( ∞∑

k=

|ãnk – α̃k|pk

) 
M

= , ()

where limn→∞ ãnk = α̃k .
(c) If A ∈ (X, l∞(q)), then

 ≤ ‖LA‖χ ≤ lim sup
n→∞

( ∞∑

k=

|ãnk|pk

) 
M

()

and

LA is compact if and only if lim
n→∞

( ∞∑

k=

|ãnk|pk

) 
M

= . ()

Proof We begin with the proof of parts (a) and (c). We know, A ∈ (X, c(q)) if and only if
An ∈ Xβ (∀n ∈N) and Ax ∈ c(p) for all x ∈ X. So, from Lemma .

‖An‖∗
X = ‖Ãn‖Xβ = ‖Ãn‖l(q) =

∞∑

k=

|ãnk| ()

for all k ∈ N. Thus, we get () from () and Lemma .(a). Similarly, we can get ()
from () and Lemma .(c).

Further, if A is an infinite matrix defined by

ank =

⎧
⎪⎨

⎪⎩

rk , k = n,
sk , k = n – ,
, otherwise,
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then

Ax = ann–xn–en– + annxnen = sn–xn–en– + rnxnen.

So, by () it is easy to see that ãnk = . Then Ãn =  and

lim
n→∞‖Ãn‖l(q) = lim

n→∞

( ∞∑

k=

|ãnk|pk

) 
M

= .

Hence, by combining the latter and () we get () and ().
To prove (b) we combine Lemma . and Lemma .(b) and we have ().
We write S = SX , for short. Then we obtain by () and Remark .(c′)

‖LA‖χ = χ (AS). ()

So we have AS ∈ Mc(p) (where Mc is the class of all bounded subsets of c(q)). Thus, we are
going to apply Theorem . to get an estimate for the value of χ (AS) in (). To this aim,
we define the projectors Pr : c(q) → c(q) (r ∈ N) by P(z) = ze and Pr(z) = ze +

∑r–
n=(zn –

z)e(n) for r ≥  (where z = (zk) ∈ c(q) and z = limn→∞ zn). Then we have for every r ∈ N,
(I – Pr)(z) =

∑∞
n=r(zn – z)e(n) and hence

∥
∥(I – Pr)(z)

∥
∥

l∞(p) = sup
n≥r

|zn – z| pk
M ()

for all z ∈ c(q) and every r ∈N. Thus, from () and Theorem ., we get




· lim
r→∞

(
sup
x∈S

∥
∥(I – Pr)(Ax)

∥
∥

l∞(p)

)
≤ ‖LA‖χ ≤ lim

r→∞

(
sup
x∈S

∥
∥(I – Pr)(Ax)

∥
∥

l∞(p)

)
. ()

Now, for every given x ∈ X, let y ∈ Y be an associated sequence space defined by (),
where Y is, respectively, the spaces l∞(q), c(q) or c(q). It is given that A ∈ (X, c(q)), then by
Lemma . we have Ã ∈ (Y , c(q)) and Ax = Ãy. Further, it follows from Lemma . that the
limits α̃k = limn→∞ ãnk exist for all k, α̃ = (α̃k) ∈ l(q) = Y β and limn→∞ Ãn(Y ) =

∑∞
k= α̃kyk .

Therefore, we derive from () that

∥
∥(I – Pr)(Ax)

∥
∥

l∞(q) =
∥
∥(I – Pr)(Ãy)

∥
∥

l∞(q) ()

= sup
n

∣
∣
∣
∣
∣
Ãn(y) –

∞∑

k=

α̃kyk

∣
∣
∣
∣
∣

pk
M

()

= sup
n

∣
∣
∣
∣
∣

∞∑

k=

(ãnk – α̃k)yk

∣
∣
∣
∣
∣

pk
M

()

for r ∈ N . Since x ∈ S = SX if and only if y ∈ SY , we obtain by () and Remark .(c′)

sup
∥
∥(I – Pr)(Ax)

∥
∥

l∞(q) = sup
n>r

(

sup

∣
∣
∣
∣
∣

∞∑

k=

(ãnk – α̃k)yk

∣
∣
∣
∣
∣

pk
M

)

= sup
n

‖Ãn – α̃‖∗
Y = sup

n
‖Ãn – α̃‖l(q)
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for all r ∈ N . So, we obtain () and () by () and (), respectively, and this completes
the proof. �

The following lemmas are necessary for the next theorem.

Lemma . ([]) Let x = (xn) ∈ l. Then the inequalities

sup
N∈Fr

∣
∣
∣
∣

∑

n∈N
xn

∣
∣
∣
∣ ≤

∞∑

n=r+

|xn| ≤  · sup
N∈Fr

∣
∣
∣
∣

∑

n∈N
xn

∣
∣
∣
∣ ()

hold for every r ∈N.

Lemma . ([]) Let X ⊃ φ be a BK-space. If A ∈ (X, l), then

lim
r→∞

(

sup
N∈Fr

(∥
∥
∥
∥

∑

n∈N
An

∥
∥
∥
∥

∗

X

))

≤ ‖LA‖χ ≤  · lim
r→∞

(

sup
N∈Fr

(∥
∥
∥
∥

∑

n∈N
An

∥
∥
∥
∥

∗

X

))

()

and

LA is compact if and only if lim
r→∞

(

sup
N∈Fr

(∥
∥
∥
∥

∑

n∈N
An

∥
∥
∥
∥

∗

X

))

= . ()

Theorem . Let X denote any of the spaces l∞(B̃, p), c(B̃, p) or c(B̃, p). If A ∈ (X, l(q)),
then

lim
r→∞

(‖A‖(r)
(X,l(q))

) ≤ ‖LA‖χ ≤  · lim
r→∞

(‖A‖(r)
(X,l(q))

)
, ()

where

‖A‖(r)
(X,l(q)) = sup

N∈Fr

( ∞∑

k=

∣
∣
∣
∣

∑

n∈N
ãnk

∣
∣
∣
∣

pk
) 

M

(r ∈N)

and

LA is compact if and only if lim
r→∞

(‖A‖(r)
(X,l(q))

)
= .

Proof Since F ⊃ F ⊃ F ⊃ . . . , by using Remark .(b), the sequence (‖A‖(r)
(X,l(q)))

∞
r=

of non-
negative reals is nonincreasing and bounded. So, the limit in () exists. Now, we write
S = SX for short. Then we have LA(S) = AS ∈ Ml(q) by Remark .(c). So, it follows from
() and Theorem . that

‖LA‖χ = χ (AS) = lim
r→∞

(

sup
x∈S

( ∞∑

n=r+

∣
∣An(x)

∣
∣pk

))

. ()

By Lemma ., we have

sup
N∈Fr

∣
∣
∣
∣

∑

n∈N
An(x)

∣
∣
∣
∣

pk

≤
∞∑

n=r+

∣
∣An(x)

∣
∣pk ≤  · sup

N∈Fr

∣
∣
∣
∣

∑

n∈N
An(x)

∣
∣
∣
∣

pk

()
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for all x ∈ X and every r ∈ N, because A ∈ (X, l(q)). Since An ∈ Xβ for all n ∈ N, we derive
from () and Lemma . that

sup
x∈S

∣
∣
∣
∣

∑

n∈N
An(x)

∣
∣
∣
∣

pk
M

= sup
x∈S

∣
∣
∣
∣
∣

∞∑

k=

(∑

n∈N
ank

)

xk

∣
∣
∣
∣
∣

pk
M

=
∥
∥
∥
∥

(∑

n∈N
An

) pk
M

∥
∥
∥
∥

∗

X

=
∥
∥
∥
∥

(∑

n∈N
Ãn

) pk
M

∥
∥
∥
∥

l(q)

for all N ∈ Fr (r ∈N). These relations, together with (), imply

sup
N∈Fr

∥
∥
∥
∥

(∑

n∈N
Ãn

) pk
M

∥
∥
∥
∥

l(q)
≤ sup

x∈S

( ∞∑

n=r+

∣
∣An(x)

∣
∣

pk
M

)

≤  · sup
N∈Fr

∥
∥
∥
∥

(∑

n∈N
Ãn

) pk
M

∥
∥
∥
∥

l(q)
()

for every r ∈ N. Thus, by passing to the limits in () as r → ∞ and using (), we get ().
This completes the proof. �

5 Some applications
In this section we obtain some estimates or identities for the operator norms of certain
matrix operators and we deduce the necessary and sufficient conditions for such operators
to be compact. Furthermore, we obtain these results by using the Hausdorff measure of
the noncompactness technique.

Corollary . Let X denote any of the spaces l∞(B̃, p), c(B̃, p) or c(B̃, p), and A be an infinite
matrix. If A is in any of the classes (X, cs), (X, cs) or (X, bs), then we have

‖LA‖ = sup
n

( ∞∑

k=

∣
∣
∣
∣
∣

n∑

m=

ãmk

∣
∣
∣
∣
∣

pk ) 
M

< ∞ (n ∈N). ()

Further:
(a) If A ∈ (X, cs), then

‖LA‖χ = lim sup
n→∞

( ∞∑

k=

∣
∣
∣
∣
∣

n∑

m=

ãmk

∣
∣
∣
∣
∣

pk ) 
M

()

and

LA is compact if and only if lim
n→∞

( ∞∑

k=

∣
∣
∣
∣
∣

n∑

m=

ãmk

∣
∣
∣
∣
∣

pk ) 
M

= . ()
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(b) If A ∈ (X, cs), then




· lim sup
n→∞

( ∞∑

k=

∣
∣
∣
∣
∣

n∑

m=

ãmk – ãk

∣
∣
∣
∣
∣

pk ) 
M

≤ ‖LA‖χ ≤ lim sup
n→∞

( ∞∑

k=

∣
∣
∣
∣
∣

n∑

m=

ãmk – ãk

∣
∣
∣
∣
∣

pk ) 
M

, ()

where

ã = (ãk) with ãk = lim
n→∞

( n∑

m=

ãmk

)

for all k ∈N

and

LA is compact if and only if lim
n→∞

( ∞∑

k=

∣
∣
∣
∣
∣

n∑

m=

ãmk – ãk

∣
∣
∣
∣
∣

pk ) 
M

= . ()

(c) If A ∈ (X, bs), then

 ≤ ‖LA‖χ ≤ lim sup
n→∞

( ∞∑

k=

∣
∣
∣
∣
∣

n∑

m=

ãmk

∣
∣
∣
∣
∣

pk ) 
M

()

and

LA is compact if and only if lim
n→∞

( ∞∑

k=

∣
∣
∣
∣
∣

n∑

m=

ãmk

∣
∣
∣
∣
∣

pk ) 
M

= . ()

Proof The equality in () is immediate by Theorem .. By using Theorem . in [] in
the new spaces l∞(B̃, p), c(B̃, p), and c(B̃, p) (for X) and by applying Lemma . and these
relations with cs = (c)s, cs = (c)s, and (bs) = (l∞)s we obtain (), (), and (). Then by
using Theorem . in [] and Lemma . we obtain (), (), and (). �

We denote the space of all sequences of bounded variation by bυ , that is,

bυ =
{

x = (xk) ∈ w : (xk – xk–) ∈ l
}

.

Corollary . Let X denote any of the spaces l∞(B̃, p), c(B̃, p) or c(B̃, p), and A be an infi-
nite matrix. If A ∈ (X, bυ), then

sup
N∈F

[ ∞∑

k=

∣
∣
∣
∣

∑

n∈N
(ãnk – ã(n–)(k–))pk

∣
∣
∣
∣


M

]

≤ ‖LA‖ ≤  · sup
N∈F

[ ∞∑

k=

∣
∣
∣
∣

∑

n∈N
(ãnk – ã(n–)(k–))pk

∣
∣
∣
∣


M

]

.
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Furthermore, if A ∈ (X, bυ), then

lim
r→∞

(

sup
N∈Fr

[ ∞∑

k=

∣
∣
∣
∣

∑

n∈N
(ãnk – ã(n–)(k–))pk

∣
∣
∣
∣


M

])

≤ ‖LA‖χ ≤  · lim
r→∞

(

sup
N∈Fr

[ ∞∑

k=

∣
∣
∣
∣

∑

n∈N
(ãnk – ã(n–)(k–))pk

∣
∣
∣
∣


M

])

and

LA is compact if and only if lim
r→∞

(

sup
N∈Fr

( ∞∑

k=

∣
∣
∣
∣

∑

n∈N
(ãnk – ã(n–)(k–))

∣
∣
∣
∣

pk
) 

M
)

= .

Proof See Theorem . in [] and Theorem .. �

We write bυp for the space of all sequences of p-bounded variation, that is,

bυp =
{

x = (xk) ∈ w : (xk – xk–) ∈ lp
}

( < p < ∞).

bυp is a BK-space with its natural norm (cf. []). For every a = ak ∈ (bυp)β , we have

‖a‖∗
bυp =

( ∞∑

k=

∣
∣
∣
∣
∣

∞∑

j=k

aj

∣
∣
∣
∣
∣

q) 
q

. ()

So, by using () we obtain the following consequence of Theorem . in [] in the spaces
l∞(B̃, p), c(B̃, p), and c(B̃, p).

Corollary . Let X denote any of the spaces l∞(B̃, p) and c(B̃, p),  < p < ∞, q = (qk) be
a bounded sequence of strictly positive real numbers and A is an infinite matrix. If A ∈
(bυp, X), then

‖LA‖ = ‖A‖(r)
(bυp ,l∞(B̃,p)) = sup

n>r

( ∞∑

k=

(∣
∣
∣
∣
∣

∞∑

j=k

ãnj

∣
∣
∣
∣
∣

qk ) 
qk

) pk
M

(r ∈N).

Further:
(a) If A ∈ (bυp, l∞(B̃, p)), then

 ≤ ‖LA‖χ ≤ lim
r→∞

(

sup
n>r

( ∞∑

k=

∣
∣
∣
∣
∣

∞∑

j=k

ãnj

∣
∣
∣
∣
∣

qk ) 
qk

) pk
M

and

LA is compact if and only if lim
r→∞

(

sup
n>r

( ∞∑

k=

∣
∣
∣
∣
∣

∞∑

j=k

ãnj

∣
∣
∣
∣
∣

qk ) 
qk

) pk
M

= .
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(b) If A ∈ (bυp, c(B̃, p)), then

‖LA‖χ = lim
r→∞

(

sup
n>r

( ∞∑

k=

∣
∣
∣
∣
∣

∞∑

j=k

ãnj

∣
∣
∣
∣
∣

qk ) 
qk

) pk
M

and

LA is compact if and only if lim
r→∞

(

sup
n>r

( ∞∑

k=

∣
∣
∣
∣
∣

∞∑

j=k

ãnj

∣
∣
∣
∣
∣

qk ) 
qk

) pk
M

= .

Proof The proof is a special case of Theorem . in [] in the new spaces l∞(B̃, p) and
c(B̃, p) when X = bυp. Now by using Lemma . the proof is complete. �

Now, we consider some relations between X (where X is any of the spaces l∞(B̃, p), c(B̃, p)
or c(B̃, p)) and some another sequence spaces derived by the domain of the triple band
matrix. First we introduce the sequence spaces l∞(B), c(B), c(B), and lp(B) as the set of all
sequences whose B(r, s, t)-transforms are in the spaces l∞, c, c, and lp, respectively (for
more details refer to []),

l∞(B) =
{

x = (xk) ∈ w : sup
k∈N

|rxk + sxk– + txk–| < ∞
}

,

c(B) =
{

x = (xk) ∈ w : ∃l ∈C � lim |rxk + sxk– + txk– – l| = 
}

,

c(B) =
{

x = (xk) ∈ w : lim |rxk + sxk– + txk–| = 
}

,

lp(B) =
{

x = (xk) ∈ w :
∑

k

|rxk + sxk– + txk–|p < ∞
}

.

We now consider the special case of Theorems . and . in [] when T = B(r̃, s̃), and
X = lp(B).

Corollary . Let X denote any of the spaces l∞(B̃, p), c(B̃, p) or c(B̃, p), and A be an infi-
nite matrix. If A ∈ (lq(B), X), then

‖LA‖ = ‖A‖(lq(B),l∞(B̃,p)) = sup
n

(( ∞∑

k=

|ãnk|pk qk

) 
qk

) 
M

< ∞,

where q = (qk) is a bounded sequence of strictly positive real numbers.
Further:
(a) If A ∈ (lq(B), c(B̃, p)), then

‖LA‖χ = lim sup
n→∞

(( ∞∑

k=

|ãnk|pk qk

) 
qk

) 
M

< ∞

and

LA is compact if and only if lim sup
n→∞

(( ∞∑

k=

|ãnk|pk qk

) 
qk

) 
M

= .
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(b) If A ∈ (lq(B), c(B̃, p)), then




· lim sup
n→∞

(( ∞∑

k=

|ãnk – α̃k|pk qk

) 
qk

) 
M

≤ ‖LA‖χ ≤ lim sup
n→∞

(( ∞∑

k=

|ãnk – α̃k|pk qk

) 
qk

) 
M

,

where α̃k = (α̃nk) with limn→∞ ãnk = α̃k and

LA is compact if and only if lim sup
n→∞

(( ∞∑

k=

|ãnk – α̃k|pk qk

) 
qk

) 
M

= .

(c) If A ∈ (lq(B), l∞(B̃, p)), then

 ≤ ‖LA‖χ ≤ lim sup
n→∞

(( ∞∑

k=

|ãnk|pk qk

) 
qk

) 
M

< ∞

and

LA is compact if and only if lim sup
n→∞

(( ∞∑

k=

|ãnk|pk qk

) 
qk

) 
M

= .

Example . Let X be similar to Corollary . and Y be one of the spaces c(B), c(B) or
l∞(B), and A be an infinite matrix. If A ∈ (X, Y ), then

‖LA‖ = ‖A‖(X,l∞(B)) = sup
n

( ∞∑

k=

|ãnk|pk

)

< ∞,

where Ã = (ãnk) is the associated matrix defined by

ãnk =
∞∑

j=k

k–j∑

i=

(
–s +

√
s – tr

r

)j–k–i(–s –
√

s – tr
r

)i anj

r
.

Further:
(a) If A ∈ (X, c(B)), then

‖LA‖χ = lim sup
n

( ∞∑

k=

|ãnk|pk

)

and

LA is compact if and only if lim sup
n

( ∞∑

k=

|ãnk|pk

)

= .
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(b) If A ∈ (X, c(B)), then




· lim sup
n

( ∞∑

k=

|ãnk – α̃k|pk

)

≤ ‖LA‖χ ≤ lim sup
n

( ∞∑

k=

|ãnk – α̃k|pk

)

,

where α̃k = (α̃nk) with limn→∞ ãnk = α̃k , and

LA is compact if and only if lim sup
n

( ∞∑

k=

|ãnk – α̃k|pk

)

= .

(c) If A ∈ (X, l∞(B)), then

 ≤ ‖LA‖χ ≤ lim sup
n

( ∞∑

k=

|ãnk|pk

)

and

LA is compact if and only if lim sup
n

( ∞∑

k=

|ãnk|pk

)

= .

Proof The proof is a consequence of Theorem .. �

The final result is a special case of Theorem . in [] in the new spaces l∞(B̃, p), c(B̃, p),
and c(B̃, p).

Corollary . Let X and Y be similar to Example . and A be an infinite matrix. If A ∈
(Y , X), then

‖LA‖ = ‖A‖(Y ,l∞(B̃,p)) = sup
n

( ∞∑

k=

|ãnk|pk

) 
M

< ∞.

Further:
(a) If A ∈ (Y , c(B̃, p)), then

‖LA‖χ = lim sup
n

( ∞∑

k=

|ãnk|pk

) 
M

and

LA is compact if and only if lim sup
n

( ∞∑

k=

|ãnk|pk

) 
M

= .

(b) If A ∈ (Y , c(B̃, p)), then




· lim sup
n

( ∞∑

k=

|ãnk – α̃k|pk

) 
M

≤ ‖LA‖χ ≤ lim sup
n

( ∞∑

k=

|ãnk – α̃k|pk

) 
M

,
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where α̃k = (α̃nk) with limn→∞ ãnk = α̃k , and

LA is compact if and only if lim sup
n

( ∞∑

k=

|ãnk – α̃k|pk

) 
M

= .

(c) If A ∈ (Y , l∞(B̃, p)), then

 ≤ ‖LA‖χ ≤ lim sup
n

( ∞∑

k=

|ãnk|pk

) 
M

and

LA is compact if and only if lim sup
n

( ∞∑

k=

|ãnk|pk

) 
M

= .
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