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Abstract
In this paper, we propose a method for estimating the Sobolev-type embedding
constant fromW1,q(�) to Lp(�) on a domain � ⊂ R

n (n = 2, 3, . . . ) with minimally
smooth boundary (also known as a Lipschitz domain), where p ∈ (n/(n – 1),∞) and
q = np/(n + p). We estimate the embedding constant by constructing an extension
operator fromW1,q(�) toW1,q(Rn) and computing its operator norm. We also present
some examples of estimating the embedding constant for certain domains.
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1 Introduction
Let � ⊂ R

n (n = , , . . . ) be a domain with minimally smooth boundary (also known as
a Lipschitz domain), the definition of which will be introduced in Definition .. We are
concerned with a concrete value of a constant Cp(�) for the embedding W ,q(�) ↪→ Lp(�),
i.e., Cp(�) satisfies

‖u‖Lp(�) ≤ Cp(�)‖u‖W ,q(�), ∀u ∈ W ,q(�), ()

where p ∈ (n/(n – ),∞), q = np/(n + p), and the norm ‖ · ‖W ,q(�) denotes the σ -weighted
W ,q norm defined as

‖ · ‖q
W ,q(�) := ‖∇ · ‖q

Lq(�) + σ‖ · ‖q
Lq(�) ()

for given σ > .
Since the Sobolev-type embedding theorems are important in studies on partial differ-

ential equations (PDEs), many studies have investigated such theorems and their applica-
tions, e.g., [–]. In particular, a concrete value of the embedding constant is indispens-
able for verified numerical computation and computer-assisted proof for PDEs; see, e.g.,
[–, ]. The best constant in the classical Sobolev inequality on R

n was independently
shown by Aubin [] and Talenti [] in  (see Theorem B.). Moreover, since all ele-
ments u in W k,q

 (�), the commonly defined closure of C∞
 (�), can be regarded as elements
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of W k,q(Rn) by zero extension outside �, a constant for the embedding W ,q
 (�) ↪→ Lp(�)

can be estimated for a general domain � ⊂ R
n by calculating the best constant of the

classical embedding constant. Although, as a limited result, one can find in [] a for-
mula that gives a concrete value of a constant for the embedding W ,(�) ↪→ Lp(�) on
a square � ⊂ R

, little is known about a concrete value of a constant for the embedding
W ,q(�) ↪→ Lp(�) on general domains.

To estimate a concrete value of the embedding constant defined by (), we construct a
linear and bounded operator E from W ,q(�) to W ,q(Rn) such that (Eu)(x) = u(x) for all
x ∈ �, which is called an extension operator from W ,q(�) to W ,q(Rn). We then estimate
bounds for the operator norm Aq(�) of E satisfying

∥
∥∇(Eu)

∥
∥

Lq(Rn) ≤ Aq(�)
(‖∇u‖Lq(�) + σ /q‖u‖Lq(�)

)

, ∀u ∈ W ,q(�), ()

which leads to bounds for the embedding constant. Several construction methods for ex-
tension operators have been proposed. For example, a summary of the reflection method,
which was originally proposed by Whitney [] and Hestenes [], can be found in, e.g., [,
]. In addition, Calderón [] constructed a k-dependent extension operator from W k,p(�)
to W k,p(Rn),  < p < ∞, on domains satisfying the uniform cone condition. Stein [] sub-
sequently showed that a k-independent extension operator from W k,p(�) to W k,p(Rn),
 ≤ p ≤ ∞, can be constructed on domains with minimally smooth boundary. The exten-
sion theorems of Calderón and Stein are summarized in, e.g., []. Furthermore, Stein’s
extension theorem was recently generalized by Rogers [] to the so-called (ε, δ)-domain,
the notation of which was originally introduced in []. Although many studies have in-
vestigated such extension operators (see, e.g., [–]), little is known about the concrete
values of their operator norms.

The main contribution of this paper is to propose a formula that gives a concrete value
of Aq(�) for the extension operator constructed by Stein’s method. Stein first constructed
an extension operator on the special Lipschitz domain and then expanded it to that on
domains with minimally smooth boundary. In his method, the regularized distance plays
an important role; it is a C∞ function that approximates the distance from a given closed
set S ⊂ R

n to any point in its complement Sc. Subsequent to the development of Stein’s
construction method, the regularized distance was generalized to a one-parameter family
of smooth functions by Fraenkel []. In this paper, we construct an extension operator
using Stein’s method with the generalized regularized distance to derive the embedding
constant.

2 Preparation
Throughout this paper, the following notation is used:

• N = {, , , . . . } and N = {, , , . . . };
• B(x, r) is an open ball with center x and radius r ≥ ;
• for any point x = (x, x, . . . , xn) ∈R

n and any p > , define
|x|p := (|x|p + |x|p + · · · + |xn|p)


p ;

• if no confusion arises, we denote | · | = | · |;
• for any set S ⊂R

n, Sc is its complementary set, and S is its closure set;
• for any set S ⊂R

n and any ε > , define Sε := {x ∈ R
n : B(x, ε) ⊂ S};

• for any point x ∈R
n and any set S ⊂R

n, define dist(x, S) := inf{|x – y| : y ∈ S};
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• for any function f , supp f denotes the support of f ;
• for any function f over R, f ′ denotes the ordinary derivative of f ;
• for any function f over Rn (n = , , . . . ), ∂xi f denotes the partial derivative of f with

respect to the ith component xi of x.
Let Lp(�) ( ≤ p < ∞) be the functional space of pth-power Lebesgue-integrable func-
tions over �. Let W k,p(�) (k ∈ N,  ≤ p < ∞) be the kth-order Lp Sobolev space on �; in
particular, we denote Hk(�) := W k,(�).

Definition . (Mollifier) A nonnegative function ρ ∈ C∞(Rn) is said to be a mollifier if

ρ(x) =  for |x| ≥  and
∫

Rn
ρ(x) dx = .

For example, the function

ρ(x) :=

{

c exp( –
–|x| ), |x| < ,

, |x| ≥ 
()

becomes a mollifier, where c is chosen such that
∫

Rn ρ(x) dx = .
In the following lemma, the existence of a C∞ function approximating Lipschitz con-

tinuous functions is guaranteed.

Lemma . (Fraenkel []) Let f : Rn → R be a function satisfying the Lipschitz continu-
ous condition, i.e., for some M > ,

∣
∣f (x) – f (y)

∣
∣ ≤ M|x – y|, ∀x, y ∈R

n.

Suppose that there is an open set G ⊂R
n such that f (x) >  for all x ∈ G. Then, for any given

ε ∈ (, ), there is a function g ∈ C∞(G) such that, for all x ∈ G,

( + ε)–f (x) ≤ g(x) ≤ ( – ε)–f (x) ()

and
∣
∣
∣
∣

∂α

∂xα
g(x)

∣
∣
∣
∣
≤ PαMα

{

εf (x)
}–|α|, ∀α ∈N

n
 with |α| ≥ . ()

Here, Pα is a constant depending only on α.

We can find in the proof of Lemma . (see []) that one of the concrete values of Pα

can be derived as follows.

Lemma . Let ρ be the mollifier defined in (). Let ρ∗ : R → R be a function such that
ρ∗(|x|) = ρ(x), x ∈ R

n. The multiindex α is written as α = β + γ for β ,γ ∈ N
n
 with |γ | = .

Then, inequality () holds for

Pα =
∫

Rn

| ∂β

∂xβ ρ(y)|( + |y|)|β|

 – |y| dy, ()

where ρ(y) := (n – )ρ∗(|y|) + |y|ρ ′∗(|y|).
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By applying Lemma . to distance functions, the regularized distance for any closed set
can be derived.

Definition . (Regularized distance) Let S be a closed set in R
n. For any given ξ ∈ (, ),

there exists a function RDS,ξ ∈ C∞(Sc) such that, for all x ∈ Sc,

( + ξ )– dist(x, S) ≤ RDS,ξ (x) ≤ ( – ξ )– dist(x, S) ()

and
∣
∣
∣
∣

∂α

∂xα
RDS,ξ (x)

∣
∣
∣
∣
≤ Pα

(

ξ dist(x, S)
)–|α|, ∀α ∈N

n
 with |α| ≥ . ()

The function RDS,ξ is called the regularized distance from S.

Next, we introduce two types of open sets.

Definition . (Special Lipschitz domain []) Let φ : Rn– → R (n = , , . . . ) be a func-
tion satisfying the Lipschitz condition, i.e., for some M > ,

∣
∣φ(x) – φ(y)

∣
∣ ≤ M|x – y|, ∀x, y ∈R

n–.

Then, � is called a special Lipschitz domain if it is written as � := {(x′, xn) ∈R
n : xn > φ(x′)}

with x′ = (x, x, . . . , xn–) ∈R
n–.

The positive number M in Definition . is called the Lipschitz constant of �. Generaliz-
ing the special Lipschitz domain, the domain with minimally smooth boundary is defined
as follows.

Definition . (Domain with minimally smooth boundary []) An open set � ⊂R
n (n =

, , . . . ) is said to be a domain with minimally smooth boundary if there exist ε > , N ∈N,
M > , and a sequence {Ui}i∈N of open subsets of Rn such that

() for any x ∈ ∂�, B(x, ε) ⊂ Ui for some i ∈N;
() no point in R

n belongs to more than N of Ui; and
() for any i ∈N, there exists a special Lipschitz domain �i, the Lipschitz bound of

which is not more than M, such that Ui ∩ � = Ui ∩ �i.

The positive number M in Definition . is called the Lipschitz constant of �, and N in
Definition . is called the overlap number of �.

Remark . The domain with minimally smooth boundary defined in Definition . is
referred to by various names. For example, it is called a domain satisfying the strong local
Lipschitz condition in []. In addition, numerous researchers simply call it a Lipschitz
domain, although several other definitions exist (see, e.g., Section .. in []).

3 Construction of extension operator
Here, we describe Stein’s construction method for extension operators []. Stein first con-
structed an extension operator on a special Lipschitz domain. He then expanded it to that
on a domain with minimally smooth boundary.
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3.1 Extension operator on special Lipschitz domain
Let �′ ⊂ R

n (n = , , . . . ) be a special Lipschitz domain, i.e., �′ is written in the form
�′ := {(x′, xn) ∈ R

n : xn > φ(x′)}, x′ = (x, x, . . . , xn–) ∈ R
n–, with a Lipschitz continuous

function φ : Rn– → R, the Lipschitz constant of which is M�′ . For given ξ > , let RD�′ ,ξ
be the regularized distance with the bound Pα as in (). Moreover, for given τ > , let us
define g∗

�′ ,τ ,ξ := ( + τ )C�′ ,ξ RD�′ ,ξ with C�′ ,ξ := ( + ξ )
√

 + M
�′ . Then, for any k ∈ N and

any p ∈ [,∞), the operator E�′ ,τ ,ξ , defined by

(E�′ ,τ ,ξ u)
(

x′, xn
)

:=

{

u(x′, xn), ∀(x′, xn) ∈ �′,
∫ ∞

 u(x′, xn + tg∗
�′ ,τ ,ξ (x′, xn))ψ(t) dt, ∀(x′, xn) ∈ (�′)c,

()

becomes the extension operator from W k,p(�′) to W k,p(Rn), where ψ : R→R is a function
satisfying

∫ ∞


ψ(t) dt = ,

∫ ∞


tmψ(t) dt = , ∀m ∈N. ()

A concrete selection of the function ψ can be found in (). Note that since ( +
M

�′ )–/ dist(x, (�′)c) ≥ φ(x′) – xn for all (x′, xn) ∈ (�′)c, we have g∗
�′ ,τ ,ξ (x′, xn) ≥ ( +

τ )(φ(x′) – xn).

Remark . In the original construction method, Stein set τ and ξ to concrete values [].
However, since the selection of τ and ξ affects the accuracy of estimation of the embedding
constants, we do not fix them above. Their selection will be discussed later.

3.2 Extension operator on domain with minimally smooth boundary
Let � be a domain with minimally smooth boundary. Let {Ui}i∈N be the sequence as in
Definition .. Let ε be a positive number such that U


 ε

i are not empty for all i ∈ N, and

if dist(x, ∂�) ≤ ε/, then x ∈ U

 ε

i for some i ∈ N. Let ρ be any given mollifier defined as

in Definition ., and put ρε(x) := ε–nρ(xε–). Let χi be the characteristic function of U

 ε

i ,
and put λε

i (x) := (χi ∗ ρ 
 ε)(x). Put

U =
{

x ∈R
n : dist(x,�) <




ε

}

,

U+ =
{

x ∈ R
n : dist(x, ∂�) <




ε

}

,

and

U– =
{

x ∈ � : dist(x, ∂�) >



ε

}

.

Let χ, χ+, and χ– be the corresponding characteristic functions of U, U+, and U–, re-
spectively. Let λε

 := χ ∗ ρ 
 ε , λε

+ := χ+ ∗ ρ 
 ε , and λε

– := χ– ∗ ρ 
 ε . Put

�ε
+ := λε


λε

+
λε

+ + λε
–

and �ε
– := λε


λε

–
λε

+ + λε
–

.
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To each Ui, there corresponds a special Lipschitz domain �i as in Definition .. Let Ei
�i ,τ ,ξ

be the extension operator for each �i constructed by (). For any k ∈ N and any p ∈
[,∞), the following operator E�,τ ,ξ ,ε becomes the extension operator from W k,p(�) to
W k,p(Rn):

(E�,τ ,ξ ,εu)(x) := �ε
+(x)

(∑∞
i= λε

i (x)Ei
�i ,τ ,ξ (λε

i u)(x)
∑∞

i= λε
i (x)

)

+ �ε
–(x)u(x) ()

for all x ∈R
n.

Here, one can observe that
• supp λε

i ⊂ Ui, and λε
i (x) =  if x ∈ U


 ε

i ;
• if x ∈ supp�ε

+, then
∑

i∈N λε
i (x) ≥ ;

• the bounds of the derivatives of λε
i are independent of i and depend only on the L

norm of the corresponding derivatives of ρ 
 ε ;

• λε
(x) =  if x ∈ �;

• λε
+(x) =  if dist(x, ∂�) ≤ ε/;

• λε
–(x) =  if x ∈ � and dist(x, ∂�) ≥ ε/;

• the supports of λε
, λε

+, and λε
– are contained in the ε/-neighborhood of �, in the

ε-neighborhood of ∂�, and in �, respectively;
• the functions λε

, λε
+, and λε

– are bounded in R
n, and all their partial derivatives are

also bounded;
• all the derivatives of �ε

+ and �ε
– are bounded on R

n;
• �ε

+ + �ε
– is  on � and is  outside the ε/-neighborhood of �.

Remark . In Stein’s original construction method, ε >  is assumed to be sufficiently
small []. However, since the bounds for the derivatives of λε

i increase as ε decreases,
a small ε makes the norm of the corresponding extension operator large. Therefore, we
should select the value of ε by taking this property into consideration. The selection of ε

for concrete domains � will be discussed in Section ..

4 Formula for estimating operator norm
Let us first present the following lemma, which gives bounds for the operator norm of the
extension operator on special Lipschitz domains constructed by the method in Section ..

Lemma . For a special Lipschitz domain �′ ⊂ R
n (n = , , . . . ), let E (= E�′ ,τ ,ξ ) be the

extension operator constructed by (). Then,

‖Eu‖Lp(Rn) ≤ Ap,τ ,ξ
(

�′)‖u‖Lp(�′), ∀u ∈ Lp(�′), ()

and

∥
∥∇(Eu)

∥
∥

Lp(Rn) ≤ A′
p,τ ,ξ

(

�′)‖∇u‖Lp(�′), ∀u ∈ W ,p(�′), ()

for

Ap,τ ,ξ
(

�′) =
{

(AQ)p + 
}/p
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and

A′
p,τ ,ξ

(

�′) = max
{[

p–(AQ)p + 
]/p,

[

(n – )p–(BQ)p +
{

(A + B)Q
}p + 

]/p},

respectively. Here,
- A and A are constants satisfying |ψ(t)| ≤ A/t (t ≥ ) and |ψ(t)| ≤ A/t (t ≥ ),

respectively;
- P corresponds to Pα with |α| = ;
- Q and B are defined as

Q(= Q�′ ,τ ,ξ ,p) :=
p( + τ )( + ξ )

(p + )τ +/p( – ξ )

√

 + M
�′

and

B(= B�′ ,ξ ,τ ) := AP( + ξ )( + τ )
√

 + M
�′ .

Proof Since C∞(�′) is dense in W ,p(�′), it suffices to consider u ∈ C∞(�′). Moreover,
�′ is written in the form �′ := {(x′, xn) ∈ R

n : xn > φ(x′)}, x′ = (x, x, . . . , xn–) ∈ R
n–, with

a Lipschitz continuous function φ : Rn– → R, the Lipschitz constant of which is M�′ .
Hereafter, for simplicity, we write uy = ∂yu, g∗ = g∗

�′ ,τ ,ξ , g∗
y = ∂yg∗.

First step: estimating Ap,τ ,ξ (�′)
If y < φ(x) with y ∈R and x = (x, x, . . . , xn–) ∈ R

n–, then

∣
∣(Eu)(x, y)

∣
∣ =

∣
∣
∣
∣

∫ ∞


u
(

x, y + tg∗(x, y)
)

ψ(t) dt
∣
∣
∣
∣

≤ A

∫ ∞



∣
∣u

(

x, y + tg∗(x, y)
)∣
∣
dt
t . ()

Moreover, we have g∗(x, y) ≥ ( + τ )(φ(x) – y) = ( + τ )|y – φ(x)|. In addition, it fol-
lows that φ(x) – y ≥ dist((x, y),�′) for all x ∈ R

n– and y ∈ R. Since dist((x, y),�′) ≥ ( –
ξ ) RD�′ ,ξ (x,y), it follows that

∣
∣y – φ(x)

∣
∣ = ≥ dist

(

(x, y),�′)

≥ ( – ξ ) RD�′ ,ξ (x, y)

= ( – ξ )( + τ )–C–
�′ ,ξ g∗(x, y). ()

Now, recall that g∗ = ( + τ )C�′ ,ξ RD�′ ,ξ . From () we obtain g∗(x, y) ≤ a|y – φ(x)|, where
a(= a�′ ,τ ,ξ ) := ( + τ )( + ξ )( – ξ )–

√

 + M
�′ . Putting s = y –φ(x) + tg∗(x, y), it follows from

() that

∣
∣(Eu)(x, y)

∣
∣ ≤ A

∫ ∞



∣
∣u

(

x, y + tg∗(x, y)
)∣
∣
dt
t

= Ag∗(x, y)
∫ ∞

y–φ(x)+g∗(x,y)

∣
∣u

(

x, s + φ(x)
)∣
∣
(

s –
(

y – φ(x)
))– ds

≤ Aa
∣
∣y – φ(x)

∣
∣

∫ ∞

τ |y–φ(x)|

∣
∣u

(

x, s + φ(x)
)∣
∣s– ds.
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By changing the integration variable as τ (y – φ(x)) = w, we have

∫ φ(x)

–∞

∣
∣(Eu)(x, y)

∣
∣
p dy

≤
(

aA

τ

)p ∫ φ(x)

–∞

(

τ
∣
∣y – φ(x)

∣
∣

∫ ∞

τ |y–φ(x)|

∣
∣u

(

x, s + φ(x)
)∣
∣s– ds

)p

dy,

=
(

aA

τ +/p

)p ∫ 

–∞

(

|w|
∫ ∞

|w|

∣
∣u

(

x, s + φ(x)
)∣
∣s– ds

)p

dw

=
(

aA

τ +/p

)p ∫ ∞



(∫ ∞

|w|

∣
∣u

(

x, s + φ(x)
)∣
∣s– ds

)p

|w|(p+)– dw.

Hardy’s inequality, which can be found in Lemma C., gives

∫ φ(x)

–∞

∣
∣(Eu)(x, y)

∣
∣
p dy ≤

(
pAa

(p + )τ +/p

)p ∫ ∞



(∣
∣u

(

x, s + φ(x)
)∣
∣s–)psp ds

=
(

pAa
(p + )τ +/p

)p ∫ ∞



∣
∣u

(

x, s + φ(x)
)∣
∣
p ds

=
(

pAa
(p + )τ +/p

)p ∫ ∞

φ(x)

∣
∣u(x, y)

∣
∣
p dy. ()

Moreover, from the definition () of the extension operator we have

∫ ∞

φ(x)

∣
∣(Eu)(x, y)

∣
∣
p dy =

∫ ∞

φ(x)

∣
∣u(x, y)

∣
∣
p dy. ()

From () and () it follows that

(∫ ∞

–∞

∣
∣(Eu)(x, y)

∣
∣
p dy

)/p

≤ {

(AQ)p + 
}/p

(∫ ∞

φ(x)

∣
∣u(x, y)

∣
∣
p dy

)/p

, ()

where Q(= Q�′ ,τ ,ξ ,p) := pa�′ ,τ ,ξ /{(p + )τ +/p}. Integrating both sides of () by x, we find
that () holds for

Ap,τ ,ξ
(

�′) =
{

(AQ)p + 
}/p.

Second step: estimating A′
p,τ ,ξ (�′)

Inequality () ensures that |g∗
xj

(x, y)| ≤ B/A for j ∈ {, , . . . , n}. If y < φ(x) with y ∈R and
x = (x, x, . . . , xn–) ∈R

n–, then

∂y(Eu)(x, y) = ∂y

∫ ∞


u
(

x, y + tg∗(x, y)
)

ψ(t) dt

=
∫ ∞


uy

(

x, y + tg∗(x, y)
)(

 + tg∗
y (x, y)

)

ψ(t) dt

=
∫ ∞


uy

(

x, y + tg∗(x, y)
)

ψ(t) dt

+ g∗
y (x, y)

∫ ∞


uy

(

x, y + tg∗(x, y)
)

tψ(t) dt.
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Therefore, we have

∣
∣∂y(Eu)(x, y)

∣
∣

≤
∣
∣
∣
∣

∫ ∞


uy

(

x, y + tg∗(x, y)
)

ψ(t) dt
∣
∣
∣
∣

+
∣
∣g∗

y (x, y)
∣
∣

∣
∣
∣
∣

∫ ∞


uy

(

x, y + tg∗(x, y)
)

tψ(t)
dt
t

∣
∣
∣
∣

≤ (A + B)
∫ ∞



∣
∣uy

(

x, y + tg∗(x, y)
)∣
∣
dt
t , y < φ(x).

From the similar discussion in the first step we have

∫ ∞

–∞

∣
∣∂y(Eu)(x, y)

∣
∣
p dy ≤ [{

(A + B)Q
}p + 

]
∫ ∞

φ(x)

∣
∣uy(x, y)

∣
∣
p dy. ()

On the other hand, for j ∈ {, , . . . , n – } and y < φ(x),

∂xj (Eu)(x, y)

= ∂xj

∫ ∞


u
(

x, y + tg∗(x, y)
)

ψ(t) dt

=
∫ ∞



{

uxj

(

x, y + tg∗(x, y)
)

+ uy
(

x, y + tg∗(x, y)
)

tg∗
xj

(x, y)
}

ψ(t) dt

=
∫ ∞


uxj

(

x, y + tg∗(x, y)
)

ψ(t) dt

+ g∗
xj

(x, y)
∫ ∞


uy

(

x, y + tg∗(x, y)
)

tψ(t) dt.

Therefore, we have

∣
∣∂xj (Eu)(x, y)

∣
∣

≤
∣
∣
∣
∣

∫ ∞


uxj

(

x, y + tg∗(x, y)
)

ψ(t) dt
∣
∣
∣
∣

+
∣
∣g∗

xj
(x, y)

∣
∣

∣
∣
∣
∣

∫ ∞


uy

(

x, y + tg∗(x, y)
)

tψ(t) dt
∣
∣
∣
∣

≤ A

∫ ∞



∣
∣uxj

(

x, y + tg∗(x, y)
)∣
∣
dt
t

+ B
∫ ∞



∣
∣uy

(

x, y + tg∗(x, y)
)∣
∣
dt
t , y < φ(x).

Since (s + t)p ≤ p–(sp + tp) for s, t >  and p > , it follows from the similar discussion in
() that

∫ φ(x)

–∞

∣
∣∂xj (Eu)(x, y)

∣
∣
p dy

≤ p–(AQ)p
∫ ∞

φ(x)

∣
∣uxj (x, y)

∣
∣
p dy + p–(BQ)p

∫ ∞

φ(x)

∣
∣uy(x, y)

∣
∣
p dy.
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Therefore,

∫ ∞

–∞

∣
∣∂xj (Eu)(x, y)

∣
∣
p dy ≤ {

p–(AQ)p + 
}
∫ ∞

φ(x)

∣
∣uxj (x, y)

∣
∣
p dy

+ p–(BQ)p
∫ ∞

φ(x)

∣
∣uy(x, y)

∣
∣
p dy ()

for j ∈ {, , . . . , n – }. From () and () we have

n
∑

j=

∫ ∞

–∞

∣
∣∂xj (Eu)(x, y)

∣
∣
p dy

=
n–
∑

j=

∫ ∞

–∞

∣
∣∂xj (Eu)(x, y)

∣
∣
p dy +

∫ ∞

–∞

∣
∣∂y(Eu)(x, y)

∣
∣
p dy

≤ {

p–(AQ)p + 
}

n–
∑

j=

∫ ∞

φ(x)

∣
∣uxj (x, y)

∣
∣
p dy

+ (n – )p–(BQ)p
∫ ∞

φ(x)

∣
∣uy(x, y)

∣
∣
p dy

+
[{

(A + B)Q
}p + 

]
∫ ∞

φ(x)

∣
∣uy(x, y)

∣
∣
p dy

=
{

p–(AQ)p + 
}

n–
∑

j=

∫ ∞

φ(x)

∣
∣uxj (x, y)

∣
∣
p dy

+
[

(n – )p–(BQ)p +
{

(A + B)Q
}p + 

]
∫ ∞

φ(x)

∣
∣uy(x, y)

∣
∣
p dy.

This ensures that inequality () holds for

A′
p,τ ,ξ

(

�′)

= max
{[

p–(AQ)p + 
]/p,

[

(n – )p–(BQ)p +
{

(A + B)Q
}p + 

]/p}. �

The following formula enables us to estimate the operator norm Aq(�) for the exten-
sion operator on domains with minimally smooth boundary constructed by the method
described in Section .

Theorem . For a domain � ⊂ R
n (n = , , . . . ) with minimally smooth boundary, let E

(= E�,τ ,ξ ,ε) be the extension operator constructed by (). Then, letting γ be a given positive
number, we have

∥
∥∇(Eu)

∥
∥

Lp(Rn) ≤ Ap(�)
(‖∇u‖Lp(�) + γ ‖u‖Lp(�)

)

, ∀u ∈ W ,p(�), ()

with

Ap(�) =

{

NA′ + , R ≤ γ ,
bε(NA + N/A + NA′ + )n/p/γ , R > γ ,

()
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where N is the overlap number of �, bε is a positive number satisfying bε ≥ ∫

Rn |∂xjρ 
 ε(x)|dx

for all j ∈ {, , . . . , n}, and R := bε(NA + N/A + NA′ + ) n/p/(NA′ + ). The constants A
and A′ are determined by A = sup{Ap,τ ,ξ (�i) : i ∈ N} and A′ = sup{A′

p,τ ,ξ (�i) : i ∈ N} for the
operator norms Ap,τ ,ξ (�i) and A′

p,τ ,ξ (�i) of Ei (= Ei
�i ,τ ,ξ ) satisfying () and () with the

notational replacement �′ = �i, respectively.

Proof For any j ∈ {, , . . . , n}, we have

∣
∣∂xjλ

ε
i
∣
∣ ≤

∫

Rn

∣
∣∂xjρ 

 ε(x)
∣
∣dx ≤ bε ; ()

this bound does not depend on the index i. Likewise, |∂xjλ
ε
|, |∂xjλ

ε
+|, and |∂xjλ

ε
–| are

bounded by bε . Moreover,

∣
∣∂xj�

ε
+
∣
∣ =

∣
∣
∣
∣

(

∂xjλ
ε

) λε

+
λε

+ + λε
–

+ λε


(∂xjλ
ε
+)(λε

+ + λε
–) – λε

+(∂xjλ
ε
+ + ∂xjλ

ε
–)

(λε
+ + λε

–)

∣
∣
∣
∣

≤ bε =: b+.

It is easily confirmed that |∂xj�
ε
–| is also bounded by bε =: b– (we distinguish b+ and b– to

avoid confusion in the following proof). Hereafter, we simply denote
⋃

i Uε/
i by U∗,

∑

i∈N
by

∑
, λε

i by λi, �ε
+ by �+, and �ε

– by �–. For u ∈ W ,p(�),

∥
∥∇(Eu)

∥
∥

Lp(Rn)

=
(

∑

j

∫

Rn

∣
∣∂xj (Eu)

∣
∣
p dx

)/p

≤
(

∑

j

∫

Rn

∣
∣
∣
∣
(∂xj�+)

(∑
λiEi(λiu)
∑

λ
i

)∣
∣
∣
∣

p

dx
)/p

+
(

∑

j

∫

Rn

∣
∣�+(◦)

∣
∣
p dx

)/p

+
(

∑

j

∫

Rn

∣
∣(∂xj�–)u

∣
∣
p dx

)/p

+
(

∑

j

∫

Rn

∣
∣�–(∂xj u)

∣
∣
p dx

)/p

, ()

where

◦ :=
(∂xj

∑
λiEi(λiu))(

∑
λ

i ) – (
∑

λiEi(λiu))(∂xj

∑
λ

i )
(
∑

λ
i ) .

From Lemma C., the first term of () is evaluated as

(
∑

j

∫

Rn

∣
∣
∣
∣
(∂xj�+)

(∑
λiEi(λiu)
∑

λ
i

)∣
∣
∣
∣

p

dx
)/p

≤ b+

(
∑

j

∫

U∗

∣
∣
∣
∣

∑
λiEi(λiu)
∑

λ
i

∣
∣
∣
∣

p

dx
)/p

≤ b+n/p
(∫

U∗

∣
∣
∣

∑

λiEi(λiu)
∣
∣
∣

p
dx

)/p

≤ b+N –/pn/p
(

∑
∫

Ui

∣
∣Ei(λiu)

∣
∣
p dx

)/p
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≤ b+N –/pAn/p
(

∑
∫

�

|λiu|p dx
)/p

≤ b+NAn/p
(∫

�

|u|p dx
)/p

.

The second term of () is evaluated as
(

∑

j

∫

Rn

∣
∣�+(◦)

∣
∣
p dx

)/p

≤
(

∑

j

∫

U∗

∣
∣
∣
∣

∂xj

∑
λiEi(λiu)

∑
λ

i

∣
∣
∣
∣

p

dx
)/p

+
(

∑

j

∫

U∗

∣
∣
∣
∣

(
∑

λiEi(λiu))(∂xj

∑
λ

i )
(
∑

λ
i )

∣
∣
∣
∣

p

dx
)/p

. ()

The first term of () is evaluated as
(

∑

j

∫

U∗

∣
∣
∣
∣

∂xj

∑
λiEi(λiu)

∑
λ

i

∣
∣
∣
∣

p

dx
)/p

=
(

∑

j

∫

U∗

∣
∣
∣
∣

∑
(∂xjλi)Ei(λiu) +

∑
λi(∂xj Ei(λiu))

∑
λ

i

∣
∣
∣
∣

p

dx
)/p

≤
(

∑

j

∫

U∗

∣
∣
∣

∑

(∂xjλi)Ei(λiu)
∣
∣
∣

p
dx

)/p

+
(

∑

j

∫

U∗

∣
∣
∣

∑

λi
(

∂xj E
i(λiu)

)
∣
∣
∣

p
dx

)/p

. ()

The first term of () is evaluated as
(

∑

j

∫

U∗

∣
∣
∣
∣

∑

i

(∂xjλi)Ei(λiu)
∣
∣
∣
∣

p

dx
)/p

≤
(

∑

j

Np–
∑

i

∫

U∗

∣
∣(∂xjλi)Ei(λiu)

∣
∣
p dx

)/p

≤ N –/p
(

∑

j

∑

i

∫

Ui

bp
ε

∣
∣Ei(λiu)

∣
∣
p dx

)/p

≤ bεN –/p
(

∑

j

∑

i

∫

Ui

∣
∣Ei(λiu)

∣
∣
p dx

)/p

≤ bεN –/pn/p
(

∑

i

∫

Ui

∣
∣Ei(λiu)

∣
∣
p dx

)/p

≤ bεN –/pAn/p
(

∑

i

∫

�

|λiu|p dx
)/p

≤ bεNAn/p
(∫

�

|u|p dx
)/p

.
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The second term of () is evaluated as

(
∑

j

∫

U∗

∣
∣
∣
∣

∑

i

λi
(

∂xj E
i(λiu)

)
∣
∣
∣
∣

p

dx
)/p

≤
(

∑

j

Np–
∑

i

∫

U∗

∣
∣λi

(

∂xj E
i(λiu)

)∣
∣
p dx

)/p

≤ N –/p
(

∑

i

∑

j

∫

Ui

∣
∣∂xj E

i(λiu)
∣
∣
p dx

)/p

≤ N –/pA′
(

∑

i

∑

j

∫

�

∣
∣∂xj (λiu)

∣
∣
p dx

)/p

= N –/pA′
(

∑

i

∑

j

∫

�

∣
∣(∂xjλi)u + λi(∂xj u)

∣
∣
p dx

)/p

≤ N –/pA′
(

∑

i

∫

�

∑

j

∣
∣(∂xjλi)u

∣
∣
p dx

)/p

+ N –/pA′
(

∑

i

∫

�

∑

j

∣
∣λi(∂xj u)

∣
∣
p dx

)/p

≤ NA′
{(

∑

j

bp
ε

∫

�

|u|p dx
)/p

+
(∫

�

∑

j

|∂xj u|p dx
)/p}

≤ NA′
{

bεn/p
(∫

�

|u|p dx
)/p

+
(∫

�

∑

j

|∂xj u|p dx
)/p}

.

Since Hölder’s inequality ensures that |∑(∂xjλi)λi| ≤ bεN /(
∑

λ
i )/, the second term of

() is evaluated as

(
∑

j

∫

U∗

∣
∣
∣
∣

(
∑

λiEi(λiu))(∂xj

∑
λ

i )
(
∑

λ
i )

∣
∣
∣
∣

p

dx
)/p

≤
(

∑

j

∫

U∗

∣
∣
∣
∣

(
∑

λiEi(λiu))(
∑

(∂xjλi)λi)
(
∑

λ
i )

∣
∣
∣
∣

p

dx
)/p

≤
(

∑

j

∫

U∗

∣
∣
∣
∣

(
∑

λiEi(λiu))(bεN /(
∑

λ
i ) 

 )
(
∑

λ
i )

∣
∣
∣
∣

p

dx
)/p

≤ bεN /
(

∑

j

∫

U∗

∣
∣
∣

∑

λiEi(λiu)
∣
∣
∣

p
dx

)/p

≤ bεN/–/pn/p
(

∑
∫

Ui

∣
∣Ei(λiu)

∣
∣
p dx

)/p

≤ bεN/–/pAn/p
(

∑
∫

�

|λiu|p dx
)/p

≤ bεN/An/p
(∫

�

|u|p dx
)/p

.
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From these evaluations we have

∥
∥∇(Eu)

∥
∥

Lp(Rn)

≤ b+NAn/p
(∫

�

|u|p dx
)/p

+ NbεAn/p
(∫

�

|u|p dx
)/p

+ NA′
{

bεn/p
(∫

�

|u|p dx
)/p

+
(∫

�

∑

j

|∂xj u|p dx
)/p}

+ N/bεAn/p
(∫

�

|u|p dx
)/p

+ b–n/p
(∫

�

|u|p dx
)/p

+
(∫

�

∑

j

|∂xj u|p dx
)/p

=
(

NA′ + 
)
(∫

�

∑

j

|∂xj u|p dx
)/p

+
(

b+NA + bεNA + bεN/A + bεNA′ + b–
)

n/p
(∫

�

|u|p dx
)/p

=
(

NA′ + 
)‖∇u‖Lp(�) + bε

(

NA + N/A + NA′ + 
)

n/p‖u‖Lp(�).

Hence, inequality () holds for

Ap(�) =

{

NA′ + , R ≤ γ ,
bε(NA + N/A + NA′ + )n/p/γ , R > γ ,

where R := bε(NA + N/A + NA′ + )n/p/(NA′ + ). �

The operator norm derived by Theorem . leads to bounds for the embedding constant
as in the following corollary.

Corollary . For given n ∈ {, , . . . } and p ∈ (n/(n – ),∞), let Tp be a constant satisfying
‖u‖Lp(Rn) ≤ Tp‖∇u‖Lq(Rn) for all u ∈ W ,q(Rn), where q = np/(n + p). Moreover, let � ⊂ R

n

be a domain with minimally smooth boundary. Then,

‖u‖Lp(�) ≤ Cp(�)‖u‖W ,q(�), ∀u ∈ W ,q(�), ()

with

Cp(�) = 
q–

q TpAq(�).

Here, ‖ · ‖W ,q(�) denotes the σ -weighted W ,q norm () for given σ > , and Aq(�) is the
upper bound of the operator norm derived by Theorem . with γ = σ /q.

Proof We have

‖u‖Lp(�) ≤ ‖Eu‖Lp(Rn)

≤ Tp‖∇Eu‖Lq(Rn)
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≤ TpAq(�)
(‖∇u‖Lq(�) + σ /q‖u‖Lq(�)

)

≤ 
q–

q TpAq(�)‖u‖W ,q(�) ()

for all u ∈ W ,q(�). �

Remark . The value Ap(�) derived by Theorem . monotonically decreases with
ξ ∈ (, ). Moreover, Ap(�) → Ap(�)|ξ= (ξ ↓ ). Therefore, Ap(�)|ξ= +δ and Cp(�)|ξ= +δ

for any positive number δ become an upper bound of the norm of the extension opera-
tor E (defined by ()) and an upper bound of the embedding constant (satisfying ()),
respectively, whereas the range of ξ is (, ).

Remark . The constant C′
p(�) such that ‖u‖Lp(�) ≤ C′

p(�)‖u‖H(�) for all u ∈ H(�)
is also important, especially for verified numerical computation and computer-assisted
proof for PDEs summarized in, e.g., [–, ]. We can obtain a formula that gives a con-
crete value of C′

p(�) with additional assumptions for � and p (see Corollary D.).

5 Examples
In this section, we present some examples of estimating the embedding constant Cp(�)
defined in () using Theorem . and Corollary .. Throughout this section, we set ρ as
the mollifier defined in () and σ = .

5.1 Calculation of constants
The constants A, A, P, and bε in Lemma . and Theorem . were numerically calcu-
lated. All computations were carried out on a computer with an Intel Core i  CPU
(. GHz), . GB RAM, Windows , and MATLAB b. Since all the rounding er-
rors were strictly estimated using INTLAB version  [], a toolbox for verified numerical
computations, the accuracy of all results is mathematically guaranteed.

The constants A and A can be respectively computed as

A = sup
{∣
∣tψ(t)

∣
∣ : t ≥ 

}

and A = sup
{∣
∣tψ(t)

∣
∣ : t ≥ 

}

()

with the function ψ : R → R constructing the extension operator (), which satisfies
property (). For example, the function

ψ(t) :=
e
π t

Im
(

e–ω(t–)

 )

, ω = Cωe– iπ
 =

Cω√


( – i) ()

satisfies this property for any Cω > ; a simple proof can be seen in, e.g., [, ]. Table  lists
values of A and A for some selections of Cω . We believe that Cω = . is a ‘good’ (albeit
not optimal) selection for obtaining small A and A. Moreover, recall that bε is a positive
number satisfying

bε ≥
∫

Rn

∣
∣∂xjρ 

 ε(x)
∣
∣dx

(

=

ε

∫

Rn

∣
∣∂xρ(x)

∣
∣dx

)

. ()

For the mollifier defined in (), the bounds for the integration in () are independent of
the index j. Furthermore, one of the concrete values of P can be derived by () with the



Tanaka et al. Journal of Inequalities and Applications  (2015) 2015:389 Page 16 of 23

Table 1 Values of A0 and A1

Cω A0 ∈ A1 ∈
1 [15.4893767258475, 15.4893767258481] [77833.3633336837, 77833.3633336869]
2 [2.65390726696554, 2.65390726696560] [828.073610866384, 828.073610866409]
3 [2.10591300732044, 2.10591300732053] [88.5738560955430, 88.5738560955457]
4 [5.63766113155191, 5.63766113155202] [24.6566936219851, 24.6566936219859]
4.83 [12.8860220862419, 12.8860220862429] [12.9832586501139, 12.9832586501147]
5 [15.2681658080940, 15.2681658080947] [15.3072274336907, 15.3072274336919]

condition |α| = , i.e., it can be computed as

P =
∫

Rn

{

(n – )ρ∗
(|x|) + |x|ρ ′

∗
(|x|)}( – |x|)– dx.

Using verified numerical computation, we derived the following estimation results:

∫

R

∣
∣∂xρ(x)

∣
∣dx ∈ [., .] and P ∈ [., .]

for the case of n = .

5.2 Examples of estimating the embedding constant
Here, we present estimation results for the following two concrete domains:

Example A Let � ⊂R
 be the domain as in Figure (a). We set {Ui}i∈N as follows: we first

defined the two sets among Ui as in Figure (b); then, Ui (i = , , . . . , ) were obtained by
symmetry reflections; and finally, we defined the other Ui (i = , , , . . . ) as empty sets.
In this case, we chose M = , N = , and ε = .. We can find in Figure (c) that these
constants satisfy the required conditions mentioned in Theorem ..

Figure (a) shows the relationship between τ and Aq(�) in the cases of p = , , and ;
recall that q = p/( + p). We can observe that Aq(�) first decreases as τ increases.
Then, it reaches a minimum point; thereafter, it monotonically increases with τ . The
relationship between p and the value of τ that minimizes Aq(�) can be seen in Fig-
ure (b). For example, in the cases of p = , , and , each Aq(�) is minimized at the points
τ ≈ ., ., and ., respectively.

Figure (c) shows the relationship between p and Cp(�); we chose τ such that Aq(�) (and
Cp(�)) are as small as possible. Recall that all the results in Figure  are mathematically
guaranteed with verified numerical computation.

Example B Let � ⊂ R
 be the domain as in Figure (a), the boundary of which is com-

posed of five semicircles and a straight line. We set {Ui}i∈N as follows: we first set Ui

(i = , , . . . , ) as in Figures (b), (c), (d); then, we obtained the other Uis (i = , , . . . , )
by symmetrical reflection; and finally, the other Ui (i = , , . . . ) were defined as empty
sets. In this case, we chose M = , N = , and ε =  sin(π/)/{sin(π/) + }. The selection of
ε depends on the smallest semicircle that constitutes the boundary of �. We can find in
Figure  that ε =  sin(π/)/{sin(π/) + } satisfies the required condition in Theorem ..
The graphs of Aq(�), τ that minimizes Aq(�), and Cp(�) are also shown in Figure .
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Figure 1 Figures in Example A. (a): Domain �. (b) and (c): open sets Ui (i = 1, 2, . . . , 8).

6 Conclusion
We proposed a method for estimating the operator norm Aq(�) (defined in ()) of the
extension operator constructed by Stein []. The concrete bounds for the operator norm
lead to estimation of the embedding constant Cp(�) from W ,q(�) to Lp(�), as defined in
(). Here, � is only assumed to be a domain with minimally smooth boundary.

In addition, we presented some estimation results of the embedding constants. All the
estimation results are mathematically guaranteed with verified numerical computation,
whereas the derived constants may not be sharp because of some overestimations.

Appendix 1: Relation between p-norms
The following lemma is required for proving Corollary B. and Corollary D..

Lemma A. For  < p < q and x ∈ R
n (n ∈N), we have

|x|q ≤ |x|p ≤ n

p – 

q |x|q, ()

where both inequalities are optimal.
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Figure 2 The relationship between (a) τ and Aq(�) with p = 4, 6, and 8, (b) p and τ that minimizes
Aq(�), and (c) p and Cp(�).

Proof We first prove the left inequality in (). This is clear when x = . Otherwise, since
|xi|/|x|q ≤  for i = , , . . . , n, we have

n
∑

i=

( |xi|
|x|q

)p

≥
n

∑

i=

( |xi|
|x|q

)q

= ,

and therefore, |x|p ≥ |x|q. The equality is attained, e.g., when x =  and xi =  (i =
, , . . . , n).

We then prove the right inequality in (). Holder’s inequality ensures that

|x|pp ≤
( n

∑

i=

(|xi|p
) q

p

) p
q
( n

∑

i=


q

q–p

) q–p
q

= n– p
q

( n
∑

i=

|xi|q
) p

q

.

Raising both sides of this inequality to the power /p, we have |x|p ≤ n

p – 

q |x|q. The equality
is attained, e.g., when xi =  (i = , , . . . , n). �

Appendix 2: The best constant in the classical Sobolev inequality
The following theorem gives the best constant in the classical Sobolev inequality.

Theorem B. (Aubin [] and Talenti []) Let u be any function in H(Rn) (n = , , . . . ).
Moreover, let q be any real number such that  < q < n, and set p = nq/(n – q). Then,

(∫

Rn

∣
∣u(x)

∣
∣
p dx

) 
p

≤ T ′
p

(∫

Rn

∣
∣∇u(x)

∣
∣
q
 dx

) 
q
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Figure 3 Figures in Example B. (a): Domain �. (b)-(d): Ui (i = 1, 2, . . . , 6) are shown; the other
Ui (i = 7, 8, . . . , 10) can be obtained by symmetrical reflection.

Figure 4 How to determine ε.

with

T ′
p = π– 

 n– 
q

(
q – 
n – q

)– 
q
{

�( + n
 )�(n)

�( n
q )�( + n – n

q )

} 
n

, ()

where � is the gamma function.

From Lemma A. and Theorem B. the following corollary immediately follows.
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Figure 5 The same as Figure 2, but for the case of the domain � in Figure 3(a).

Corollary B. Let u be any function in H(Rn) (n = , , . . . ). Moreover, let q be any real
number such that  < q < n, and set p = nq/(n – q). Then,

‖u‖Lp(Rn) ≤ Tp‖∇u‖Lq(Rn)

with Tp = M,qT ′
p, where T ′

p is defined by (), and

M,q :=

{

,  < q < ,
n


 – 

q ,  ≤ q < n.

Proof Since Lemma A. ensures that

(∫

Rn

∣
∣∇u(x)

∣
∣
q
 dx

) 
q

≤ M,q

(∫

Rn

∣
∣∇u(x)

∣
∣
q
q dx

) 
q

= M,q‖∇u‖Lq(Rn),

this corollary holds. �

Appendix 3: Lemmas for proving Lemma 4.1 and Theorem 4.2
The following two lemmas are required to prove Lemma . and Theorem ..

Lemma C. (Hardy et al. []) Let p ∈ N and r > . Suppose that a function f : R → R

satisfies f (x) ≥ , ∀x ∈R. Then, it follows that

(∫ ∞



(∫ x


f (y) dy

)p

x–r– dx
)/p

≤ p
r

(∫ ∞



(

yf (y)
)py–r– dy

)/p
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and

(∫ ∞



(∫ ∞

x
f (y) dy

)p

xr– dx
)/p

≤ p
r

(∫ ∞



(

yf (y)
)pyr– dy

)/p

.

Lemma C. Let S ⊆ R
n and p ∈ [,∞). Moreover, let {ai(x)}i∈N ⊂ Lp(S) be such that at

most N of ai(x) are not zero for each x. Then, we have

(∫

S

∣
∣
∣
∣

∑

i∈N
ai(x)

∣
∣
∣
∣

p

dx
) 

p
≤ N – 

p

(
∑

i∈N

∫

S

∣
∣ai(x)

∣
∣
p dx

) 
p

.

Proof This lemma follows from the inequality

∣
∣
∣
∣

∑

i∈N
ai(x)

∣
∣
∣
∣

p

≤ Np–
∑

i∈N

∣
∣ai(x)

∣
∣
p,

which comes from Hölder’s inequality. �

Appendix 4: The embedding constant from H1(�) to Lp(�)
Corollary D., which comes from Theorem ., gives a concrete estimation of the embed-
ding constant from H(�) to Lp(�) under suitable assumptions for � and p.

Corollary D. For given n ∈ {, , . . . }, let p be a real number such that p ∈ (n/(n –
), n/(n – )) if n ≥  and p ∈ (n/(n – ),∞) if n = , and set q = np/(n + p). Moreover, let
� ⊂R

n be a bounded domain with minimally smooth boundary. Then, for any r ∈ [q, ),

‖u‖Lp(�) ≤ C′
p(�)‖u‖H(�), ∀u ∈ H(�),

with

C′
p(�) = /|�| –q

q Tr∗Mr,Ar(�).

Here, ‖ · ‖H(�) denotes the σ -weighted W , norm () for given σ > , r∗ := nr/(n – r), Tr∗

is a constant satisfying ‖u‖Lr∗ (Rn) ≤ Tr∗‖∇u‖Lr (Rn) for all u ∈ W ,r(Rn), Mr, := n 
r – 

 , and
Ar(�) is the upper bound for the operator norm derived by Theorem . with γ = σ /.

Proof Since q ∈ (, ), a real number r such that r ∈ [q, ) exists.
Let u ∈ H(�). Hölder’s inequality gives

‖u‖p
Lp(�) ≤

(∫

�

∣
∣u(x)

∣
∣
p· r∗

p

) p
r∗ (∫

�


r∗

r∗–p

) r∗–p
r∗

= |�| r∗–p
r∗ ‖u‖p

Lr∗ (�)
,

and we have

‖u‖Lr∗ (�) ≤ ‖Eu‖Lr∗(Rn) ≤ Tr∗‖∇Eu‖Lr (Rn)

≤ Tr∗Ar(�)
(‖∇u‖Lr (�) + σ /‖u‖Lr (�)

)

.
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Therefore, it follows that

‖u‖Lp(�) ≤ |�|
r∗–p
pr∗ Tr∗Ar(�)

(‖∇u‖Lr (�) + σ /‖u‖Lr (�)
)

. ()

Moreover, Hölder’s inequality again gives

‖∇u‖r
Lr (�) ≤

(∫

�

∣
∣∇u(x)

∣
∣
r· 

r
r dx

) r

(∫

�




–r dx
) –r



= |�| –r


(∫

�

∣
∣∇u(x)

∣
∣

r dx

) r


,

where |�| is the measure of �. Therefore, it follows from Lemma A. that

‖∇u‖Lr (�) ≤ |�| –r
r Mr,‖∇u‖L(�). ()

In the same manner, we have

‖u‖Lr (�) ≤ |�| –r
r ‖u‖L(�). ()

Since Mr, ≥  and (r∗ – p)/(pr∗) + ( – r)/(r) = ( – q)/(q), it follows from (), (), and
() that

‖u‖Lp(�) ≤ |�|
r∗–p
pr∗ + –r

r Tr∗Mr,Ar(�)
(‖∇u‖L(�) + σ /‖u‖L(�)

)

≤ /|�| –q
q Tr∗Mr,Ar(�)‖u‖H(�). �
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