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Abstract
In this paper, we study the sharp energy criteria of blow-up and global existence for
the nonlinear Klein-Gordon equation by the sharp Gagliardo-Nirebergy-Sobolev
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1 Introduction
We study the Klein-Gordon equation involving the H-energy-critical nonlinearity

utt – �u + mu – |u|p–u = , t ≥ , x ∈R
N , (.)

where � =
∑N

j=
∂

∂x
j

is the Laplacian in R
N and N is the space dimension. u = u(t, x):

[, T) ×R
N → R and  < T ≤ +∞. m >  is a positive parameter.  < p ≤ ∗ –  (∗ = +∞

for N = ,  and ∗ = N
N– for N ≥ ), and ∗ is the critical Sobolev embedding exponent,

which is also called the H-energy-critical exponent due to the embedding: Ḣ ↪→ L∗ (see
[]). When p = ∗ – , equation (.) is called the energy-critical nonlinear Klein-Gordon
equation.

We supplement equation (.) with the initial data.

u(, x) = u, ut(, x) = u. (.)

The local existence of the Cauchy problem (.)-(.) was developed in many papers (see
for instance [–]. The existence of blow-up solutions and the blow-up properties are
investigated by Ball [], Payne and Sattinger [], Keel and Tao [], Jeanjean and Le Coz
[], Ohta and Todorova [], etc. The solution with small initial data exists globally in
all time is obtained in [, ]. Pecher [], Ibrahim et al. [] study the global existence and
scattering properties of the solutions to equation (.).

Then the question how to distinguish the domains of blow-up and global existence is
of particular interest and significance for both mathematicians and physicists. Zhang []
investigates the sharp threshold of blow-up and global existence for equation (.) with
H-sub-critical nonlinearity (i.e.  < p < ∗ – ) by the variational argument. We remark
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that the sharp threshold obtained in [] is not the energy criteria due to the threshold
is not fully determined by the Ḣ-norm of the corresponding ground state solutions. The
H-energy-critical case (i.e. p = ∗ – ) has not been solved.

Motivated by these problems, we study the sharp energy criteria of blow-up and global
existence for equation (.) in the H-energy-critical case: p = ∗ – . The main difficulty is
the lack of scaling invariance. By injecting the best constant of the critical Sobolev embed-
ding inequality and some new estimates into the energy, we find a convex property of the
energy inequality. Then in terms of Kenig and Merle’s arguments in [], we obtain the
sharp energy criteria of blow-up and global existence for equation (.) by constructing
two invariant evolution flows. Define a functional E((u, ut)) in H × L by

E
(
(u, ut)

)
:=

∫ [



∣
∣
∣
∣
∂

∂t
u(t)

∣
∣
∣
∣



+


∣
∣∇u(t)

∣
∣ +



∣
∣u(t)

∣
∣ –


p + 

|u(t)|p+
]

dx.

Then the main theorem is the following.

Theorem . Let m = , N ≥ , and p = ∗ – . If (u, u) ∈ H × L and

E
(
(u, u)

)
<


N

‖∇W‖
L , (.)

then we have the following.
(i) If

‖∇u‖
L + ‖u‖

L < ‖∇W‖
L , (.)

then the solution u(t, x) of the Cauchy problem (.)-(.) is bounded in H. Moreover,
u(t, x) satisfies

∥
∥∇u(t)

∥
∥

L +
∥
∥u(t)

∥
∥

L < ‖∇W‖
L . (.)

(ii) If

‖∇u‖
L + ‖u‖

L > ‖∇W‖
L , (.)

then the solution u(t, x) of the Cauchy problem (.)-(.) blows up in a finite time
 < T < +∞, i.e. limt→T ‖u(t)‖H = +∞.

Here W is the solution of the following elliptic equation:

�W + |W | 
N– W = , W ∈ Ḣ. (.)

Finally, we extend this method to equation (.) in the H-sub-critical case:  < p < ∗ – .
The main difficulty comes from that there is no best constant of the Sobolev inequality. We
use the best constant of the Gagliardo-Nirenberg inequality and some new estimates to
obtain the energy inequality containing the convex property as in the H-energy-critical
case. Then we can obtain the sharp energy criteria of blow-up and global existence for
equation (.) in the H-sub-critical case. We should point out that we just consider the
case m =  for simplicity, and the case m �=  can be handled by the same argument. The
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method in this paper may have potential applications for nonlinear wave equations with
damping term, forcing term, etc.

We conclude this section with several notations. We abbreviate Lq(RN ), ‖ · ‖Lq(RN ),
H(RN ), Ḣ(RN ) and

∫
RN ·dx by Lq, ‖ · ‖q, H, Ḣ, and

∫ ·dx. The various positive con-
stants will be simply denoted by C.

2 Preliminaries
In this paper, the space we work in H := {v ∈ L | ∇v ∈ L}, is a Hilbert space. The norm
of H is denoted by ‖ · ‖H . Ginibre et al. [], Nakanishi [] established the local well-
posedness of the Cauchy problem (.)-(.) in energy space.

Proposition . Let  < p ≤ ∗ –  and (u, u) ∈ H × L. There exists an unique so-
lution u(t, x) of the Cauchy problem (.)-(.) on the maximal time [, T) such that
u(t, x) ∈ C([, T); H × L). Moreover, u(t, x) ∈ Lq

t (I; Lr
x) for any (q, r) admissible and ev-

ery compact time interval I ⊂ (, T) and the following properties hold: if  < T < +∞
then limt→T ‖u(t, x)‖H = +∞ or sup‖u(t, x)‖Lq

t ([,T);Lr
x) = +∞ (blow-up). Furthermore, for

all t ∈ [, T), u(t, x) satisfies the following conservation law:

E
(
(u, ut)

)
= E

(
(u, u)

)
. (.)

Here, (q, r) being admissible means 
q = N( 

 – 
r ) –  and

∥
∥u(t, x)

∥
∥

Lq
t ([,T);Lr

x) =
(∫ T



(∫
∣
∣u(t, x)

∣
∣r dx

) q
r

dt
) 

q
.

Remark . If  < p < ∗ – , then according to the local well-posedness, for the solu-
tion u(t, x) ∈ C([, T); H × L) of the Cauchy problem (.)-(.), we have the following
alternative: either T = +∞ (global existence), or  < T < +∞ and limt→T ‖u(t, x)‖H = +∞
(blow-up).

At the end of this section, we introduce two important inequalities (see [, –]).

Lemma . Let N ≥  and

W (x) =
(

N(N – )
N(N – ) + |x|

) N–


(.)

solve the nonlinear elliptic equation (.). Then the best constant CN >  of the Sobolev
embedding inequality

‖v‖∗ ≤ CN‖∇v‖, v ∈ Ḣ, (.)

is given by CN = ‖∇W‖– 
N

 .

Lemma . Let p = N = . If v ∈ H, then

‖v‖
 ≤ √

‖∇Q‖

‖v‖‖∇v‖

, (.)
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where Q is the ground state solution of

–�Q + Q – |Q|Q = , Q ∈ H. (.)

3 Main results
In this paper, the main strategy is that we will use the best constant of the Sobelev embed-
ding inequality and the best constant of the Gagliardo-Nirenberg inequality to explore
the convex properties of the energy inequality. Then, by constructing the invariant sets
generated by the evolutional system, we can obtain the sharp energy criteria of blow-up
and global existence for equation (.). Here, the energy criteria mean that the thresholds
are fully expressed by the H-norm or the Ḣ-norm of the corresponding ground state
solutions.

At first, we prove Theorem ., which gives the sharp energy criteria of blow-up and
global existence for equation (.) in the H-energy-critical case.

Proof Inject the best constant of the Sobolev inequality (.) into the energy functional
E((u, ut)). We get

E
(
(u, ut)

)
=




∫

|ut| dx +



∫
(|∇u| + |u|)dx –


∗

∫

|u|∗
dx

≥ 

(‖∇u‖

 + ‖u‖

)

–
C∗

N
∗

(‖∇u‖
 + ‖u‖


) ∗

 . (.)

Define a function f (y) on [, +∞) by f (y) = 
 y – C∗

N
∗ y∗ , then

f ′(y) = y – C∗
N y∗– = y

(
 – C∗

N y∗–). (.)

Obviously, there are two roots for the equation f ′(y) = : y = , y = ‖∇W‖. Hence, y and
y are two minimizers of f (y), and f (y) is increasing on the interval [y, y) and decreasing
on the interval [y, +∞).

Note that f (y) =  and f (y) = ‖∇W‖


N . From (.) and (.), we get

f
(√

‖∇u‖
 + ‖u‖



)
≤ E

(
(u, ut)

)
= E

(
(u, u)

)
<

‖∇W‖


N
= fmax = f (y). (.)

Therefore, using the convexity and monotony of f (y) and the conservation of energy, we
can construct two invariant evolution flows generated by the evolutional system (.)-(.),
as follows. Let u be the solution of equation (.). We have

K :=
{

u ∈ H \ {}
∣
∣
∣ ‖∇u‖

 + ‖u‖
 < ‖∇W‖

,  < E
(
(u, ut)

)
<

‖∇W‖


N

}

,

K :=
{

u ∈ H \ {}
∣
∣
∣ ‖∇u‖

 + ‖u‖
 > ‖∇W‖

,  < E
(
(u, ut)

)
<

‖∇W‖


N

}

.

Indeed, if u ∈ K, i.e. ‖∇u‖
 +‖u‖

 < ‖∇W‖
, then

√‖∇u‖
 + ‖u‖

 < y. Then, by the
bootstrap and continuity argument, we can claim that the corresponding solution u(t, x)



Zhu Journal of Inequalities and Applications  (2015) 2015:383 Page 5 of 9

is such that, for all t ∈ I ,

∥
∥∇u(t)

∥
∥

 +
∥
∥u(t)

∥
∥

 < ‖∇W‖
. (.)

This implies that K is invariant. Indeed, if (.) is not true for all t ∈ I , then there exists t ∈
I such that ‖∇u(t)‖

 + ‖u(t)‖
 ≥ ‖∇W‖

 = y
. But from the fact that the corresponding

solution u(t, x) of the Cauchy problem (.)-(.) is continuous with respect to t, there
exists  < t ≤ t such that ‖∇u(t)‖

 + ‖u(t)‖
 = ‖∇W‖

 = y
. Inject this fact into (.)

and take t = t. We see that

f (y) = f
(√∥

∥∇u(t)
∥
∥

 +
∥
∥u(t)

∥
∥



)
≤ E

(
(u, u)

)
<

‖∇W‖


N
= f (y).

This is a contradiction because f (y) is increasing on the interval [, y).
If u ∈ K, i.e. ‖∇u‖

 + ‖u‖
 > ‖∇W‖

, then
√‖∇u‖

 + ‖u‖
 > y. Since f (y) is con-

tinuous on [, +∞) and decreasing on [y, +∞), we deduce that for all t ∈ I (maximal ex-
istence interval)

√∥
∥∇u(t, x)

∥
∥

 +
∥
∥u(t, x)

∥
∥

 > y, (.)

which implies that K is invariant. Here, we use the same argument of the proof of (.)
and we omit the detailed proof in this paper.

Now, we return to the proof of Theorem .. Equations (.) and (.) imply u ∈ K.
Applying the invariant of K, we can obtain (.), as well as (.). Then the solution u(t, x)
of the Cauchy problem (.)-(.) is bounded in H. This completes part (i) of the proof of
Theorem .. For (ii), we see that (.) and (.) imply u ∈ K. Applying the invariant of
K, (.) is true. From (.) and (.), we get

‖u‖∗
∗ > –

∗

N
‖∇W‖

 +
∗


‖ut‖

 +
∗


‖∇u‖

 +
∗


‖u‖

. (.)

Letting J(t) :=
∫ |u(t, x)| dx, by some basic computations, we see that

J ′(t) = 
∫

uut dx (.)

and

J ′′(t) = 
∫

(|ut| + |u|∗ – |∇u| – |u|)dx. (.)

It follows from (.)-(.) that

J ′′(t) ≥ (N – )
N – 

‖ut‖
 –


N – 

‖∇W‖
 +


N – 

‖∇u‖
 +


N – 

‖u‖


>
(N – )

N – 
‖ut‖

. (.)
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Applying the Hölder inequality for (.), we get J ′(t) ≤ ‖u‖
‖ut‖

. Moreover, multiply-
ing (.) with J(t), we get

J(t)J ′′(t) >
(N – )

N – 
‖ut‖

‖u‖
 >

N – 
N – 

J ′(t). (.)

It follows from (.) that J ′′(t) is positive and has a lower bound. Hence, there exists a t > 
such that J ′(t) >  for t > t. From (.), we get

J ′′(t)
J ′(t)

>
N – 
N – 

J ′(t)
J(t)

for t > t,

which implies that

J ′(t) > KJ(t)
N–
N– , (.)

where K > . Since N–
N– > , for t > t, by integrating (.) from t to t, we deduce that

J(t) >
(



J(t)
–

N– – K (t–t)
N–

)N–

. (.)

Then there exists a finite time  < T < +∞ such that limt→T J(t) = +∞, and
limt→T ‖u(t)‖H = +∞. That is, the solution u(t, x) of the Cauchy problem (.)-(.) blows
up in the finite time  < T < +∞. �

Next, we want to extend the argument of Theorem . to equation (.) with the H-
sub-critical nonlinearity:  < p < ∗ – . Here, we consider the special case p = N = .
There are two main difficulties: One is that if we directly use the methods of Kenig and
Merle for the H-energy-critical wave and Schrödinger equations [, ], the best constant
of the Sobolev inequality ‖u‖ ≤ C(‖∇u‖ + ‖u‖) is not determined; the other is that if
we directly use Holmer and Roudenko’s arguments [] for the H-sub-critical nonlinear
Schrödinger equation, the L-norm of the solutions is not conserved. Our main strategy
is to add some new estimates to the sharp Gagliardo-Nirenberg inequality. Then we can
balance the L-norm of the solutions, and control the energy by the ‖∇u(t)‖. Finally, ap-
plying the convexity of the energy inequality, we establish two types of invariant evolution
flows, and we obtain the sharp energy criterion of blow-up and global existence of the
solutions to the Cauchy problem (.)-(.), as follows.

Theorem . Let m = , p = N = , and Q be the ground state solution of (.). Assume
that (u, u) ∈ H × L and

E
(
(u, u)

)
<




‖∇Q‖
. (.)

Then the following hold.
(i) If

‖∇u‖ < ‖∇Q‖, (.)
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then the solution u(t, x) of the Cauchy problem (.)-(.) exists globally. Moreover,
u(t, x) satisfies, for all t ∈ I ,

∥
∥∇u(t)

∥
∥

 < ‖∇Q‖. (.)

(ii) If

‖∇u‖ > ‖∇Q‖, (.)

then the solution u(t, x) of the Cauchy problem (.)-(.) blows up in a finite time
 < T < +∞.

Proof From the sharp Gagliardo-Nirenberg inequality (.) and the Young inequality, we
deduce that

E
(
(u, ut)

)
=




∫

|ut| dx +



∫
(|∇u| + |u|)dx –




∫

|u| dx

≥ 

‖∇u‖

 +


‖u‖

 –
√

‖∇Q‖

‖u‖‖∇u‖



≥ 

‖∇u‖

 +


‖u‖

 –


‖u‖

 –


‖∇Q‖

‖∇u‖



≥ 

‖∇u‖

 –


‖∇Q‖

‖∇u‖

. (.)

Define a function f (y) on [, +∞) by f (y) = 
 y – 

‖∇Q‖


y. We see that

f ′(y) = y –


‖∇Q‖


y = y
(

 –


‖∇Q‖


y
)

. (.)

It is obvious that there are two roots for the equation f ′(y) = : y = , y = ‖∇Q‖. Hence,
y and y are two minimizers of f (y), and f (y) is increasing on the interval [y, y) and
decreasing on the interval [y, +∞). Note that f (y) =  and f (y) = 

‖∇Q‖
. By the con-

servation of energy and (.), we get

f
(‖∇u‖

) ≤ E(u) = E
(
(u, u)

)
<



‖∇Q‖

 = f (y). (.)

Therefore, using the convexity and monotony of f (y) and the conservation of energy, one
obtains two invariant evolution flows generated by the Cauchy problem (.)-(.), as fol-
lows. Let u be the solution of equation (.).

K :=
{

u ∈ H \ {}
∣
∣
∣ ‖∇u‖ < ‖∇Q‖,  < E

(
(u, ut)

)
<

‖∇Q‖




}

,

K :=
{

u ∈ H \ {}
∣
∣
∣ ‖∇u‖ > ‖∇Q‖,  < E

(
(u, ut)

)
<

‖∇Q‖




}

.

Indeed, if the initial data is such that E((u, u)) < ‖∇Q‖


 , then from (.), the corresponding

solution satisfies E((u, ut)) < ‖∇Q‖


 . If u ∈ K, i.e. ‖∇u‖
 < ‖∇Q‖

, then ‖∇u‖ < y.
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Then, by the bootstrap and continuity argument, we claim that the solution u(t, x) is such
that, for all t ∈ I ,

∥
∥∇u(t)

∥
∥

 < ‖∇Q‖
. (.)

This implies that K is invariant. Indeed, if (.) is not true for all t ∈ I , then there exists
t ∈ I such that ‖∇u(t)‖

 ≥ ‖∇Q‖
 = y

. But from the fact that the corresponding solution
u(t, x) of the Cauchy problem (.)-(.) is continuous with respect to t, there exists  < t ≤
t such that ‖∇u(t)‖

 = ‖∇Q‖
 = y

. Inject this fact into (.) and take t = t. We see that

f (y) = f
(∥
∥∇u(t)

∥
∥



) ≤ E
(
(u, u)

)
<

‖∇Q‖



< f (y).

This is a contradiction because f (y) is increasing on the interval [, y). Moreover, by the
same argument, we can give the proof of the invariant of K (see also the proof of Theo-
rem .. Here, we omit the detailed proof ).

Now, we return to the proof the Theorem .. From (.) and (.), we get u ∈ K.
Applying the invariant of K and the local well-posedness, we deduce that (.) is true
and the solution u(t, x) of the Cauchy problem (.)-(.) exists globally by the local well-
posedness theory (see Remark .). This completes part (i) of the proof. Next, we give the
proof of (ii). By (.) and (.), we see that u ∈ K. Applying the invariant of K, we have

∥
∥∇u(t)

∥
∥

 > ‖∇Q‖
 for all t ∈ I. (.)

From (.) and (.), we get

‖u‖
 > –‖∇Q‖

 + ‖ut‖
 + ‖∇u‖

 + ‖u‖
. (.)

Let J(t) :=
∫ |u(t, x)| dx. By some basic computations, we deduce that J ′(t) = 

∫
uut dx and

J ′′(t) = 
∫

(|ut| + |u| – |∇u| – |u|)dx. (.)

It follows from (.)-(.) that

J ′′(t) ≥ ‖ut‖
 – ‖∇Q‖

 + ‖∇u‖
 + ‖u‖

 > ‖ut‖
. (.)

Multiplying (.) with J(t) and injecting J ′(t) ≤ ‖u‖
‖ut‖

, we get

J(t)J ′′(t) > ‖ut‖
‖u‖

 >



J ′(t). (.)

From (.) and (.), there exists a t >  such that for t > t

J ′(t) > KJ(t)

 , (.)

where K > . Since 
 > , by the same argument as the proof of Theorem ., we can deduce

that the solution u(t, x) of the Cauchy problem (.)-(.) blows up in the finite time  <
T < +∞. �
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Remark . Theorem . can be extended to the general H-sub-critical case by the same
argument. For the H-sub-critical case, we extend Holmer and Roudenko’s arguments []
for the nonlinear Schrödinger equations to the nonlinear Klein-Gordon equations, which
is one of the novelties in this paper. This argument has potential applications in the non-
linear wave equations with damping term, forcing term, etc.

It is well known that the scaling invariance brings about a lot of algebraic or geometric
structures and simplifications, which are significant to analyze the nonlinear waves (see [,
, ]). The nonlinear Klein-Gordon equation is lack of scaling invariance. However, one
of the interesting features resulting from the breakdown of the scaling is that the sharp
energy criterion of the blow-up solutions is not given by the ground state of the original
nonlinear Klein-Gordon equation but that of a modified equation.
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