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Abstract
In the present work, we consider the prescribed Q-curvature problem on the unit
sphere Sn, n ≥ 5. Under the hypothesis that the prescribed function satisfies a flatness
condition of order β = n, we give a complete description of the lack of compactness
of the problem and we provide an existence result in terms of an Euler-Hopf index.

Keywords: Q-curvature; critical exponent; lack of compactness; critical points at
infinity

1 Introduction and the main result
On a smooth compact manifold (Mn, g) of dimension n ≥ , the Paneitz operator is de-
fined by

Pn
g u = �

g u – divg (anSg g + bnRicg ) du +
n – 


Qn

g u,

where Sg denotes the scalar curvature of (Mn, g), Ricg denotes the Ricci curvature of
(Mn, g) and

an =
(n – ) + 

(n – )(n – )
, bn = –


n – 

,

Qn
g = –


(n – )

�g Sg +
n – n + n – 

(n – )(n – ) S
g –


(n – ) |Ricg |.

Such a Qn
g is a fourth order invariant called the Q-curvature.

The operator Pn
g , is conformally invariant; if g = u


n– g, u > , is a conformal metric to

g, then for all ψ ∈ C∞(M) we have

Pn
g (uψ) = u

n+
n– Pn

g (ψ).

In particular, taking ψ ≡ , we then have

Pn
g (u) =

n – 


Qn
g u

n+
n– . (.)

The present paper deals with the prescribed Q-curvature problem on the standard sphere
(Sn, g), n ≥ . According to equation (.), this problem can be expressed as follows: Let K :

© 2015 Chtioui et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-015-0905-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-015-0905-z&domain=pdf
mailto:Hichem.Chtioui@fss.rnu.tn


Chtioui et al. Journal of Inequalities and Applications  (2015) 2015:384 Page 2 of 17

Sn → R be a given smooth function, we look for solutions u on Sn satisfying the nonlinear
problem involving the critical exponent

{
Pn

g u = n–
 Ku n+

n– ,
u >  on Sn.

(.)

On the Sobolev space H(Sn), the operator Pn
g is coercive and has the following expression:

P := Pn
g u = �

g u – cn�g u + dnu,

where cn = 
 (n – n – ) and dn = n–

 n(n – ).
This problem is quite delicate and had drown a lot of attention from mathematicians

because the equation stands for a critical case which generates blow-up and lack of com-
pactness, that the standard analytic machinery cannot apply. Moreover, beside the obvious
necessary condition that K be positive somewhere, there are topological obstructions of
Kazdan-Warner type to solve (.) (see []). The determination of the set of all functions
K such that problem (.) has a solution is still open, although intensive studies were ded-
icated to this problem trying to understand under what conditions (.) is solvable; see
[–] and the references therein.

One group of existence results for problem (.) has been obtained under the following
β-flatness condition:

(f )β : Assume that K : Sn → R, n ≥ , is a C positive function such that for any critical
point y of K , there exists some real number β = β(y) such that, in some geodesic
normal coordinate system centered at y, we have

K(x) = K() +
n∑

k=

bk
∣∣(x)k

∣∣β + R(x),

where bk = bk(y) �= , ∀k = , . . . , n,
∑n

k= bk �= , and
∑[β]

s= |∇sR(x)||x|–β+s = o() as x
tends to zero. Here ∇s denotes all possible derivatives of order s and [β] is the integer
part of β .

As far as the authors know, all the existence results dealing with Q-curvature in Sn un-
der (f )β hold when β < n. The very first result has been handled by V Felli in [] for
β ∈ ]n – , n[. Other important results treating β not in the range mentioned above are
the following ones: [] for β ∈ [n – , n[ and [] for β ∈ ], n – ]. Therefore, only the case
β greater than or equal to n has not been addressed until now. The present paper deals
with the case β = n. Our aim is to study the lack of compactness and provide an existence
result in terms of the Euler-Hopf index. Let

K =
{

y ∈ Sn,∇g K(y) = 
}

, K+ =

{
y ∈K, –

n∑
k=

bk > 

}
and

ĩ(y) = �
{

bk = bk(y),  ≤ k ≤ n s.t. bk < 
}

.

Our first main result is the following.
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Theorem . Assume that K satisfies (f )β , with

β = n.

If

∑
y∈K+

(–)n–ĩ(y) �= ,

then problem (.) has at least one solution.

Our method hinges on a readapted characterization of critical points at infinity tech-
niques introduced by Bahri [] and Bahri-Coron [] and used in the above mentioned
papers [] and [] for β < n. However, there is a serious problem of divergence of the in-
tegrals when β = n. To overcome this challenging problem, we perform a local analysis to
give precise estimates to the gradient of the Euler Lagrange functional associated to our
problem and identify the critical points at infinity. As we show in Corollary ., we get a
new type of critical points at infinity in the space of variation which is different from those
of [] and [].

In the next section, we recall some preliminary results related to the variational structure
of the problem. In Section , we study the asymptotic behavior of the gradient flow lines
of the Euler-Lagrange functional and we characterize the critical points at infinity. Finally,
in Section , we state the proof of Theorem ..

2 Variational structure and lack of compactness
Equation (.) has a variational structure. Indeed, there is a one to one correspondence
between the solutions of (.) and the critical points of

J(u) =
∫

Sn Puu dvg

(
∫

Sn K |u| n
n– dvg ) n–

n
, u ∈ �+,

where �+ = {u ∈ �, u > } and � = {u ∈ H(Sn),‖u‖ =
∫

Sn Puu dvg = }.
Since the Sobolev embedding H(Sn) → L n

n– (Sn) is not compact, the functional J does
not satisfy the Palais-Smale condition. To characterize the sequences failing the Palais-
Smale condition, we state the following notations.

For a ∈ Sn and λ > , let

δ(a,λ)(x) = cn


 n–


λ
n–



( + λ–
 ( – cos(d(x, a)))) n–


,

where d is the geodesic distance on (Sn, g) and cn is chosen so that δ(a,λ) is the family of
solutions of the problem

Pu = u
n+
n– , u >  on Sn.
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We define now the set of potential critical points at infinity associated to the function J .
For ε >  and p ∈N

∗, let us define

V (p, ε) =

⎧⎪⎨
⎪⎩

u ∈ �/∃a, . . . , ap ∈ Sn, ∃λ, . . . ,λp > ε–,
∃α, . . . ,αp >  with ‖u –

∑p
i= αiδ(ai ,λi)‖ < ε,

|J(u) n
n– α


n–
i K(ai) – | < ε, ∀i and εij < ε,∀i �= j,

where εij = [ λi
λj

+ λj
λi

+ λiλj
 ( – cos d(ai, aj))]– n–

 .
The failure of the Palais-Smale condition can be described following the idea introduced

in [], pp. and  as follows.

Proposition . Let (uk) be a sequence in �+ such that J(uk) is bounded and ∂J(uk) goes
to zero. Then there exist an integer p ∈ N

∗, a sequence (εk) > , εk tends to zero, and an
extracted subsequence of uk ’s, again denoted (uk), such that uk ∈ V (p, εk).

If u is a function in V (p, ε), one can find an optimal representation, following the ideas
introduced in Proposition . of [] (see also pp.- of []). Namely, we have the
following proposition.

Proposition . For any p ∈ N
∗, there is εp >  such that if ε ≤ εp and u ∈ V (p, ε), then

the minimization problem

min
αi>,λi>,ai∈Sn

∥∥∥∥∥u –
p∑

i=

αiδ(ai ,λi)

∥∥∥∥∥
has a unique solution (α,λ, a), up to a permutation.

In particular, we can write u as follows:

u =
p∑

i=

αiδ(ai ,λi) + v,

where v belongs to H(Sn) and it satisfies (V), (V) is the following:

(V): 〈v,ψ〉 =  for ψ ∈
{
δi,

∂δi

∂λi
,
∂δi

∂ai
, i = , . . . , p

}
,

where δi = δ(ai ,λi) and 〈·, ·〉 denotes the scalar product defined on H(Sn) by

〈u, v〉 =
∫

Sn
�g u�g v dvg + cn

∫
Sn

∇g u∇g v dvg + dn

∫
Sn

uv dvg .

In the rest of the paper, we will say that v ∈ (V) if v satisfies (V).
The following Morse lemma shows that the v-contributions can be neglected with re-

spect to the concentration phenomenon; see [] (pp.,  and ).
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Proposition . There is a C-map which for each (αi, ai,λi) is such that
∑p

i= αiδ(ai ,λi)

belonging to V (p, ε) associates v = v(α, a,λ) such that v is unique and satisfies

J

( p∑
i=

αiδ(ai ,λi) + v

)
= min

v∈(V)

{
J

( p∑
i=

αiδ(ai ,λi) + v

)}
.

Moreover, there exists a change of variables v – v → V such that

J

( p∑
i=

αiδ(ai ,λi) + v

)
= J

( p∑
i=

αiδ(ai ,λi) + v

)
+ ‖V‖.

In order to define our deformation lemma on the level sets of J , we can work as if V was
zero; see [].

The next definition is extracted from [] (see Definition ),

Definition . A critical point at infinity of J on �+ is a limit of a flow line u(s) of the
equation

{
∂u
∂s = –∂J(u(s)),
u() = u,

such that u(s) remains in V (p, ε(s)) for s ≥ s. Here ε(s) is some positive function tending
to zero when s → +∞. Using Proposition ., u(s) can be written as

u(s) =
p∑

i=

αi(s)δ(ai(s),λi(s)) + v(s).

Denoting α̃i := lims→+∞ αi(s), ỹi := lims→+∞ ai(s), we denote by

p∑
i=

α̃iδ(ỹi ,∞) or (ỹ, . . . , ỹp)∞

such a critical point at infinity.

For such a critical point at infinity there are associated stable and unstable manifolds.
These manifolds can easily be described once a Morse type reduction is performed; see
[] (pp.-).

3 Characterization of the critical points at infinity
This section will be devoted to a useful expansion of the gradient of J near infinity. Such
expansions will be useful for the construction of a suitable pseudo-gradient which allows
us to describe the concentration phenomenon of the problem and identify the critical
points at infinity. In the following, we will write δi instead of δ(ai ,λi), we will identify the
function K and its composition with the stereographic projection �q and we will also
identify a point x of Sn and its image by �q.
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3.1 Expansion of the gradient of the functional
Proposition . For any u =

∑p
j= αjδj in V (p, ε), the following expansion hold:

(i)
〈
∂J(u),λi

∂δi

∂λi

〉
= –cJ(u)

∑
i�=j

αjλi
∂εij

∂λi
+ o
(∑

i�=j

εij

)
+ o
(


λi

)
,

where c = c
n

n–

∫
Rn

dy

(+|y|)
n+


.

(ii) If ai ∈ B(yji ,ρ), yji ∈K, and ρ is a positive constant small enough, we have

〈
∂J(u),λi

∂δi

∂λi

〉
= J(u)

[
(n – )c

αi

K(ai)

( n∑
k=

bk

)
ln(λi)
λn

i
– c

∑
j �=i

αjλi
∂εij

∂λi

+ o
(∑

j �=i

εij

)
+ O

( p∑
j=


λn

j

)
+ O

( n∑
k=

|(ai – yji )k|
λn–

i

)]
, (.)

where

c =

⎧⎪⎨
⎪⎩

c
n

n–


( n–
 )!( n–

 )!
(n–)! if n is odd,

c
n

n–


∏ n–


r= (r+)

n(n–)! π if n is even.

Proof Let u =
∑p

j= αjδj ∈ V (p, ε),

〈
∂J(u),λi

∂δi

∂λi

〉
= J(u)

[〈
u,λi

∂δi

∂λi

〉
– J(u)

n
n–

∫
Sn

Ku
n+
n– λi

∂δi

∂λi

]
. (.)

Following [], Sections  and , we have

〈
u,λi

∂δi

∂λi

〉
= c

∑
j �=i

αjλi
∂εij

∂λi
+ o
(∑

j �=i

εij

)
(.)

and ∫
Sn

Ku
n+
n– λi

∂δi

∂λi
= α

n+
n–
i

∫
Sn

Kδ
n+
n–
i λi

∂δi

∂λi
+
∑
j �=i

∫
Sn

K(x)(αjδj)
n+
n– λi

∂δi

∂λi
dx

+
n + 
n – 

∑
j �=i

α


n–
i αj

∫
Sn

K(x)δ


n–
i δjλi

∂δi

∂λi
dx + o

(∑
j �=i

εij

)

= α
n+
n–
i

∫
Sn

Kδ
n+
n–
i λi

∂δi

∂λi
+ c

∑
j �=i

α
n+
n–
j K(aj)λi

∂εij

∂λi

+ c
∑
j �=i

αjα


n–
i K(ai)λi

∂εij

∂λi
+ o
(∑

j �=i

εij

)
+ O

( p∑
j=


λn

j

)

= α
n+
n–
i

∫
Sn

Kδ
n+
n–
i λi

∂δi

∂λi
+ cJ(u)

–n
n–
∑
j �=i

αjλi
∂εij

∂λi

+ o
(∑

j �=i

εij

)
+ O

( p∑
j=


λn

j

)
, (.)
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since α


n–
i K(ai)J(u) n

n– = +o(), ∀i = , . . . , p. The stereographic projection and the change
of variables y = λi(x – ai) yield

∫
Sn

Kδ
n+
n–
i λi

∂δi

∂λi
=

n – 
n

λi
∂

∂λi

(∫
Rn

K(x)δ
n

n–
i (x) dx

)

= –
n – 

n
c

n
n–


∫
Rn

DK
(

y
λi

+ ai

)(
y
λi

)
dy

( + |y|)n .

Let μ be a small positive constant,

∫
Rn

DK
(

y
λi

+ ai

)(
y
λi

)
dy

( + |y|)n

=
∫

B(,λiμ)
DK
(

y
λi

+ ai

)(
y
λi

)
dy

( + |y|)n + O
(


λn

i

)
. (.)

Using the fact that DK is continuous we get

DK
(

y
λi

+ ai

)
= DK(ai) + o(), as μ is small enough.

Therefore,

∫
B(,λiμ)

DK
(

y
λi

+ ai

)(
y
λi

)
dy

( + |y|)n = o
(


λi

)

and thus

∫
Rn

Kδ
n+
n–
i λi

∂δi

∂λi
= o
(


λi

)
. (.)

Collecting (.)-(.), claim (i) is valid. Now we regard claim (ii). Following the above com-
putation, it remains to expand this integral,

I =
∫

Sn
Kδ

n+
n–
i λi

∂δi

∂λi

=
∫

B(ai ,ρ)⊂B(yji ,ρ)
Kδ

n+
n–
i λi

∂δi

∂λi
+ O
(


λn

i

)
.

Using the fact that K satisfies (f )β and the fact that
∫

Sn δ
n+
n–
i λi

∂δi
∂λi

= , we get

I =
n∑

k=

bk

∫
B(ai ,ρ)

∣∣(x – yji )k
∣∣nδ n+

n–
i λi

∂δi

∂λi
+ O
(


λn

i

)

=
n – 

n

n∑
k=

bk

∫
B(ai ,ρ)

∣∣(x – yji )k
∣∣nλi

∂

∂λi

(
δ

n
n–
i
)

dx + O
(


λn

i

)

= (n – )c
n

n–


n∑
k=

bk

∫
B(ai ,ρ)

|(x – yji )k|n( – λ
i |x – ai|)λn

i

( + λ
i |x – ai|)n+ dx + O

(

λn

i

)
. (.)
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Observe that

∫
B(ai ,ρ)

|(x – yji )k|n( – λ
i |x – ai|)λn

i

( + λ
i |x – ai|)n+ dx

=
∫

B(ai ,ρ)

|(x – ai)k|n( – λ
i |x – ai|)λn

i
( + λ

i |x – ai|)n+ dx

+ O
(∫

B(ai ,ρ)

|(x – ai)k|n–|(ai – yji )k|( – λ
i |x – ai|)λn

i

( + λ
i |x – ai|)n+ dx

)

+ O
(∫

B(ai ,ρ)

|(ai – yji )k|n( – λ
i |x – ai|)λn

i

( + λ
i |x – ai|)n+ dx

)
. (.)

It is easy to see that

∫
B(ai ,ρ)

|(x – ai)k|n–|(ai – yji )k|( – λ
i |x – ai|)λn

i

( + λ
i |x – ai|)n+ dx = O

( |(ai – yji )k|
λn–

i

)
(.)

and

∫
B(ai ,ρ)

|(ai – yji )k|n( – λ
i |x – ai|)λn

i

( + λ
i |x – ai|)n+ dx = O

( |(ai – yji )k|n
λn

i

)
. (.)

So we have to estimate (.). Using the change of variables y = λi(x – ai), we have

∫
B(ai ,ρ)

|(xi – ai)k|n( – λ
i |x – ai|)λn

i
( + λ

i |x – ai|)n+ dx

=

λn

i

∫
B(,λiρ)

|y|n( – |y|)
( + |y|)n+ dy

= –

λn

i

∫
B(,λiρ)

|y|n
( + |y|)n dy + O

(

λn

i

)

= –

λn

i

∫ λiρ

–λiρ
|y|n

(∫
Bn–(,

√
(λiρ)–|y|)


( + |y| + |ỹ|)n dỹ

)
dy + O

(

λn

i

)

= –

λn

i

∫ λiρ

–λiρ
|y|n

(∫ √
(λiρ)–|y|



rn–

( + |y| + r)n dr
)

dy + O
(


λn

i

)
, (.)

here Bn– is a ball of Rn– and ỹ = (y, . . . , yn).
Through integrations by parts, we have


λn

i

∫ λiρ

–λiρ
|y|n

(∫ √
(λiρ)–|y|



rn–

( + |y| + r)n dr
)

dy

= o
(


λn

i

)
+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


λn

i

( n–
 )!( n–

 )!
(n–)!

∫ λiρ
–λiρ

|y|n
(+|y|)

n+


dy if n is odd,


λn

i

n
 !
∏ n–


r= (r+)


n–

 (n–)!

× ∫ λiρ
–λiρ

|y|n(
∫√

(λiρ)–|y|




(+r+|y|)
n+


dr) dy if n is even.

(.)
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If n is odd, using integrations by parts


λn

i

∫ λiρ

–λiρ

|y|n
( + |y|) n+


dy = O

(

λn

i

)
+




ln( + λ
i )

λn
i

. (.)

And if n is even, using the change of variables z = r√
+|y|

,


λn

i

∫ λiρ

–λiρ
|y|n

(∫ √
(λiρ)–|y|




( + r + |y|) n+


dr
)

dy

=

λn

i

∫ λiρ



|y|n
( + |y|) n+



(∫ √
(λiρ)–|y |√

+|y |




( + z) n+


dz
)

dy

= O
(


λn

i

)
+
∏ n–


r= (r + )∏ n


r=(r)


λn

i

×
∫ λiρ



|y|n
( + |y|) n+


arctan

(√
(λiρ) – |y|√

 + |y|
)

dy. (.)

Observing this, using the change of variables t =
√

(λiρ)–|y|√
+|y|

,


λn

i

∫ λiρ

–λiρ

|y|n
( + |y|) n+


arctan

(√
(λiρ) – |y|√

 + |y|
)

dy

=

λn

i

∫ λiρ

–λiρ

√
 + |y|

( + |y|) n
 + |y|n – ( + |y|) n



( + |y|) n


arctan

(√
(λiρ) – |y|√

 + |y|
)

dy

=

λn

i

∫ λiρ

–λiρ

√
 + |y|

arctan

(√
(λiρ) – |y|√

 + |y|
)

dy + O
(


λn

i

)

=

λn

i

∫ λiρ

–λiρ

t arctan(t)
( + t)

√
λ

i + √
λ

i – t
dt + O

(

λn

i

)

=

λn

i

(
 + O

(

λ

i

))∫ λiρ

–λiρ

t arctan(t)
( + t)

dt + O
(


λn

i

)

=
(

 + O
(


λ

i

))(
ln( + λ

i ) arctan(λi)
λn

i
–


λn

i

∫ λiρ

–λiρ

ln( + t)
( + t)

dt
)

+ O
(


λn

i

)

= π
ln(λi)
λn

i
+ O
(


λn

i

)
. (.)

Combining (.)-(.), the result follows. �

Proposition . Let u =
∑p

j= αjδj ∈ V (p, ε), we have

(i)
〈
∂J(u),


λi

∂δi

∂ai

〉
= –cJ(u)

(n–)
n– α

n+
n–
i

∇K(ai)
λi

+ O
(∑

i�=j


λi

∣∣∣∣∂εij

∂ai

∣∣∣∣
)

+ o
(∑

i�=j

εij +

λi

)
,

where c =
∫
Rn

dy
(+|y|)n .



Chtioui et al. Journal of Inequalities and Applications  (2015) 2015:384 Page 10 of 17

(ii) If ai ∈ B(yji ,ρ), yji ∈K, we have

〈
∂J(u),


λi

∂δi

∂(ai)r

〉

= n(n – )c
n

n–
 α

n+
n–
i
(
J(u)
) (n–)

n– br
(ai – yji )r|(ai – yji )r|n–

λi

∫
Rn

y


( + y)n+ dy

+ O
( |(ai – yji )r|n–

λ
i

)
+ o
(∑

i�=j

εij

)
+ O
(


λn

i

)
+ O
(∑

i�=j


λi

∣∣∣∣∂εij

∂ai

∣∣∣∣
)

,

where k = , . . . , n and (ai)r is the rth component if ai in some geodesic normal coordinate
system.

Proof Arguing as in the proof of Proposition ., Proposition . is proved under the fol-
lowing estimates. If ai ∈ B(yji ,ρ), we have

∫
Sn

Kδ
n+
n–
i


λi

∂δi

∂(ai)r

=
n∑

k=

bk

∫
B(ai ,ρ)

∣∣(x – yji )k
∣∣nδ n+

n–
i


λi

∂δi

∂(ai)r

+
∫

B(ai ,ρ)c

(
K(x) – K(yi)

)
δ

n+
n–
i


λi

∂δi

∂(ai)r

=
n – 

n

n∑
k=

bk

∫
B(ai ,ρ)

∣∣(x – yji )k
∣∣n 

λi

∂

∂(ai)r

(
δ

n
n–
i
)

dx

+
n – 

n

∫
B(ai ,ρ)c

(
K(x) – K(yi)

) 
λi

∂

∂(ai)r

(
δ

n
n–
i
)

dx

= –(n – )c
n

n–
 br

∫
B(ai ,ρ)

∣∣(x – yji )r
∣∣n λi(x – ai)r

( + λ
i |x – ai|)n+ λn

i dx

– (n – )c
n

n–


∫
B(ai ,ρ)c

(
K(x) – K(yi)

) λi(x – ai)r

( + λ
i |x – ai|)n+ λn

i dx

= –(n – )c
n

n–
 br

∫
B(ai ,ρ)

∣∣(x – yji )r
∣∣n λi(x – ai)r

( + λ
i |x – ai|)n+ λn

i dx + O
(


λn+

i

)
. (.)

Now, we have

∫
B(ai ,ρ)

∣∣(x – yji )r
∣∣n λi(x – ai)r

( + λ
i |x – ai|)n+ λn

i dx

=
∫

B(ai ,ρ)

∣∣(ai – yji )r
∣∣n λi(x – ai)r

( + λ
i |x – ai|)n+ λn

i dx

+ β

∫
B(ai ,ρ)

(ai – yji )r
∣∣(ai – yji )r

∣∣n– λi(x – ai)
r

( + λ
i |x – ai|)n+ λn

i dx

+ O
(∫

B(ai ,ρ)

∣∣(x – ai)r
∣∣∣∣(ai – yji )r

∣∣n– λi(x – ai)r

( + λ
i |x – ai|)n+ λn

i dx
)

+ O
(∫

B(ai ,ρ)

∣∣(x – ai)r
∣∣n λi(x – ai)r

( + λ
i |x – ai|)n+ λn

i dx
)
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= n
(ai – yji )r|(ai – yji )r|n–

λi

∫
Rn

y


( + y)n+ dy

+ O
( |(ai – yji )r|n–

λ
i

)
+ O
(


λn+

i

)
. �

For the whole next construction, we make use of the following notation.
Let u =

∑p
i= αiδ(ai ,λi) ∈ V (p, ε), for simplicity, if ai is close to a critical point yli , we will

assume that the critical point is zero, so we will exchange ai with (ai – yli ). Now, let i ∈
{, . . . , p} and let M be a positive large constant. We will say that

i ∈ L if λi|ai| ≤ M

and we will say that

i ∈ L if λi|ai| > M.

For each i ∈ {, . . . , p}, we define the following vector fields:

Zi(u) = αiλi
∂δi

∂λi
(.)

and

Xi = –αi

n∑
k=

bk sign
(
(ai)k

) 
λi

∂δ̃(ai ,λi)

∂(ai)k
, (.)

where (ai)k is the kth component of ai in some geodesic normal coordinate system.
It is clear that Xi is bounded. Let ki be an index such that

∣∣(a)ki

∣∣ = max
≤j≤n

∣∣(ai)j
∣∣. (.)

It is easy to see that if i ∈ L then λi|(ai)ki | > M√
n .

3.2 Critical points at infinity
This subsection is devoted to the characterization of the critical points at infinity in
V (p, ε), p ≥ . First, we will prove that there is no critical points at infinity in V (p, ε),
p ≥ , this result is obtained through the construction of a suitable pseudo-gradient W̃

for which the Palais-Smale condition is satisfied along the decreasing flow lines. Second,
we will study the left case. By the construction of a pseudo-gradient W̃, we will give the
characterization of the critical points at infinity in V (, ε). Now we introduce the following
main result.

Theorem . For p ≥ , there exists a pseudo-gradient W̃ in V (p, ε) so that the following
holds.

There exists a constant c >  independent of u =
∑p

i= αiδi ∈ V (p, ε) so that

(i)
〈
∂J(u), W̃(u)

〉≤ –c

( p∑
i=

ln(λi)
λn

i
+

p∑
i=

∇K(ai)
λi

+
∑
j �=i

εij

)
,
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(ii)
〈
∂J(u + v), W̃(u) +

∂v
∂(αi, ai,λi)

(
W̃(u)

)〉

≤ –c

( p∑
i=

ln(λi)
λn

i
+

p∑
i=

∇K(ai)
λi

+
∑
j �=i

εij

)
.

Furthermore |W̃| is bounded and the λi’s decrease along the flow lines of W̃.

Proof We divide V (p, ε) in two different regions. Let

V(p, ε) =

{
u =

p∑
i=

αiδi ∈ V (p, ε) s.t. ai ∈ B(yli ,ρ), yli ∈K, y∀i ∈ {, . . . , p}
}

and

V(p, ε) =

{
u =

p∑
i=

αiδi ∈ V (p, ε) s.t. ∃i ∈ {, . . . , p}, ai /∈
⋃
y∈K

B(y,ρ)

}
.

Pseudo-gradient in V(p, ε). We order the λi’s for the sake of simplicity, we can assume
that λ ≤ · · · ≤ λp. For each i,  ≤ i ≤ p, we have, by Proposition .,

〈
∂J(u), –iZi(u)

〉 ≤ c
∑
j �=i

iλi
∂εij

∂λi
– c

( n∑
k=

bk

)
ln(λi)
λn

i

+

⎧⎨
⎩

O( 
λn

i
) if i ∈ L,

O( |(ai)ki |
λn–

i
) if i ∈ L,

and using Proposition ., we get

〈
∂J(u), Xi(u)

〉≤ O
(∑

j �=i

εij

)
– c

|(ai)ki |n–

λi
+

⎧⎨
⎩

O( 
λn

i
) if i ∈ L,

O( |(ai)ki |n–

λ
i

) if i ∈ L.

Thus,
〈
∂J(u),

p∑
i=

(
mXi – iZi

)
(u)

〉

≤ c
∑
j �=i

iλi
∂εij

∂λi
+ mO

(∑
i�=j

εij

)
– c

p∑
i=

|(ai)ki |n–

λi
+ O

( p∑
i=

ln(λi)
λn

i

)
.

Observe now that, for i < j, we have

iλi
∂εij

∂λi
+ jλj

∂εij

∂λj
≤ –cεij. (.)

Let W =
∑p

i=(mXi – iZi), taking m positive small enough and using (.), we find that

〈
∂J(u), W(u)

〉≤ –c

(∑
i�=j

εij +
p∑

i=

|(ai)ki |n–

λi

)
+ O

( p∑
i=

ln(λi)
λn

i

)
.
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Observe that in V(p, ε) we have under the (f )β condition

∣∣∇K(ai)
∣∣∼ n∑

k=

|bk|
∣∣(ai)k

∣∣n–, (.)

this yields |∇K (ai)|
λi

≤ c |(ai)ki |n–

λi
. We then have

〈
∂J(u), W

〉≤ –c

( p∑
i=

|∇K(ai)|
λi

+
∑
i�=j

εij

)
+ O

( p∑
i=

ln(λi)
λn

i

)
. (.)

Observe that, ∀j = , . . . , p, we have

ln(λj)
λn

j
= o(εj), (.)

thus we get

〈
∂J(u), W

〉≤ –c

( p∑
i=

ln(λi)
λn

i
+

p∑
i=

|∇K(ai)|
λi

+
∑
i�=j

εij

)
. (.)

We must add the index .
If λ ∼ λ, then we can make ln(λ)

λn


appear in the above estimates; in this case let

W = W + mX,

we obtain

〈
∂J(u), W(u)

〉≤ –c

(∑
i�=j

εij +
p∑

i=

ln(λi)
λn

i
+

p∑
i=

|∇K(ai)|
λi

)
.

If λ � λ, we use the vector field Z̃ defined by

Z̃ = –

( n∑
k=

bk

)
Z. (.)

We then have

〈
∂J(u), X(u) + Z̃(u)

〉≤ –c
(

ln(λ)
λn


+

|∇K(a)|
λ

)
+ O
(∑

j �=

εj

)
.

In this case let

W = W + m(X + Z̃).

We then have

〈
∂J(u), W

〉≤ –c

( p∑
i=

ln(λi)
λn

i
+

p∑
i=

|∇K(ai)|
λi

+
∑
i�=j

εij

)
.
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Pseudo-gradient in V(p, ε). We order the λi’s in an increasing order, without loss of
generality, we suppose that λ ≤ · · · ≤ λp. Let i be such that for any i < i, we have ai ∈
B(yli ,ρ), yli ∈K and ai /∈⋃y∈K B(y,ρ). Let us define

u =
∑
i<i

αiδi.

Observe that u ∈ V(i – , ε). We have then the following estimate:

〈
∂J(u), W(u)

〉≤ –c
(∑

i<i

ln(λi)
λn

i
+
∑
i<i

|∇K(ai)|
λi

+
∑

i�=j,i,j<i

εij

)
+ O
( ∑

i<i,j≥i

εij

)
.

Now, we define the following vector field:

W ′
 =


λi

∂δ(ai λi )

∂ai

∇K(ai )
|∇K(ai )| – c′∑

i≥i

iZi.

Using Propositions . and . and the fact that |∇K(ai )| ≥ c > , we derive

〈
∂J(u), W ′

(u)
〉≤ –

c
λi

+ O
(∑

i�=i

εij

)
– c′ ∑

i≥i,j �=i

εij + o
(∑

i≥i


λi

)
.

Taking c′ positive large enough, we find

〈
∂J(u), W ′

(u)
〉≤ –c

( p∑
i=i

ln(λi)
λn

i
+

p∑
i=i

|∇K(ai)|
λi

+
∑

i≥i,j �=i

εij

)
.

Now, let W  := W ′
 + mW where m is a small positive constant. We then have

〈
∂J(u), W (u)

〉≤ –c

( p∑
i=

ln(λi)
λn

i
+

p∑
i=

|∇K(ai)|
λi

+
∑
i�=j

εij

)
.

Now, we define the pseudo-gradient W̃ as a convex combination of W and W  The con-
struction of W̃ is completed, it satisfies claim (i) of Theorem ..

From the construction, W̃ is bounded. Observe also that the λi’s decrease along the flow
lines of W̃.

Now, we argue as in [], Appendix , claim (ii) holds under claim (i) and the following
lemma which proves that the norm of ‖v‖ is small with respect to the absolute value of
the upper bound of claim (i).

Lemma . Let u =
∑p

i= αiδi + α(w + h) ∈ V (p, ε, w) and let v be defined as in Proposi-
tion .. We have the following estimates: there exists c >  independent of u such that the
following holds:

‖v‖ ≤ c
p∑

i=

[


λ
n

i

+
|∇K(ai)|

λi

]
+ c

⎧⎨
⎩
∑

k �=r ε
n+

(n–)
kr (log ε–

kr ) n+
n if n ≥ ,∑

k �=r εkr(log ε–
kr ) n–

n if n < .

Proof Arguing as in the proof of Lemma . of [], the proof of Lemma . follows. �
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This concludes the proof of Theorem .. �

Theorem . There exists a pseudo-gradient W̃ in V (, ε) so that the following holds.
There is a positive constant c >  independent of u = αδaλ ∈ V (, ε) such that

(i)
〈
∂J(u), W̃(u)

〉≤ –c
(

ln(λ)
λn


+

|∇K(a)|
λ

)
,

(ii)
〈
∂J(u + v), W̃(u) +

∂v
∂(α, a,λ)

(
W̃(u)

)〉≤ –c
(

ln(λ)
λn


+

|∇K(a)|
λ

)
.

Furthermore |W̃| is bounded and the only case where λ is not bounded is where a ∈
B(y,ρ), y ∈K+.

Proof Let u = αδaλ ∈ V (, ε).
Case : If a ∈ B(y,ρ), y ∈K, we define

W = Z̃ + X,

here X is defined by (.) and Z̃ by (.). Using (.), and Propositions . and ., we
have

〈
∂J(u), W(u)

〉 ≤ –c

( n∑
k=

bk

)
ln(λ)

λn


– c
|(a)k |n–

λ

+

⎧⎨
⎩

O( 
λn


) if  ∈ L,

O( |(a)k |n–

λ


) if  ∈ L.
(.)

Using (.), we derive

〈
∂J(u), W(u)

〉≤ –c
(

ln(λ)
λn


+

|∇K(a)|
λ

)
. (.)

Case : If a /∈⋃y∈K B(y,ρ), we define

W  =

λ

∂δaλ

∂a

∇K(a)
|∇K(a)| .

Using Proposition . and the fact that |∇K(a)| ≥ c > , we derive

〈
∂J(u), W (u)

〉≤ –c
(

ln(λ)
λn


+

|∇K(a)|
λ

)
.

The required pseudo-gradient W̃ will be defined by convex combination of W and W .
�

Corollary . The only critical point at infinity of J in V (, ε) corresponds to


K(y) n–


δ(y,∞), y ∈K+;

such a critical point has an index equal to n – ĩ(y).
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Proof Observe from Theorem . that the Palais-Smale condition is satisfied along each
flow line of W̃, until the concentration points of the flow do not enter some neighbor-
hood of y such that y ∈K+; we observe that supλ has to increase and go to +∞ as well as
infλ. Thus we obtain a critical point at infinity. In this region arguing as in the proof of
Proposition . of [], we can find the change of variable

(a,λ) �→ (ã, λ̃) := (ã, λ̃)

such that

J(αδaλ + v) = ψ(α, ã, λ̃) :=
αSn

(Snα
n

n– K(ã)) n–
n

[
 + o()

]
.

Since K satisfy the (f )β condition, then the index of such a critical point at infinity is equal
to n – ĩ(y). The result of Corollary . follows. �

4 Proof of Theorem 1.1
We argue by contradiction. Assume that J has no critical points at �+. By Corollary .,
the only critical points at infinity of the associated variational problem are

(y)∞ :=


K(y) n–


δ(y,∞), y ∈K+.

The indices of such critical points at infinity are

i(y)∞ := n – ĩ(y).

For each (y)∞, we denote by W ∞
u (y)∞ its unstable manifold. By using a deformation

lemma, see [], we have

�+ retracts by deformation on
⋃

y∈K+

W ∞
u (y)∞. (.)

It is well known that if M is a finite cw complex in dimension k, its Euler-Poincaré char-
acteristic denoted χ (M) is given by

χ (M) =
k∑

j=

(–)jn(j), (.)

where n(j) is the number of cells of dimension j in M (see []). We apply this to both sides
of (.), we obtain

 = χ
(
�+) =

∑
y∈K+

(–)i(y)∞ .

Such an equality contradicts the assumption of Theorem ..
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